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ABSTRACT

This paper introduces a new approach to the visualization of volumetric vector fields with an
adaptive distribution of animated particles that show properties of the underlying steady flow. The
shape of the particles illustrates the direction of the vector field in a natural way. The particles are
transported along streamlines and their velocity reflects the local magnitude of the vector field.
Further physical quantities of the underlying flow can be mapped to the emissive color, the trans-
parency and the length of the particles. A major effort has been made to achieve interactive frame
rates for the animation of a large number of particles while minimizing the error of the computed
streamlines.
There are three main advantages of the new method. Firstly, the animation of the particles dimin-
ishes the inherent occlusion problem of volumetric vector field visualization, as the human eye
can trace an animated particle even if it is highly occluded. The second advantage is the variable
resolution of the visualization method. More particles are distributed in regions of interest. We
present a method to automatically adjust the resolution to features of the vector field. Finally, our
method is scalable to the computational and rasterization power of the visualization system by
simply adjusting the number of visualized particles.

Keywords: flow visualization, vector field visualization, flow animation, steady flow, splatting.

1 Introduction

The number of new applications in the area of
Computational Fluid Dynamics is constantly in-
creasing while at the same time the dataset com-
plexity is also increased. The need for visualiza-
tion methods is not exhausted yet. Although the
problem has been studied thoroughly in two di-
mensions for volumetric vector fields new chal-
lenges are arising. The major problem in three
dimensions is the occlusion problem. The human
visual system works on the basis of 2d images.
One eye produces 2d images while two eyes pro-
duce 2d images with additional depth informa-
tion. All visualization methods have to project
their interpretation of the vector field into a two
dimensional image. The simplest method is to
slice the vector field and use a hedgehog method.
But here the global structure of the vector field
may be lost. If the complete volume of the dataset
is projected into two dimensions because of oc-
clusion only the surface of the dataset can be seen.
Three possible workarounds are a transparent vi-
sualization, a sparse sampling of the vector field

or feature extraction. Feature extraction is very
difficult for three dimensional vector fields be-
cause there is a much larger variety of features
and it is not clear how to illustrate them intu-
itively.

The use of transparency and sparse sampling
only diminish the occlusion problem slightly.
Even for a scalar field a transparent rendering
gives a depth impression only, when the dataset is
rotated interactively. As a volumetric vector field
contains much more information than a scalar
field, a simple transparent visualization will fail.
In the case of a sparse sampling of volumetric
vector fields it is very difficult to get an idea of
the visual order of the samples without additional
cues. Our new visualization method combines the
use of transparency with an adaptive sampling.
We use transparent arrow shaped or comet like
particles as samples, which intuitively show the
direction of the vector field. It is also possible
to use any of the icons proposed by Walsum et
al. [11]. The perception of the depth ordering
is improved by adding a halo around each par-



ticle and by the high occlusion of the particles.
The changing of the occlusion by animating par-
ticles gives further cues about the depth ordering.
And at the same time the human eye is able to
track even highly occluded particles deep inside
the vector field with the help of the motion co-
herence. In this way the sampling density can be
increased with a deeper insight into the interior
of the vector field. The length and the speed of
the particles in the animation reproduce the mag-
nitude of the vector field in a natural way.

A second major advantage of the use of par-
ticles is that the visualization resolution can lo-
cally be adapted to the resolution of a vector field
with highly varying sampling resolution. We also
show how to accentuate vector field features by
increasing the sampling resolution in their sur-
rounding. Again the animation of the particles
improves the understanding of the different kinds
of features very intuitively. Thus we can visualize
vector field features without the need of actually
extracting and visualizing them.

A further important advantage of our method
is the low pre-computation time and the interac-
tive frame rates, which can be guaranteed also on
low-end machines by reducing the number of vi-
sualized particles. This does not imply a reduc-
tion of the sampling resolution of the vector field
as the particles can be focused on any arbitrary
region.

1.1 Related Work

Zöckle et al. [14] introduce an interactive algo-
rithm for visualization of flow data using a sparse
representation of the vector field. They visualize
a large number of very fine illuminated stream-
lines, which are preferably initiated near features
of the vector field. It is difficult to visualize fur-
ther physical quantities and the depth impression
is only good for a very sparse sampling of the vec-
tor field.

