Perspectives on SFB EOS theory

3rd workshop of the SFB 1245

Kai Hebeler

Mainz, July 5, 2018

Ν

Ν

nuclear interactions

• consider forces on a mass element:

gravity: $F_g = -\frac{GM(r)\rho(r)A\,dr}{r^2}$

pressure difference:

$$F_p = A \left(p_{\text{out}} - p_{\text{in}} \right) = A \, dp$$

• consider forces on a mass element:

gravity:
$$F_g = -\frac{GM(r)\rho(r)A\,dr}{r^2}$$

pressure difference:

$$F_p = A \left(p_{\text{out}} - p_{\text{in}} \right) = A \, dp$$

• hydrostatic equilibrium condition:

$$F_g = F_p \Rightarrow \frac{dp}{dr} = -\frac{GM(r)\rho(r)}{r^2}$$

• consider forces on a mass element:

gravity:
$$F_g = -\frac{GM(r)\rho(r)A\,dr}{r^2}$$

difference: $F_p = A (p_{out} - p_{in}) = A dp$

• hydrostatic equilibrium condition:

$$F_g = F_p \Rightarrow \frac{dp}{dr} = -\frac{GM(r)\rho(r)}{r^2}$$

• include general-relativistic corrections:

$$\frac{dp}{dr} = -\frac{GM(r)\varepsilon(r)}{r^2} \left[1 + \frac{p(r)}{\varepsilon(r)c^2}\right] \left[1 + \frac{4\pi r^3 p(r)}{M(r)c^2}\right] \left[1 - \frac{2GM(r)}{c^2 r}\right]$$

'Tolman-Oppenheimer-Volkov' equation

Nuclear saturation

Nuclear saturation

Nuclear saturation

Semi-empirical mass formula:

$$E_B = a_V A - a_S A^{2/3} - a_A \frac{(A - 2Z)^2}{A^{1/3}} - a_C \frac{Z(Z - 1)}{A^{1/3}} \pm \frac{a_p}{A^{1/2}}$$

 $a_V \sim 16~{\rm MeV}, a_S \sim 18~{\rm MeV}, a_A \sim 23~{\rm MeV}, a_C \sim 0.7~{\rm MeV}, a_p \sim 12~{\rm MeV}$

2.5

Nuclear saturation and the liquid drop model

Semi-empirical mass formula: thermodynamic limit $A \to \infty$ $E_B = a_V A - a_S \frac{2/3}{3} - a_A \frac{(A - 2Z)^2}{3} - a_C \frac{Z + Z - 1}{A} \pm \frac{4}{A}$ $a_V \sim 16 \text{ MeV}, a_S \sim 18 \text{ MeV}, a_A \sim 23 \text{ MeV}, a_C \sim 0.7 \text{ MeV}, a_p \sim 12 \text{ MeV}$

Nuclear saturation and the liquid drop model

2.5

Statistical mechanics reminder: $Z = \text{Tr } e^{-\beta H},$ $F = -k_B T \log Z = E - TS,$ $P = k_B T \frac{\partial \log Z}{\partial V}$

Statistical mechanics reminder: $Z = \operatorname{Tr} e^{-\beta H},$ $F = -k_B T \log Z = E - TS,$ $P = k_B T \frac{\partial \log Z}{\partial V}$

Hamiltonian: $H = T + V_{NN} + V_{3N}$ $= H_0 + \underbrace{(-H_0 + V_{NN} + V_{3N})}_{H_1}$

 H_0 defines reference state: (e.g. free state or HF state)

Statistical mechanics reminder: $Z = \operatorname{Tr} e^{-\beta H},$ $F = -k_B T \log Z = E - TS,$ $P = k_B T \frac{\partial \log Z}{\partial V}$ Hamiltonian: $H = T + V_{NN} + V_{3N}$ $= H_0 + \underbrace{(-H_0 + V_{NN} + V_{3N})}_{H_1}$

Evaluation of exact partition function in general highly nontrivial: $Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-\beta(H_0 + H_1)} = Z_0 \left\langle e^{-\beta H_1} \right\rangle_{H_0}$

Statistical mechanics reminder: $Z = \operatorname{Tr} e^{-\beta H},$ $F = -k_B T \log Z = E - TS,$ $P = k_B T \frac{\partial \log Z}{\partial V}$ Hamiltonian: $H = T + V_{NN} + V_{3N}$ $= H_0 + \underbrace{(-H_0 + V_{NN} + V_{3N})}_{H_1}$

Evaluation of exact partition function in general highly nontrivial: $Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-\beta(H_0 + H_1)} = Z_0 \left\langle e^{-\beta H_1} \right\rangle_{H_0}$

One way to approximately evaluate Z:perturbation theory $\langle e^{-\beta H_1} \rangle_{H_0} = 1 - \beta \langle H_1 \rangle_{H_0} + \frac{\beta^2}{2!} \langle H_1^2 \rangle_{H_0} - \frac{\beta^3}{3!} \langle H_1^3 \rangle_{H_0} + \dots$

Many-body perturbation theory: Diagrammatic representation

