Christian Drischler Report B05, First Workshop of the SFB 1245 Nov. 21 – 23, 2016, Darmstadt

TECHNISCHE UNIVERSITÄT

DARMSTADT

November 23, 2016 | Fachbereich Physik | Institut für Kernphysik – Theory Center | Christian Drischler | 1

Motivation

Energy per particle: $\frac{E}{A}(n, x, T)$

challenging density range: complementary approaches

- low densities: chiral effective field theory (EFT)
- high densities: functional renormalization group (fRG)

November 23, 2016 | Fachbereich Physik | Institut für Kernphysik – Theory Center | Christian Drischler | 2

density proton fraction temperature

Functional Renormalization Group

- software development: automatized derivation of fRG equations
- mechanism based on quark-gluon dynamics identified which underlies the existence of a critical quark chemical potential µ_{cr}
- exact determination of µ_{cr}:
 ~100 diagrams at LO (Fierz-complete analysis)
- **next step:** development of syst. approx. for EOS ($\mu > \mu_{cr}$)

Springer, Braun, Rechenberger, Rennecke, arxiv:1611.06020 Leonhardt, Pospiech, Braun, work in progress

Hierarchy of Nuclear Forces in Chiral EFT

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Machleidt, Meißner, ...

November 23, 2016 | Fachbereich Physik | Institut für Kernphysik – Theory Center | Christian Drischler | 4

3N forces beyond Hartree-Fock?

Effective NN potentials

by summing *one* particle over the occupied states of the Fermi sea

» dominant 3N contributions

Holt *et al.*, PRC **81**, 024002 Hebeler *et al.*, PRC **82**, 014314

so far: only N²LO 3N and P = 0

Improved Method

- applicable to all nuclear forces
- N³LO 3N forces due to recent PW decomposition Hebeler *et al.*, PRC **91**, 044001

CD, Hebeler, Schwenk, PRC 93, 054314

Outline

Isospin-Asymmetric Nuclear Matter

2 Man

3

- Many-Body Convergence?
- BCS ${}^{1}S_{0}$ and ${}^{3}P_{2}$ - ${}^{3}F_{2}$ Pairing Gaps

see also: Vidaña *et al.,* PRC **80**, 045806 CD *et al.,* PRC **89**, 025806 Drews, Weise, PRC **91**, 035802 Wellenhofer *et al.*, PRC **93**, 055802

CD, Hebeler, Schwenk, PRC 93, 054314.

ISOSPIN-ASYMMETRIC NUCLEAR MATTER

Objectives: equation of state, saturation point, incompressibility, symmetry energy

Equation of State

CD, Hebeler, Schwenk, PRC 93, 054314

November 23, 2016 | Fachbereich Physik | Institut für Kernphysik – Theory Center | Christian Drischler | 8

Saturation Properties

CD, Hebeler, Schwenk, PRC 93, 054314

Coester-like correlation

 covers the empirical range due to 3N contributions

Coester et al., PRC 1, 769

empirical saturation point:

max. range of 14 EDF's

Dutra *et al.*, PRC **85**, 035201 Kortelainen *et al.*, PRC **89**, 054314

$$n_0 = (0.138 - 0.193) \text{ fm}^{-3}$$

 $K = (182 - 254) \text{ MeV}$

Symmetry Energy and Slope Parameter

see also: Hagen et al., Nat. Phys. 12, 186

standard expansion:
$$\beta = 1 - 2x$$

 $\frac{E}{A}(n,\beta) = \frac{E_{\text{SNM}}(n)}{A} + S_2(n)\beta^2 + \dots$
 $S_2(n) = S_v + \frac{L}{3}\left(\frac{n-n_0}{n_0}\right) + \dots$

tight constraints

 $S_v = (30.9 \pm 1.4) \text{ MeV}$

 $L = (45.0 \pm 7.1) \text{ MeV}$

in agreement with emp. extractions

quadratic expansion is reliable; nonanalytical quartic term: $\beta^4 \ln |\beta|$

> Kaiser, PRC **91**, 065201 Wellenhofer *et al.*, PRC **93**, 055802

see also: Dickhoff, Barbieri, Prog. Part. Nucl. Phys. **52**, 377 Rios *et al.*, PRC **79**, 025802 Krüger *et al.*, PRC **88**, 025802 Tews *et al.*, PRC **93**, 024305

CD, Carbone, Hebeler, Schwenk, PRC 94, 054307.

MANY-BODY CONVERGENCE?

