

Communication Networks II Multimedia Communications / QoS Specific Topics (QoS, IntServ, DiffServ)

Prof. Dr.-Ing. Ralf Steinmetz

TU Darmstadt - Technische Universität Darmstadt, Dept. of Electrical Engineering and Information Technology, Dept. of Computer Science KOM - Multimedia Communications Lab Merckstr. 25, D-64283 Darmstadt, Germany, Ralf.Steinmetz@KOM.tu-darmstadt.de Tel.+49 6151 166151, Fax. +49 6151 166152

httc - Hessian Telemedia Technology Competence-Center e.V Merckstr. 25, D-64283 Darmstadt, Ralf.Steinmetz@httc.de

Scope

	KN III (Mobile Networking), Distributed Multimedia Systems (MM I and MM II), Telecooperation II,III; Embedded Systems									
	Applications	nal ss	SS	ail	٩	r q		lsg.	IP-Tel.	
L5	Application Layer (Anwendung)	Terminal access	File access	E-mail	Web	Peer-to	Рее	InstMsg.	SIP & H.323	
L4	Transport Layer (Transport)	Internet: UDP, TCP, SCTP			itions	Security	Addressing	Transport QoS - RTP		
L3	Network Layer (Vermittlung)	Internet: IP			Netw. Transitions			Network QoS		
L2	Data Link Layer (Sicherung)	LAN, MAN High-Speed LAN		Netw.						
L1	Physical Layer (Bitübertragung)	Queueing Theory & Network Calculus								
	Introduction									
	Legend:	KN I						KN II		

Overview

- 1. Motivation
 - 1.1 Quality-of-Service
 - 1.2 Repetition: Network Layer (Layer 3)
- 2. IntServ & Resource ReSerVation Protocol RSVP
 - 2.1 IntServ Components
 - 2.2 IntServ Service Classes
 - 2.3 The RSVP Protocol
 - 2.4 RSVP Creating and maintaining reservation state
 - 2.5 RSVP Merging of Reservations
- 3. DiffServ: Differentiated Services for the Internet
 - 3.1 DiffServ: Basic Ideas
 - 3.2 DiffServ: Proposed Services
- 4. Price-Controlled Best-Effort
- 5. Summary: IntServ, DiffServ, Price Controlled Best Effort, Best Effort

1. Motivation

Vision

INFORMATION SUPERHIGHWAY

Convergence of

- Internet
- telephony network
- radio and T.V. network
- ...
- all wired and mobile

One infrastructure for all (digital) services

 \Rightarrow the MULTI-SERVICE INTERNET

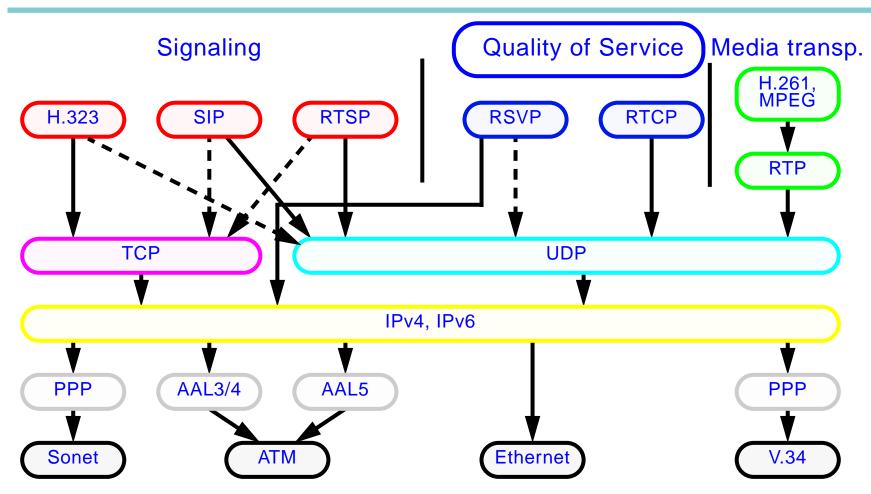
Multiservice Internet

Services on **APPLICATION** layer (applications):