Wijk [12] extends the streamline approach to
stream surfaces by the use of parametric surfaces.
The extraction of stream surfaces gives a good
overview over the global properties of the vec-
tor field, but views at several depths are not pos-
sible at the same time, since the stream surfaces
are opaque. Raycasting several of these stream
surfaces as proposed by Frühauf [5] permits the
perception of several stream surfaces in differ-
ent depths, but the low sampling resolutions or-
thogonal to the stream surfaces is disturbing. It
is also very tricky to locate critical points of the
flow without visualizing them separately, but the
main drawback is that the difference of the vec-
tor length between two stream surfaces can not
be seen.

For the 2d case Line Integral Convolution
(LIC, see Cabral and Leedom [1]) is one of the
best ways to visualize a vector field in two dimen-
sions because it generates a dense representation
of the vector field. Although it does not explic-
itly extract streamlines the resulting pictures are
very similar to the ones generated with stream-
lines. To combine a good global overview and
the visualization of critical points, Interrante and
Grosch [6] generalize the LIC to volumetric vec-
tor fields, while H. W. Shen et al. [10] use three-
and two-dimensional LIC to visualize local and
global properties of the vector field. The density
of the LIC representation makes it almost perfect
for two dimensional vector fields but rather un-
suitable for volumetric vector fields because of
the extreme amount of occlusion.

Simple particle tracing uses only points as
particles and therefore represents the vector field
direction only through the particle animation.
The larger the particle and the more complex it is,
the fewer particles can be visualized without con-
fusing the observer. Visualizing flow data with a
probe as proposed by Leeuw and Wijk [4] gives
a good impression of the local surrounding of the
particle but cannot provide a global overview of
the whole vector field or the global topology.

Crawfis and Max [2] took a different splat-
ting approach to render the scalar and vector val-
ued fields by encoding the vectors with particles
that reside on the texture used by the splatting al-
gorithm. The particles in their method have the
shape of little blobs that fade along the direction
of the vector field.

1.2 Paper Overview

The visualization of volumetric vector fields us-
ing particles leads to several tasks. Starting with
a vector field, we present a way to visualize local
properties of the field using a single particle. Af-
ter being able to set up a particle, we introduce
an accurate method to move a particle along a
streamline while maintaining a certain distribu-
tion within the vector field. After this, the ani-
mated particles are displayed using our textured
based approach.

In section 2 we describe how to find a vector
for any location in space using tri-linear interpo-
lation. Section 3 describes how to animate parti-
cles along streamlines and how to distribute them
within the vector field. In section 4 we explain
how the particles are rendered and which prob-
lems arise that way. The visualization pipeline is
briefly explained in section 5. Finally, we give
some results on the performance of our method
in section 6.



2 Fast Data Access

In order to visualize a vector field using particles
that represent properties of the underlying field,
we need to know the vector and the additional pa-
rameters for any location in space and therefore
the relative position within the dataset. Due to
the non-regularity of the underlying grid of real
world vector fields, we have to solve two main
problems. We need a fast interpolation within ev-
ery type of primitive in the dataset and a fast way
to find the corresponding primitive for any given
location in space.

2.1 Interpolation

The interpolation that has been used during the
creation of the dataset can not be reconstructed
in general. Therefore we need to define a local
steady interpolation within each cell of the grid.
There are mainly four different primitives used
for a cell within a dataset representing a vector
field, the tetrahedron, the pyramid, the triangu-
lar prism and the hexahedron cell. While the in-
terpolation within a tetrahedron is rather straight
forward, the other three schemes are not that sim-
ple.

The easiest way to define an interpolation is
to split the cells into tetrahedra and interpolate
within each tetrahedron using a matrix. Beside
the huge amount of matrices, the resulting grid
and therefore the interpolation are not unique. To
define an interpolation within a primitive consist-
ing of n vertices requires the inversion of an× n
matrix. Although inverting these matrices can be
carried out quiet fast this leads to a huge over-
head for storing the resulting matrices. Assum-
ing that the surface of each primitive is nearly
plane, which can safely be assumed for most of
the datasets used in the area of Computational
Fluid Dynamics, we can use a different, more ef-
fective approach.