Objectives: test many-body convergence study impact of N³LO 3N forces

Testing Many-Body Convergence

- consistent N³LO NN/3N forces
- finite proton fractions need reliable fits of c_D, c_E at N³LO

Golak *et al.,* Eur. Phys. J. A **50** 177

Neutron Matter

Uncertainty bands

- use always c_i's recommended for N³LO calculations
- plus many-body uncertainty

Krebs *et al.*, PRC **85**, 054006

MBPT	SCGF Method
Improved Normal-Ordering Method	
up to third order	nonperturbative
free vs. HF spectrum	full spectral function
<i>T</i> =0 MeV	Extrapolated to <i>T</i> =0 MeV

see also: Carbone *et al.*, PRC **90** 054322

MBPT vs. SCGF Method

CD, Carbone, Hebeler, Schwenk, PRC 94, 054307

November 23, 2016 | Fachbereich Physik | Institut für Kernphysik – Theory Center | Christian Drischler | 13

Testing Many-Body Convergence

CD, Carbone, Hebeler, Schwenk, PRC 94, 054307

Order-by-order analysis: (at saturation density)

- attractive second vs. repulsive third order
- MBPT well converged for EGM potentials (small third order)
- EM 500 MeV is less perturbative (larger third order)
- small energy shift due to N³LO 3N w.r.t. N²LO 3N contributions

see also:

Srinivas, Ramanan, arXiv:1606.09053 (PRC in press) Ding *et al.*, PRC **94**, 025802 Maurizio *et al.*, PRC **90**, 044003 Page *et al.*, "Novel Superfluids", Oxford University Press

CD, Krüger, Hebeler, Schwenk, arXiv:1610.05213

BCS ¹S₀ AND ³P₂-³F₂ PAIRING GAPS

Objectives: study subleading 3N contributions recent (semi-)local NN potentials, new uncertainties

CD, Krüger, Hebeler, Schwenk, arXiv:1610.05213

Pairing Gaps: 3N forces in ¹S₀

- uncertainties: 3N parameter variation (recommended values)
- pairing gap at low densities
 - universal gaps: strongly constrained by phase shifts
 - small 3N contributions: only small suppression for k_F > 0.8 fm⁻¹
 - almost independent of the energy spectrum

CD, Krüger, Hebeler, Schwenk, arXiv:1610.05213

Pairing Gaps: 3N forces in ³P₂-³F₂

- uncertainties: 3N parameter variation (recommended values)
- pairing gap at high densities
 - **3N forces add attraction**: larger max. gap and closure at higher densities
 - effective masses are enhanced due to 3N forces
 - chiral EFT still efficient at $k_{\rm F} > 2 \text{ fm}^{-1}$?

(Semi-)Local NN: ¹S₀ channel

local and semilocal NN forces:

CD, Krüger, Hebeler, Schwenk, arXiv:1610.05213

- up to N²LO and N⁴LO
- R₀ = 0.9, 1.0, 1.1 and, 1.2 fm

new uncertainties (Epelbaum *et al.*) order-by-order analysis in the chiral expansion (LO neglected)

findings:

- at NLO and beyond gaps agree up to k_F~(0.6-0.8) fm⁻¹
- sensitivity to spectrum is again small

Gezerlis *et al.*, PRC **90**, 054323 Epelbaum *et al.*, Eur. Phys. J. A **51**, 53

(Semi-)Local NN: ³P₂-³F₂ channel

CD, Krüger, Hebeler, Schwenk, arXiv:1610.05213

local and semilocal NN forces:

- up to N²LO and N⁴LO
- $R_0 = 0.9, 1.0, 1.1 \text{ and}, 1.2 \text{ fm}$

new uncertainties (Epelbaum *et al.*) order-by-order analysis in the chiral expansion (LO neglected)

findings:

- LO gaps (local NN) depend strongly on the cutoff: artifacts
- large uncertainties: breakdown of the chiral expansion ?

Gezerlis *et al.*, PRC **90**, 054323 Epelbaum *et al.*, Eur. Phys. J. A **51**, 53

Summary | Outlook

Improved Normal-Ordering Method

- applicable to all 3N forces (incl. N³LO)
- asymmetric matter: results for EOS, symmetry energy, ...

More Applications

- studied many-body convergence in neutron matter: N³LO 3N forces beyond Hartree-Fock and in SCGF method
- **BCS pairing gaps** in ${}^{1}S_{0}$ and ${}^{3}P_{2}$ - ${}^{3}F_{2}$:
 - N³LO 3N contributions to traditional NN potentials
 - recent (semi-)local NN potentials, new uncertainties

Extensions – a selection

- finite temperatures, consistently-evolved forces, ...
- constrain fits of nuclear forces: saturation, ... Carlsson *et al.*, PRX **6**, 011019

Special Thanks to

Collaborators:

A. Carbone, K. Hebeler, T. Krüger, A. Schwenk

J. M. Lattimer

CHALMERS

A. Ekström, C. Forssén

A. Dyhdalo, R. J. Furnstahl

Thank you!