- today
 - E-Mail
 - web
 - FTP
 - instant messaging
 - Peer-to-Peer file-sharing
- next years (high-bandwidth, real-time applications)
 - telemedia telephony (what about emergency calls?)
 - video (in acceptable quality)
 - network games
- science-fiction (?)
 - tele-medicine
 - highest quality immersive video everywhere
 - virtual worlds in real use
 - robot / car / ... control via Internet

www.kom.tu-darmstadt.de www.httc.de

Services on **NETWORK** layer:


- best-effort service
- guaranteed service
- ...
- \Rightarrow see further discussion

Currently only one service on network layer:

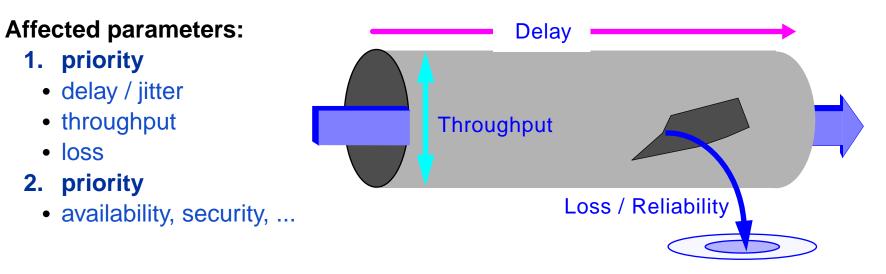
- best-effort service
- ⇒ **QUALITY OF SERVICE** must be supported (somehow) at network layer

Internet Real-Time and Multimedia Protocols

1.1 Quality-of-Service

Requirements of Different Applications

Continuous-media / discrete-media data presentation:

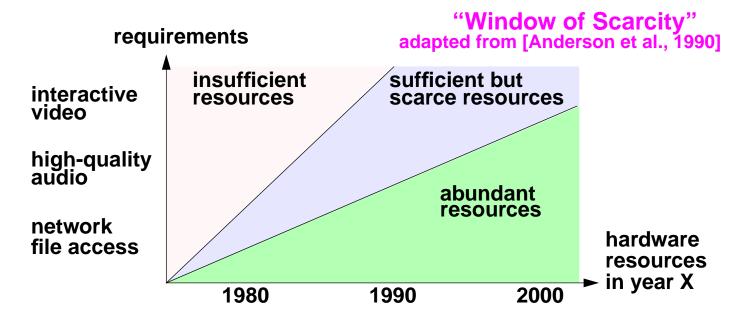

• real time requirements

Mode dependent:

- off-line
- retrieval / distribution
- dialogue

Media and encoding dependent:

- discrete media / continuous media
- compressed / uncompressed / compression method



QoS depends on available resources

Resources and multimedia requirements:

- always:
 - competition for resources among tasks
 - desire to provide best service at lowest possible costs

⇒ **RESOURCE ADMINISTRATION to enforce QoS guarantees**

Quality-of-Service – Main Issues

QoS specification:

- application's requirements
- guarantees returned by the system

QoS calculation:

functions to calculate QoS guarantees

QoS enforcement:

- reservation of resource capacities
- scheduling of resource access

qe

www.kom.tu-darmstadt.

The 4 Approaches for Quality of Service

1. IntServ (and RSVP)

- resource reservation (per flow) and admission control
- queuing priorities based on flow

2. DiffServ

- introduce a number of service classes
- queuing priorities based on service class

3. Price-Controlled Best-Effort (Congestion-Pricing)

- don't change much
- let users that cause congestion pay
 - ... and hope some of them back off

4. Overprovisioning

- don't change anything
- just add enough resources (routers, bandwidth)
- ... and pray

simplicity

mmcom_qos_e-kp.fm **11** 8.December.04

Network layer protocol IPv4

- UNRELIABLE DATAGRAM SERVICE
 - NO FLOW control
 - NO ERROR control
- NO FIXED ROUTES
 - flexibility for path selection
 - reordering problems
 - NOT SUITABLE for time-critical continuous-media data
- maximum datagram is 64 KByte
 - segmentation for smaller subnets (e.g., Ethernet 1500 byte)
 - reassembly necessary (within endsystem)
- checksum for IP header only (to avoid misdirection)
- Time-To-Live (TTL) = hop-counter to break loops
- ⇒ Modification of Internet protocols and mechanisms in order to provide QUALITY OF SERVICE