With vn as the vector at the pointpn and the
distancesdn to describe the position within the
primitive, leads to the following interpolation for
a tetrahedron (see figure 1a for the naming of the
distances):

v =
d0v0 + d1v1 + d2v2 + d3v3

d0 + d1 + d2 + d3
(1)

Using a bi-linear interpolation on the quad-
rangle of the pyramid and a linear interpolation
between the bottom and the top of the pyramid,
using the distances seen in figure 1b, results in
the following interpolation:

a0 =
d0v0 + d1v1

d0 + d1
(2)

a) b)

c) d)

Figure 1: Relative position of point l within
each primitive.

a1 =
d0v2 + d1v3

d0 + d1

b =
d2a0 + d3a1

d2 + d3

v =
d4v4 + (d0 + d1 + d2 + d3)b

d0 + d1 + d2 + d3 + d4

The interpolation for the triangular prism can
be split into a bi-linear interpolation on the two
opposite triangles and a linear interpolation be-
tween them. Using the distances seen in figure 1c
results in the following interpolation:

a0 =
d0v0 + d1v2 + d2v4

d0 + d1 + d2
(3)

a1 =
d0v1 + d1v3 + d2v5

d0 + d1 + d2

v =
d3a0 + d4a1

d3 + d4

Finally the interpolation for the hexahedron
is a simple tri-linear interpolation using the dis-
tances seen in figure 1d.

a0 =
d0v0 + d1v1

d0 + d1
(4)

a1 =
d0v2 + d1v3

d0 + d1

a2 =
d0v4 + d1v5

d0 + d1

a3 =
d0v6 + d1v7

d0 + d1

b0 =
d2a0 + d3a1

d2 + d3

b1 =
d2a2 + d3a3

d2 + d3

v =
d4b0 + d5b1

d4 + d5



Although these calculations can be carried
out very fast, the results are not linear within the
cell, because the sum of the distances is not con-
stant. On the other hand the interpolation used
during construction may also not have been lin-
ear. The later algorithm needs fewer space and
time than splitting the primitives into tetrahedra
and by far less precomputational time than the
one using inverted matrices.

2.2 Finding Cells

We are now able to calculate an interpolation
within a cell, but we still need a way to find the
cell containing the given point. Although this
might not seem necessary because animated par-
ticles could find the new cell using the neighbor-
hood information of the grid, we still need these
cells for inserting new particles. De Berg et al. [3]
stated that the problem of point inclusion in 3D
can not be solved in general inlog(n) time, where
n is the number of primitives to be checked and
that no optimal algorithm is known.

The simplest but inefficient way to find the
corresponding cell would be to check every cell
whether it contains the point or not. Although this
is still quite fast for about 100 cells if a bound-
ing box check is done first, large datasets can not
be visualized this way. To reduce the number of
cells to be tested for large datasets a bsp-tree can
be used. Although this would theoretically result
in a search time oflog(n), there might always
be cells intersecting the split plane of the tree.
Therefore the intersecting cells have to be stored
in both parts of the bsp-tree (as seen in figure 2a).

To reduce the number of cells to be tested ef-
fectively we have to construct a bsp-tree by split-
ting the dataset into two more or less evenly sized
parts while producing as few duplicate cells as
possible. This would require a balanced bsp-tree
as described by de Berg et al. [3] that can not
be constructed in general without limiting us to
curvilinear grids. To reduce the number of pos-
sible planes to split at, we only allow splits in
the direction of thex, y andz-axis, resulting in
a rectangular bsp-tree and a faster search for the
leaf that contains our current location. To con-
struct a balanced bsp-tree while using the most
easy to handle planes (those along the three axis),
we use a three dimensional kd-tree (see de Berg et
al. [3]). We split the dataset using all three possi-
ble planes and choose the one producing the least
overhead. This results in a nearly balanced bsp-
tree while trying to minimize the overhead. How-
ever splitting the dataset until it can’t be split any
further, i.e. no edge of any bounding box is in-
side our node of the bsp-tree, would result in a
huge overhead as a single cell may be stored in a

a) b)

Figure 2: Building of bsp-tree with a single
plane or single references to every cell.

large number of leafs.

