Perspectives on SFB RIKEN program

Thomas Aumann

July 4th 2018

SFB workshop Mainz

Present SFB projects at RIKEN with R3 NeuLAND at RIBF

TECHNISCHE UNIVERSITÄT DARMSTADT

- 4 double planes + electronics packed into boxes
- Shipping to RIKEN Nishina Center (Japan) starts on 12.01.2015
- Arrival in SAMURAI area on 27.01.2015

NeuLAND + NEBULA setup

NEBULA

- Modular plastic scintillator-based neutron detector
- 4 modules containing each:
- 12 VETO paddles (32cm x 1cm x 190cm)
- 2 x 30 NEUT paddles (12cm x 12cm x 180cm)
- All paddles read out with 2 PMTs
- Only vertical paddles
- 1n efficiency: ~ 40% (2 modules; total 48 cm)

NeuLAND Demonstrator @ SAMURAI

- NeuLAND placed in front of NEBULA → better time resolution
- NEBULA VETO in front of NeuLAND

→ improved invariant-mass resolution

 \rightarrow 4n detection possible for the first time

NeuLAND shipped back to GSI What next ? RIBF still the most powerful RI beam facility

Packing of NeuLAND + electronics
August/September 2017

- Flight to Frankfurt mid-September
- Arrival at GSI on 21.09.2017

Accepted proposal: Dipole response of the drip-line nuclei ²⁴O and ²⁹F

(Proposal for NP1512-SAMURAI37)

Thomas Aumann

&

Takashi Nakamura

December 7th 2017

18th Nuclear Physics PAC Meeting

RIBF RIKEN

Proposal

- Electromagnetic excitation and neutron decay of the drip line nuclei ²⁴O and ²⁹F
- Aim: Extraction of low-energy B(E1) strength direct (model-independent) comparison to ab initio theory
- ²⁴O: New ab-initio calculations of B(E1) available for ^{22,24}O
 - Coupled cluster + Lorentz integral transform (S. Bacca et al.)
 - No-core shell model (Christina Stumpf et al., AG R. Roth)

heaviest (only) doubly magic drip-line nucleus in reach, strong Pygmy expected data from GSI stop at $^{\rm 22}{\rm O}$

Theory predictions

IS and IV dipole in ^{22,24}O: I. Hamamoto, H. Sagawa, private communication

July 4th 2018 | T. Aumann | SFB Workshop | 8

Proposal

- Electromagnetic excitation and neutron decay of the drip line nuclei ²⁴O and ²⁹F
- Aim: Extraction of low-energy B(E1) strength direct (model-independent) comparison to ab initio theory
- ²⁴O: New ab-initio calculations of B(E1) available for ^{22,24}O
 - Coupled cluster + Lorentz integral transform (S. Bacca et al.)
 - No-core shell model (R. Roth et al.)

heaviest (only) doubly magic drip-line nucleus in reach, strong Pygmy expected data from GSI stop at ²²O

²⁹F: Heaviest Borromean close-to-dripline nucleus

N=20 (closed shell?) nucleus $(^{28}O + p)$

p-state intruder ? (P. Doornenbal, H. Scheit et al, PRC 2017) → enhanced low-lying dipole

(large-scale SM: Utsuno, Otsuka et al.: narrowed gap (pf), gain of correlation energy \rightarrow ²⁹F bound, island of inversion)

in addition information from 1n knockout reaction + nuclear excitation

→ Experiment will clarify the valence-neutron shell structure

Coulomb breakup of drip-line / halo nuclei

Experiment

$$E^* = \left(\sqrt{\sum_i m_i^2 + \sum_{i \neq j} m_i m_j \gamma_i \gamma_j (1 - \beta_i \beta_j \cos \theta_{ij})} - m_{proj}\right) c^2 + E_\gamma$$