TCP:

congestion control included

UDP:

no congestion control included

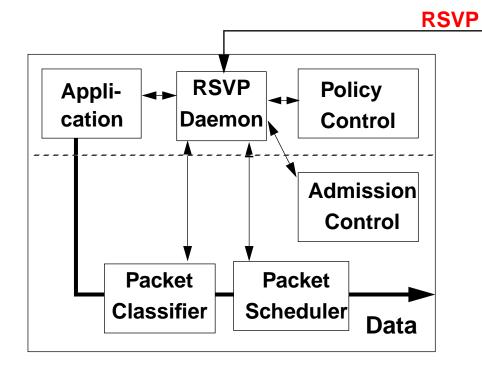
Today:

• most of the traffic is TCP (Web, Mail, Napster)

Probable Future:

- video and audio streams will increase UDP's share of total traffic
- \Rightarrow (missing) Congestion control becomes more and more of a problem

2. IntServ & Resource ReSerVation Protocol RSVP


The 'Pure' Internet Model for QoS Provisioning

Use IP and IP Multicast for data transmission:

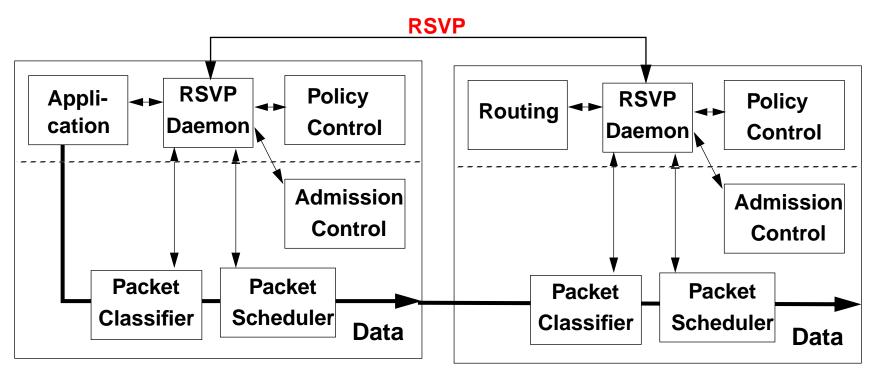
no new data forwarding protocol

Additional mechanisms, e. g.:

- reservation protocol
 - Resource ReSerVation
 Protocol
 - RSVP
- resource management modules
 - e.g. admission control, packet classifier, scheduler

Framework developed with IETF Goal:

- efficient Internet support for applications which require SERVICE GUARANTEES
- fullfil demands of
 - MULTIPOINT, REAL-TIME APPLICATIONS
 - for
 - small and
 - large group communication
 - typical example:
 - large-scale video conferences



End-system and router components

- existence and application of modules
 - depends on specific service used

Router

2.2 IntServ – Service Classes

3 service classes:

- guaranteed service:
 - throughput and delay guarantees

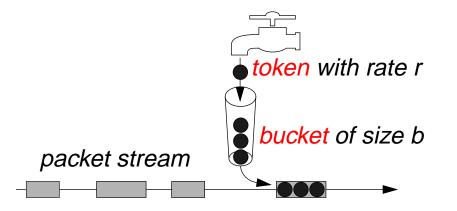
• controlled-load service:

- limitation of load
- similar to best-effort service in unloaded network
- best effort:
 - traditional IP service:
 - no limitations,
 - no guarantees,
 - no effort for QoS provisioning
 - default

Additional classes (suggested, but postponed):

- committed rate
- predictive delay
- controlled delay
- protected best-effort

Stream traffic characterized


by TOKEN BUCKET model

For

- guaranteed and
- controlled-load service

with

- r = long-term rate (bytes/s)
- b = burst (bytes)
- M = Maximum packet size (bytes)
- m = minimum policed unit (bytes)
 - minimum number of tokens required to send an IP packet
- p = peak rate (bytes/s)

Guaranteed Service

Strong guarantees:

- guaranteed bounds for bandwidth and delay
- for applications with hard real-time requirements

Required mechanisms:

- admission control
 - checks whether a new reservation request can be accepted
- policing
 - checks whether a flow conforms to its traffic description
- reshaping
 - adapts a flow to its traffic description
 - needed within the network to reduce bursts caused by jitter
- per-flow scheduling
 - determines the order by which packets are served
 - based on reservations and guarantees