To handle more complex datasets, we need an
approach that does not need any additional mem-
ory to store multiple references to each cell and
therefore enables us to split the dataset until only
a single cell is contained in every leaf of the bsp-
tree. As seen in figure 2b, we split the dataset
rather than the space at the current plane. The re-
sulting planes of the bounding box are stored in
the bsp-tree rather than the one used for splitting
the dataset, because both parts of the tree have to
be tested if our current location is between these
two planes. Therefore we can not guarantee that
only one leaf is needed to find the corresponding
cell. In the worst case it might even be possi-
ble that a region of the dataset is present in ev-
ery leaf of the tree and therefore every cell has to
be tested. This approach reduced the number of
tests to an average of1.58 using the Oxygen Post
dataset (see figure 7) and is therefore faster than
using neighborhood information. The overhead
of this algorithm, i.e. the space contained in more
than one leaf, can be seen in section 6 table 1.

3 Animated Particles

Being able to visualize a single particle leaves
three problems for animating a large amount of
them. We need a scheme to distribute any num-
ber of particles within the dataset. We need a fast
way to move a particle along the vector field, i.e.
a streamline has to be computed. In addition we
also have to track them during their movement to
remove particles at undesired locations and insert
new ones.

3.1 Distribution of Particles

We need a distribution of particles to achieve a
high sampling resolution in interesting regions of
the vector field and a lower one in less interesting
ones. There are several characteristics that can be
of interest. First of all the density or other phys-
ical attributes attached to a flow field might be
correlated to the importance of a region, includ-
ing the magnitude of the vector field. The cur-



vature and the square norm of the divergence as
defined by Leeuw and van Wijk [4], normalized
with the local magnitude may also correlate to the
importance. Thus we come up with the following
definition of aweight function:

ω(x) = ωconst + ω1(x) + . . . + ωn(x) +(5)
ω(x)grad + ω(x)div + ω(x)curv

While ωconst is the amount of homoge-
neously distributed particles, the weightsωi(x)
allow consideration of the different physical
quantities of the vector field to influence the par-
ticle distribution. Finally,ω(x)grad, ω(x)div and
ω(x)curv incorporate the local gradient, diver-
gence and curvature of the vector field. The func-
tion ω(x) can also be extended to handle the local
shear and rotation of the vector field or any addi-
tional function, such as the distance to the closest
critical point.

Now we can define a weight for any position
within the vector field but we still need a way to
distribute the particles according to these weights.
In order to distribute newly created particles, we
introduce thedistribution octree. Every leaf gets
its weight assigned by sampling the weighting
function. Each node in this octree stores the
weight of all its children. In each knot the num-
ber of actually contained particles is stored and
initialized to zero at the beginning.

Each time a new particle is created, the distri-
bution octree is traversed from top to bottom, the
cell with the most missing particles is located and
the particle is placed randomly inside this cell.
The distribution octree is dynamically coarsened
and refined during the insertion and the removal
of particles. A leaf, that should contain more then
eight particles, is split while a node that contains
children of which each should hold less than one
particle is combined to a single leaf. The distri-
bution octree after insertion of all particles for the
Blunt Fin dataset is shown in figure 3. To opti-
mize the memory allocation we store the removed
octree cells during coarsening in a linked list (as
proposed in [7]) in order to speed up cell creation
during refinement.

3.2 Movement

The fastest way to compute streamlines is a sin-
gle step Euler integrator. Although it is suitable
for a quick preview, it can not be used for most
of the present vector fields due to its large er-
ror. The best choice between performance and er-
ror of the computed streamlines is a fourth order
Runge-Kutta integrator with adaptive step width
as described by Press et al. [9].

Figure 3: Distribution octree for 10000 parti-
cles with a maximum of 16 particles per leaf
(Blunt Fin dataset).