Controlled-Load Service

Limitation of load

- upper bound for the total traffic on the network
- no strong guarantees for bandwidth or delay
 - weak assurance that
 - only a small percentage of the traffic is lost or delivered late
 - no quantification of QoS values
 - similar to best-effort service in unloaded networks
- for applications that can adapt to moderate losses

Required mechanisms:

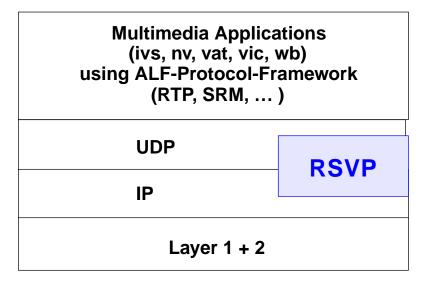
- admission control
- policing

2.3 The RSVP Protocol

RSVP: Resource ReSerVation Protocol

- RFC 2205 (September 1997)
- and more details at other RFCs

Contains


- only protocol elements for control
- not for data transfer

Companion protocol to IP

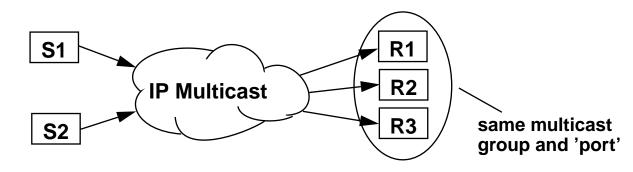
- **CONTROLS HOW IP SENDS A PACKET**
- resource reservation support

RSVP in the Protocol Stack

Typical environment with

- resource reservation protocol (RSVP)
- simple transport protocol (UDP)
- Application Level Framing (ALF):
 - integration of protocol framework into application
 - (RTP: real-time transport protocol,
 - SRM: scalable reliable multicast)

RSVP – Basics

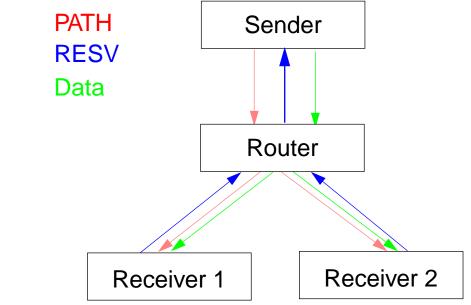

Main abstractions:

- IP multicast routing tree from source(s) to multiple targets
- receiver-initiated reservation
- filtering provides for
 - heterogeneous receivers
 - different reservation styles
- concentrates on resource reservation only
- 'soft-state', refreshed periodically

RSVP Flow and Session

Simplex transmission model

Sessions:


- destination address
 - unicast or multicast
- reservation ID (32 bit number)
 - generalized receiver 'port'; supplied by application ('cookie' for RSVP)
- protocol number
- 1+ flows

Data flows distinguished by

- IPv4: source IP address, source port
- IPv6: source IP address, flow label

IP Multicast with Resource Reservation (RSVP)

- Periodic transmission of
- PATH message indicating session parameters
 - sent from sender to complete group
- answer: reservation message (RESV) from receivers to sender
 - use route defined through PATH messages
 - receiver-initiated reservation
- routers reserve resources based on RESV messages
- soft state update

2.4 RSVP - Creating and maintaining reservation state

Source/sender:

- multicasts data flows
- sends PATH message (periodically) including TSpec describing flows

Receiver:

- 1. joins multicast group
- 2. receives PATH messages
- 3. determines own QoS requirements and uses received TSpec
- 4. sends **RESV** message including filter and flow spec for each sender's flow
- periodic refresh of 'soft-state' via transmission of
 - PATH messages
 - **RESV** message
- reservations are only valid for a certain time and TIMEOUT
- source not restricted from transmitting data at any time
- packets may go across unreserved routes
- forwarding protocol must be aware of
 - relation between packets and reserved resources

Dynamic membership:

- endsystems join and leave transmissions frequently
- if sender initiated then sender must handle these messages
 - potential overload

Large group size:

- receiver-initiated scheme reduces sender load
- merging of reservations

Heterogeneous receivers:

- world is heterogeneous
 - networks,
 - endsystems
- receiver knows its requirements best

Good reasons, but not always true / applicable

Moreover, receiver-orientation leads to other problems, e.g.:

- RSVP background is large-scale conference
 - this is just one application type
 - suitability for many small-scale applications?
 - e.g., video-conferences, VoD, Internet-Phone ?
- heterogeneous flows must be supported not only heterogeneous reservations
 - example:
 - merging of 1 MBit stream with a 100 MBit stream.
 - random drop of 99% of the packets?!
 - filtering on data path necessary, but, too expensive
- routing based on QoS characteristics very difficult
 - path set before reservation requirements are known

RSVP Messages

RSVP messages are

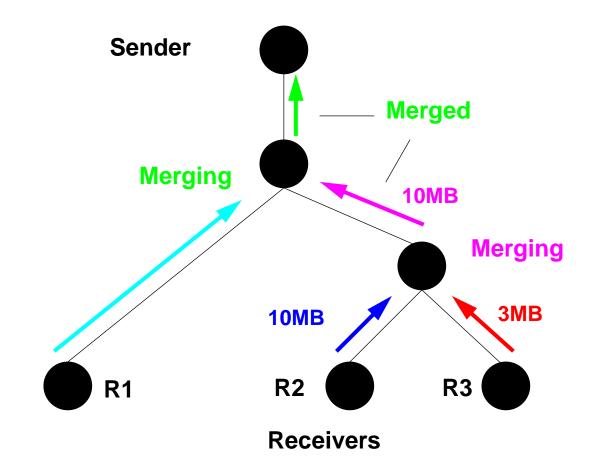
- sent as datagrams directly over IP
- periodically resent:
 - to refresh reservation state
 - to substitute lost messages

Message types

- PATH
- RESV
- error messages (PathErr, ResvErr)
- teardown messages (PathTear, ResvTear)

Flow Descriptor = (Q, F)

Q = *FLOWSPEC*:


- defines desired QoS
- **TS**PEC:
 - source behavior, leaky bucket
- **RS**PEC:
 - reservation,
 - e.g. delay or priority

F= FILTER SPEC:

- controls classifier
- to select the subset of data packets to receive this QoS

2.5 RSVP – Merging of Reservations

www.kom.tu-darmstadt.de www.httc.de

mmcom_qos_e-kp.fm 31 8.December.04

Reservation Styles

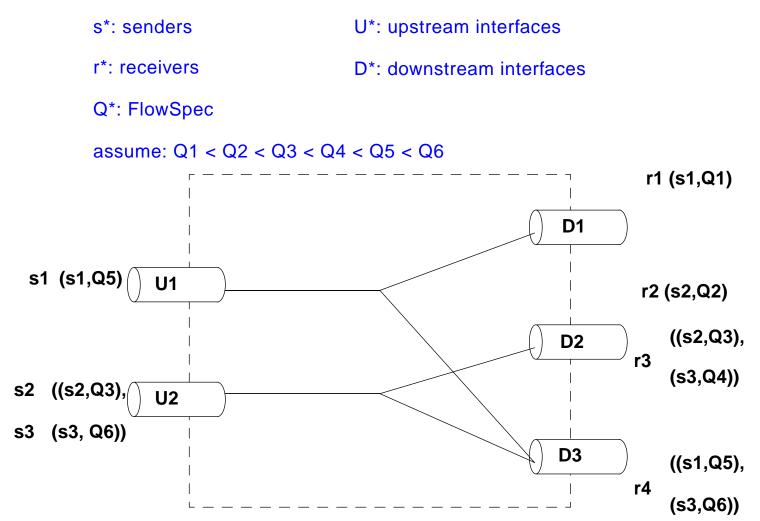
Sender	Reservation						
Selection	Distinct	Shared					
Explicit	Fixed-Filter (FF) style	Shared-Explicit (SE) style					
Wildcard	undefined	Wildcard-Filter (WF) style					

Shared vs. distinct reservations:

- some applications can share a reservation among multiple sources
 - e.g., usually only one person is speaking in a conference
- other applications need one distinct reservation per source
 - e.g., for video from all persons in a conference