Although the integration is very fast for small
datasets, there is a huge overhead for larger ones
due to the randomness of the memory access pro-
duced by particles at different locations. To lo-
calize most of the memory access the distribution
octree can be used. The algorithm starts with one
leaf and moves every particle in it before moving
to the next one. Therefore we can test the cell that
contained the previous location first.

3.3 Updating

After the particles have been moved along the
vector field their distribution changed and regions
of low interest may contain more particles than
they are supposed to, while regions of high inter-
est may contain too few. For removing misplaced
particles and inserting them at a different location
we need to know the current distribution of par-
ticles within the distribution octree. So we need
to keep the number of particles per cell up to date
while they are moving. But just replacing parti-
cles at undesired locations leads to a heavy flick-
ering that prevents the user to see any properties
of the vector field if the particles are animated.

To reduce the amount of particles being re-
moved during each step of the animation, every
particle gets an age property attached. This age
allows a particle to stay in an overcrowded region
for some time before it will be removed, thus en-
suring that a particle is visible for at least a de-
fined number of frames, allowing the user to trace
it’s motion. Particles that sometimes visit over-
crowded regions but mainly move along under-
crowded ones need not be removed. To keep these
particles, we reduce their age while they are in
undercrowded regions and only increase the age
of additional particles in overcrowded ones. This
also leads to a minimum number of particles in
each region even if there are constantly too many
particles present. This can be implemented by us-



Figure 4: Part of two different textures used for
rendering particles.

ing the list of particles in each leaf used for opti-
mization in the last section.

Although this reduces the flickering as much
as possible while keeping the correct distribution
of particles, there is still another way to dimin-
ish it further. The flickering is produced by par-
ticles that are removed from one location and are
created at another at the same time. So we have
to fade them out after they reach their maximum
age and fade them in again after creation instead
of ”teleporting” them to their new location. As a
result of this technique there is nearly no visible
flickering left.

4 Display

Visualizing a huge amount of extended, transpar-
ent particles would be very slow if they were ren-
dered using their correct geometry. On the other
hand, image based rendering would also be slow
or need a huge amount of texture memory, if we
desire the perspective to be correct. This trade-
off between speed and accuracy leads to a simple
texture based approach.

4.1 Rendering

We need a fast and simple texture based approach
to render each particle using only one rectangle
and therefore only one texture per particle. Mov-
ing this rectangle to the particle’s location fixes
three degrees of freedom. There are five de-
grees of freedom left: three for the orientation
of the particle and two for its length and diam-
eter. The orientation can be specified by three ro-
tations along the three coordinate axes. Let us as-
sume the particle is aligned with thex-axis. The
first rotation around thex-axis can be avoided by
choosing rotationally symmetric particles. The
rotation around they-axis is performed by se-
lecting the correct pre-rendered arrows or comet
like shapes from one of the textures shown in fig-
ure 4, which sample the rotation around they-axis
densely. Next the length and diameter of the par-

ticle are adjusted by scaling the rendering rect-
angle accordingly. Finally the rotation around the
z-axis is performed by rotating the rendering rect-
angle around thez-axis.

Being able to render a single particle we need
a simple approach to render all of them. An ad-
ditional alpha buffer would probably slow down
the rendering so we have to sort the particles and
render them from back to front using simple al-
pha blending. Neglecting the particle’s geome-
try, we only have to sort them according to dis-
tance from the viewer to their center of gravity in
world coordinates. Because the number of par-
ticles is moderate for a sorting problem, we can
use the hashing algorithm proposed by Mueller et
al. [8]. To use this algorithm effectively we sub-
divide the interval of all currently used distances
equidistantly into twice the number of particles
and use these subintervals as hash entries. Each of
these entries contains a linked list storing the par-
ticles sorted by their distance to the viewer within
the corresponding interval. Using this simple ap-
proach leads to a linear sorting time in the average
case.