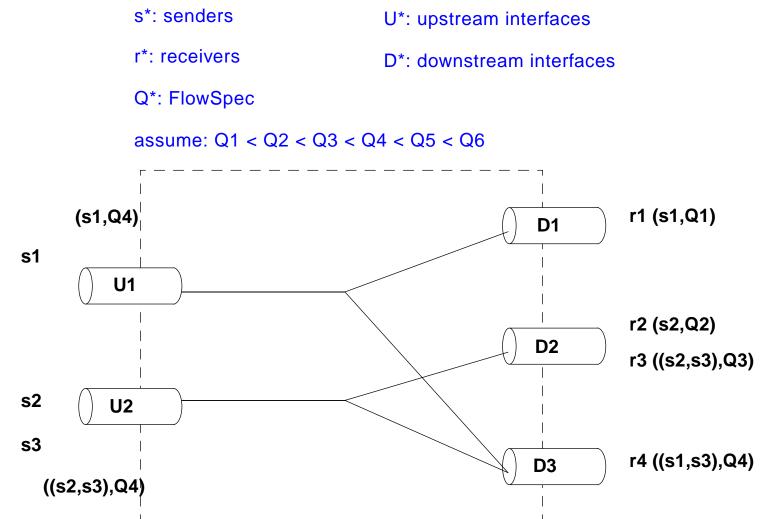
Explicit vs. wildcard sender selection:

- some applications want to make reservations for explicit senders
 - e.g., teleteaching
- some applications want to make reservations for any sender
 - e.g., conference

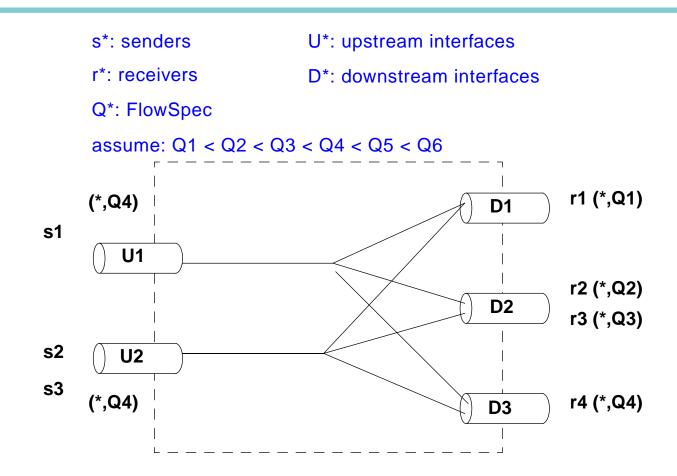


Originally specified filters:

wildcard	no-filter mode, sender's flow is not filtered (all senders share the reserved resources)
fixed	sender's flow filtered according to a fixed filter during reservation (only single sender can use reserved resources)
shared explicit	set of specified senders share the reserved resources


Merging – Fixed-Filter Style

- each interface reserves
 - maximum of received reservations for each source
- separate reservation sent to each requested source


Merging – Shared-Explicit-Filter Style

- FilterSpec of merged reservations is union of FilterSpecs
- FlowSpec of merged reservations is maximum FlowSpec

Merging – Wildcard-Filter Style

- each interface reserves maximum of received reservations
- maximum of all reservations is sent to all sources

Data forwarding tree is set up by routing protocol

\Rightarrow RSVP and routing are decoupled:

- simple handling of link failures
- route flapping possible
 - ".. The key to whether use of BGP will scale to a very large Internet lies in the stability of inter Autonomous System routing. If routes between Autonomous Systems vary frequently a phenomenon termed FLAPPING then the BGP routers will spend a great deal of their time updating their routing tables and propagating the routing changes.."
- no hard QoS guarantees

RSVP SOFT STATE MANAGEMENT

- reservation is set for certain time only:
 - **REFRESH** by end systems necessary
 - state *TIMES OUT* if no refresh received and reservations are removed
- periodic transmission of:
 - PATH from sender
 - RESV from receiver
 - merging at routers possible (e.g., RESVs from multiple receivers)

3. DiffServ:

Differentiated Services for the Internet

Background: scaling problems of IntServ

- administration of each INDIVIDUAL flow
- huge overhead in large-scale networks
- recommendation:
 - use IntServ for
 - small closed networks
 - limited amount of (perhaps concatenated) flows