Although this simple texture based rendering
is very fast, it has some major drawbacks. The
distance between the viewer and the particle is ig-
nored, resulting in a wrong perspective for most
of the particles. The particle is rotated after being
scaled while the texture is rotated first and there-
fore the scaling changes the rotation angle. The
distortion caused by the distance to the viewer
can not be corrected without using more than one
texture per particle or a set of textures as seen
in figure 4 for different perspectives. The distor-
tion caused by scaling of the particle can partly
be removed if we take a closer look at the re-
sulting transformations. The length of the parti-
cle is scaled bys while it’s diameter is scaled by
s′ = 1/

√
s to keep the same volume. After this

the particle is rotated byα. On the other hand the
texture with the rotational angle ofβ is chosen
and scaled byxs, ys andzs to simulate the orig-
inal transformation. This leads to the following
relations.

(scosα, 0, s′sinα) = (xscosβ, 0, xssinβ)
(0, s′, 0) = (0, ys, 0)

(−ssinα, 0, s′cosα) = (−zssinβ, 0, zscosβ)
(6)

As the scaling tozs along thez-axis is lost
during the projection to the final image, the fol-
lowing values for the texture correspond to any
given particle.

β = atan
(

tanα√
s3

)
(7)

xs = s
cosα
cosβ



ys =
1√
s

For higher rendering performance we only
use one texture and render the particle from 512
different angles ofy-rotation representing 180 de-
grees. This is a good compromise between qual-
ity of the particles and sampling density of the
rotation along they-direction.

By now, we assumed that the viewing vector
is along thez-axis and the view up vector is the
y-axis. To calculate the coordinates of the tex-
tured rectangle using any arbitrary camera direc-
tion vdir and positionvpos of a particle at the
positionppos with the directionpdir we define
the relative position and direction of the particle;
vdir andpdir are normalized vectors.

rpos = ppos− vpos (8)

rup =
vdir× pdir
|vdir× pdir|

rfwd = − vdir× rup
|vdir× rup|

α = asin(rpos · pdir)

After computingxs, ys and β using equa-
tion 7 the textured rectanglep0...3 can be drawn
using texturen out of 512 textures as seen in fig-
ure 4.

n = 255.5 + 511β/pi (9)
p0 = ppos− xs/2 · rfwd− ys/2 · rup
p1 = ppos + xs/2 · rfwd− ys/2 · rup
p2 = ppos− xs/2 · rfwd + ys/2 · rup
p3 = ppos + xs/2 · rfwd + ys/2 · rup

4.2 Textures

Our technique strongly depends on a good vi-
sualization of the particles. The main demands
on the particle visualization are that each particle
shows the direction and vector length of the vi-
sualized flow at the particle location and that the
particles are transparent. The direction and vec-
tor length can be nicely represented with an arrow
or a comet like shape. In order to achieve a high
rendering quality of the particles, they where pre-
rendered with a ray-tracer using high over sam-
pling. The pre-rendered particles contain lumi-
nance and absorption values, such that further at-
tributes can be visualized through the hue and sat-
uration values of each particle.

To allow deep insight into the vector field
while maintaining a depth perception for each
particle requires the particles to be transparent

Figure 5: top left to bottom right: Non trans-
parent, constant transparency, varying trans-
parency, varying transparency with added halo.

and occluding at the same time. The top left im-
age in figure 5 shows non transparent particles re-
sulting in a good depth perception but only few
insight into the vector field. Using a constant
transparency of 50% as seen in the top right im-
age results in better insight into the vector field,
but the depth perception is nearly lost. Varying
the transparency with the thickness of the parti-
cle for each pixel, as seen in the bottom left im-
age, does not improve the depth perception sig-
nificantly. To improve the result any further we
need to apply a halo like the one used by West-
over [6] that does not reduce the overall trans-
parency of each particle and therefore the insight
into the vector field but improves the depth per-
ception. It is also improved by a simple lighting
algorithm that scales the brightness of each parti-
cle according to its distance to the viewer.

Further improvements of the insight into the
vector field and the depth perception can only be
achieved by the movement of the particles along
the streamlines and the ability of the user to rotate
and move the complete dataset interactively.

5 Implementation

After the vector field has been loaded the bsp-tree
is set up. Next the distribution octree is calcu-
lated according to the currently set parameters.
After creation of the specified number of particles
within the vector field, the setup is complete.