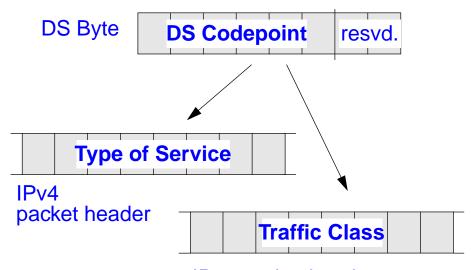
DiffServ:

avoids drawbacks of best-effort and IntServ

- no strong guarantees but better service than best-effort (= no QoS management)
- no management of individual flows, i.e. less overhead
- minimalistic approach
 - with regard to standardization
- compatibility to IPv4

3.1 DiffServ: Basic Ideas

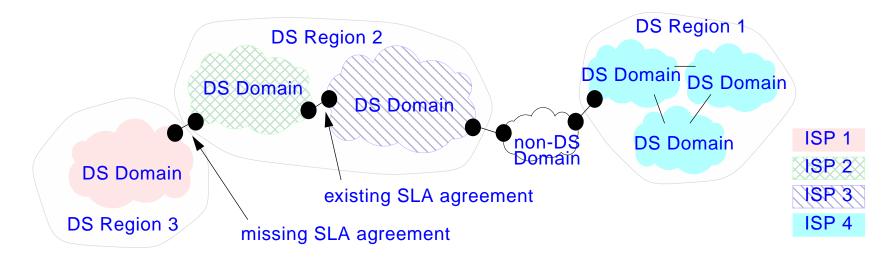
Aggregation of flows


- reservations for a group of related flows
 - e.g. all flows in the same (priority) class
- reservation of a more static nature
 - for a longer period than a flow's lifetime

Tagging of IP packets

- DS byte in packet header
 - type of Service byte in IPv4
 - traffic Class byte in IPv6

determines treatment of


- packets within routers
- e.g. packet priority
- allows user and/or service provider
 - to tag packets that shall be treated with preference

IPv6 packet header

DiffServ Architecture Example

- ISP: Internet Service Provider
- SLA: Service Level Agreement
- DS: DiffServ

3.2 DiffServ: Proposed Services

Expedited / Assured Forwarding

PHB = Per-Hop-Behavior (behavior inside one router)

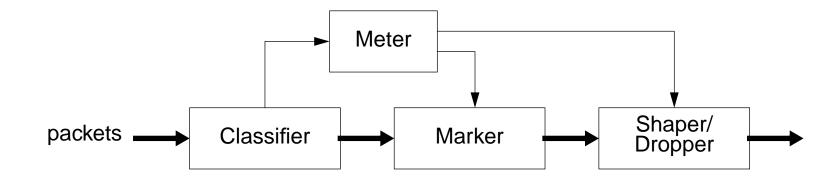
- absolute bandwidth allocated to aggregate flows
- DS byte specifies packet (priority) class
 - Expedited Forwarding (EF),
 - Assured Forwarding (AF),
 - Best-Effort

PDB = Per-Domain-Behavior (behavior inside on provider's domain)

- virtual wire (Expedited Forwarding Per-Domain-Behavior EF PDB),
- assured PDB
- best-effort PDB
- bulk-handling PDB

Service (offer by provider to customer)

- Premium Service
- Assured Service
- Best-Effort Service


Premium Service:

- contract between user and network
 - source and target addresses of an aggregate flow
 - bandwidth available for the flow
- similar to virtual leased line

Assured Service:

- no guaranteed bandwidth
- assurance that a high percentage of the flow will obtain a good service

Routers:

- classification of packets
 - management of P- and A-Bits
- policing and shaping of flows
 - based on token buckets
- scheduling of packets
 - high-priority queue for Premium Service
 - low-priority queue for Assured Service and best-effort packets
 - dropping of best-effort packets with a higher probability than assured packets

Other proposed service models / pricing schemes:

- Olympic Services:
 - gold,
 - silver,
 - bronze
- Paris-Metro Pricing:
 - 1st and
 - 2nd class
- Cumulus Pricing Scheme, ...

4. Price-Controlled Best-Effort

Drawback of IntServ and DiffServ:

- modifications of Internet routers necessary
- IntServ and DiffServ Routers are more expensive

Alternative Idea

stick to current best-effort services

Advantage

- best-effort (can be) good enough if there is no congestion
- best-effort routers are already deployed

Congestion in the future

- more and more UDP traffic
- UDP has no congestion avoidance mechanism like TCP
- \Rightarrow new congestion avoidance mechanism necessary

Basic Idea

Congestion avoidance

- let users pay if they
 - cause congestion
 - use already congested links,
- SO
 - they have to decide whether
 - it is worth to stay and pay or
 - to reduce the amount of traffic

Fairness

- bandwidth is allocated proportional to the willingness-to-pay
 - proportional fairness
- is this "fair"?

Realization

Explicit Congestion Notification (ECN)

- see RFC 2481 (for TCP/IP)
- and later
 - RFC 3168 with different approach, for IP

Explicit Congestion Notification ECN

- when a router experiences congestion
 - it marks a number of random packets
 - marking a packet is done by setting the ECN bit in the TOS byte of the IP Header (IPv4)
- the receiver informs the sender
 - via TCP ACKs of incoming ECN signals
- the sender reacts by
 - decreasing its traffic

Use with/for Pricing

Using Explicit Congestion Notification ECN for pricing:

- users pay a small amount of money per ECN mark they receive
- this gives them an incentive to decrease their traffic but does not force it

Highly dynamic prices

- users cannot predict prices
- prices can vary rapidly within seconds
 - ⇒ Risk Broker

Security

- what can stop a provider marking too many packets
 - \Rightarrow High Competition

related to (price-controlled) Best-Effort

- difficult to set the prices to the right magnitude
- will probably not be good enough for some applications

Price Controlled Best Effort is not an Internet draft yet.

- Research
 - e.g. in the EU funded M3I Project and dfn project LetsQoS

5. Summary: IntServ, DiffServ, Price Controlled Best Effort, Best Effort

most interesting multimedia applications are networked

- traffic requirements are
 - very different from traditional data traffic

QoS control is an essential element of multimedia networking:

- description
- negotiation
- provision
- 4 approaches
- IntServ (RSVP)
- DiffServ
- Price-Controlled Best-Effort (using ECN marks)
- Overprovisioning

combinations of those possible / make sense

Internet Integrated Services

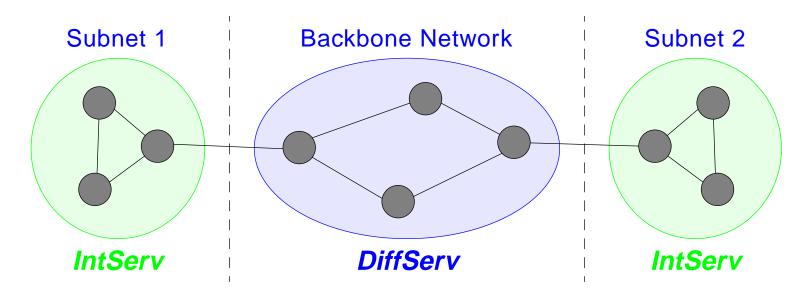
- ratio
 - limited resources
 - hard quality requirements
- approach
 - resource reservation
 - per connection / flow
- method
 - distributed signaling protocol
 - router identify flows
 - scheduling
- services
 - best effort service
 - controlled load service
 - guaranteed service
- scalability for large-scale net. ?
 - packet classification in core router

Internet Differentiated Services

- ratio
 - abundance of resources
 - adaptive data streams
- approach:
 - aggregation of flows
 - reservations for aggregates
- method
 - static control
 - packets marked with priorities
- services (suggestions)
 - premium, expedited forwarding & assured (max. packets high prio)
 - "Olympic": (Gold 60%, Silver 30%, Bronze 10% capacity)
- no hard deterministic guarantees
 - packet classific. at net. borders

Coexistence IntServ and DiffServ

IntServ: for small, closed networks


• e.g. VPN (Virtual Private Network), Corporate Network

DiffServ: for large, open networks

• e.g. backbones

⇒ IntServ and DiffServ are not necessarily competing

Integration is possible:

Combination

- Price Controlled Best Effort with ECN
 - in the backbone
- IntServ or DiffServ
 - in the access network