The main loop of the visualization consists of
movement, creation and annihilation of particles.
The dataflow is illustrated in figure 6. First the
particles are moved by one step in the movement
stage, which heavily uses the balanced bsp-tree
and the interpolation within the vector field. This
step also includes updating of the particles’ posi-
tion within the distribution octree. Then the age



Figure 6: Flow of data within the visualization.

of the particles is evaluated in the creation and
annihilation stage. The distribution octree is used
for age changes and placement of newly created
particles. The current list of particles is passed to
the first step of the rendering unit. The distance
of each particle to the viewer is computed und the
hash table for sorting them is set up using the min-
imum and maximum distance. During the calcu-
lation of the textured rectangles the particles are
stored in the hash table. Finally, the textured rect-
angles are passed to the OpenGL stage using the
hash table to draw them in the correct order. Each
row in figure 6 is independent of each other, such
that the different tasks can be performed in par-
allel. Furthermore a pipeline could split the tasks
within each row leading to four parallel tasks.

6 Results & Performance

For performance measurements we used three
datasets from the NASA, the Blunt Fin, the Oxy-
gen Post, the Delta Wing and the Space Shuttle
dataset (9 parts). Additionally two datasets from
the 1995 ICASE/LaRC Symposium on Visualiz-
ing Time-Varying Data, the Rotor Blade (4 parts)
and the Cavity dataset (2 parts) were used, as seen
in figure 7. Although the Rotor Blade and the
Cavity dataset are time-varying, only one time
step is visualized due to the amount of memory
needed for the complete datasets.

The Blunt Fin dataset is1/2 of a symmetric
airflow over a flat plate with a blunt fin rising from
the plate with two vortices near the plate as seen
in figure 8. The Rotor Blade dataset is the first
time step of1/8 of a rotational symmetric un-
steady flow through a ducted-propeller blade pas-
sage. The pressure and turbulence of the vector
field are very high at the blades as seen in fig-
ure 11. The Oxygen Post dataset is a liquid oxy-
gen (incompressible) flow across a flat plate with
a cylindrical post rising perpendicular to the plate
(and therefore the flow). The change of the veloc-
ity just upstream of the post and the two counter-

a) Blunt Fin

c) Oxygen Post

e) Space Shuttle

b) Rotor Blade

d) Delta Wing

f) Cavity

Figure 7: The curvilinear grids of all used datasets.

rotating vortices downstream can nicely be seen
in figure 9. The Delta Wing dataset is a flow past
a very simplified geometry representing a delta
wing aircraft, at a moderately high angle of at-
tack. The vortices and the vertex breakdowns of
this dataset can be seen in figure 12 or even bet-
ter interactively explored using animated parti-
cles. The Space Shuttle dataset is an aeronautical
simulation of the Space Shuttle Launch Vehicle,
including the external tank, shuttle rocket boost-
ers and some interconnection hardware, consist-
ing of nine I-blanked parts. This is only1/2 of
the flow, as the data is assumed to be symmet-
ric. The orbiter tail is missing from this geomet-
ric description. Due to the large amount of fea-
tures contained in this dataset, figure 10 can only
give an overview of this dataset, showing the lo-
cation of different features that can further be ex-
plored interactively. The Cavity dataset seen in
figure 13 is the first time step of an unsteady vis-
cous flow over a 3-D rectangular cavity consisting
of two parts. Again the image seen in figure 13
can only give an overview of this dataset and it’s
huge amount of vortices that have to be explored
interactively.

Using the bsp-tree with duplicate space, we
can split the dataset until no more than one cell is
contained in each leaf of the bsp-tree. The result-
ing overhead and the average number of cells per
leaf can be seen in table 1.



dataset cells cel./leaf overh.
Blunt Fin 37,479 0.999 0.73
Rotor Blade1 96,310 0.996 2.27
Oxygen Post 102,675 0.997 1.90
Delta Wing 201,135 0.988 3.79
Space Shuttle1 834,938 0.993 6.47
Cavity 1,124,253 0.999 3.77

Table 1: Number of cells and cells per leaf
for bsp-tree using duplicate space. Over-
head produced by duplicate space con-
tained in different parts of the bsp-tree.

The performance has been tested on an AMD-
K7-800 using a GeForce 2 GTS chipset. All tests
were made using 10,000 particles, a weight func-
tion depending on the local divergence (50%) and
curvature (50%) of the vector field and a suitable
speed for the animated particles. The time needed
to build the bsp-tree and the initial distribution oc-
tree varies from 5 seconds for the bluntfin dataset
to 89 seconds for the Space Shuttle dataset. The
additional memory usage of the bsp-tree is 36
bytes per cell, which is about the same as the 32
bytes per vertex of the dataset itself. In addition
there are about 45 bytes per particle needed, as-
suming an average of 4 particles per leaf for the
distribution octree.

The display part of our algorithm is capable
of displaying about 250,000 to 275,000 particles
per second, depending on how much the density
of particles varies within the dataset. The more
evenly the particles are distributed the faster the
rendering is done due to the used hashing ap-
proach. Note that only the distribution within the
Space Shuttle is clustered heavily enough to re-
duce the number of particles per second to less
than 265,000 as seen in table 2.

The animation of the particles has been tested
using two different modes. A preview mode was
defined using a single step Euler integrator as
mentioned in section 3.2. The animation mode
itself was defined using an adaptive step width
Runge-Kutta integrator with an error tolerance of
1% that has also been defined in section 3.2. Al-
though one might think the preview mode is a lot
faster, this is not true for most of the datasets as
updating the distribution octree and removing or
inserting particles is very expensive compared to
the integration.

1Additional overhead (0.18 for Rotor Blade and 0.005
for Space Shuttle dataset) produced by space contained
within different parts of the dataset.

dataset fps preview fps animation
Blunt Fin 10.63 7.50
Rotor Blade 5.78 4.02
Oxygen Post 8.95 6.39
Delta Wing 6.32 3.60
Space Shuttle 5.77 4.14
Cavity 6.69 5.22

Table 2: Frames per second using 10,000
particles animation preview (Euler single
step) and animation (Runge-Kutta 1%).

7 Conclusion & Future Work

The presented vector field visualization method
is based on a very simple and therefore very fast
texture based rendering algorithm, that allows the
animation of a large number of transparent parti-
cles at interactive frame rates. The high quality of
the particles was achieved by pre-rendering them
with a ray-tracer.

The transparency and animation of the parti-
cles allows the user to see deeper into the dataset.
Although the huge amount of information in a
volumetric vector field still leads to some amount
of occlusions when projected to the screen, the
coherent movement of the particles allows the hu-
man eye to also determine direction and magni-
tude of the vector field in partly occluded areas.
With this advantage the sampling density of the
visualization can be increased compared to other
methods. The animation of the particles proved
very useful for intuitively understanding the mag-
nitude of the underlying flow as the particles’ ve-
locity is scaled accordingly.

The use of the texture based approach allows
us to adapt the visualization not only to the sam-
pling of datasets with highly changing sampling
resolution but also to emphasize features of the
flow such as critical points and vortices. Finally,
the rendering algorithm achieves high frame rates
with low pre-computational time and therefore
allows the user to investigate datasets nearly in-
stantly.

As mentioned in section 5 the algorithm
is highly parallel and could therefore be im-
plemented in a multi-processor environment to
achieve even higher frame rates.
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Figure 8: Blunt Fin dataset (20,000 particles,
ωdiv = 0.5, ωcurv = 0.5)

Figure 9: Oxygen Post dataset (20,000 parti-
cles,ωdiv = 0.5, ωcurv = 0.5)

Figure 10: Space Shuttle dataset (50,000 parti-
cles,ωdiv = 0.5, ωcurv = 0.5)

Figure 11: Rotor Blade dataset (50,000 parti-
cles,ωdiv = 0.5, ωcurv = 0.5)

Figure 12: Delta Wing dataset (20,000 parti-
cles,ωdiv = 0.5, ωcurv = 0.5)

Figure 13: Cavity dataset (50,000 particles,
ωdiv = 0.5, ωcurv = 0.5)


