

Shape Coexistence at N = Z: In-beam γ -ray spectroscopy of ⁷⁰Kr at the RIBF

Kathrin Wimmer ウィマー カトリン

The University of Tokyo

6 July 2018

- 1 Introduction and motivation
- 2 Spectroscopy of ⁷⁰Kr
- 3 Coulomb excitation of ⁷²Kr and ⁷⁰Kr
- 4 Perspectives for γ -ray spectroscopy at RIBF

Isospin symmetry

neutron and proton: two representations of the nucleon with isospin t_z = ±1/2
 led to the concept of guarks as constituents

- isospin symmetry:
 - ightarrow spectra of mirror nuclei identical
- Coulomb interaction leads to differences
- $\blacksquare \rightarrow$ test isospin (in)dependence of the nuclear interaction

- two nucleon system in T = 0 and 1 channel: explains deuteron $J^{\pi} = 1^+$
- strong interaction independent of isospin or charge V_{np} = (V_{pp} + V_{nn})/2
- symmetric under exchange of protons and neutrons $V_{pp} = V_{nn}$

Isospin symmetry

neutron and proton: two representations of the nucleon with isospin t_z = ±1/2
 led to the concept of guarks as constituents

- isospin symmetry:
 - ightarrow spectra of mirror nuclei identical
- Coulomb interaction leads to differences
- $\blacksquare \rightarrow$ test isospin (in)dependence of the nuclear interaction

- two nucleon system in T = 0 and 1 channel: explains deuteron $J^{\pi} = 1^+$
- strong interaction independent of isospin or charge V_{np} = (V_{pp} + V_{nn})/2
- symmetric under exchange of protons and neutrons $V_{pp} = V_{nn}$

Isospin symmetry

neutron and proton: two representations of the nucleon with isospin t_z = ±1/2
 led to the concept of guarks as constituents

- isospin symmetry:
 - ightarrow spectra of mirror nuclei identical
- Coulomb interaction leads to differences
- $\blacksquare \rightarrow$ test isospin (in)dependence of the nuclear interaction

- two nucleon system in *T* = 0 and 1 channel: explains deuteron J^π = 1⁺
- strong interaction independent of isospin or charge V_{np} = (V_{pp} + V_{nn})/2

• symmetric under exchange of protons and neutrons $V_{pp} = V_{nn}$

Isospin symmetry: anomaly at A = 70

- probing the charge symmetry and independence of the nuclear force
- Coulomb energy differences between T = 1 states:

$$CED(J^{\pi}) = E(J^{\pi}, T_z = 0) - E(J^{\pi}, T_z = 1)$$

3. S. Nara Singh et al., Phys. Rev. C **75** (2007) 06130

- CED rise as a function of spin in the sd and fp shell
- *A* = 70 isobars show anomalous Coulomb energy differences
- weakly bound: reduction of Coulomb repulsion due to spatial extension of proton wave function
- however, negative CED only occur in A = 70 isotones
 may be explained by a shape change between ⁷⁰Se and ⁷⁰Br
 → further lowering of yrast states for T_z = −1 nucleus ⁷⁰Kr expected

Isospin symmetry: anomaly at A = 70

- probing the charge symmetry and independence of the nuclear force
- Coulomb energy differences between T = 1 states:

$$CED(J^{\pi}) = E(J^{\pi}, T_z = 0) - E(J^{\pi}, T_z = 1)$$

G. de Angelis et al., Eur. Phys. Jour. A **12** (2001) 51, B. S. Nara Singh et al., Phys. Rev. C **75** (2007) 061301

- CED rise as a function of spin in the sd and fp shell
- *A* = 70 isobars show anomalous Coulomb energy differences
- weakly bound: reduction of Coulomb repulsion due to spatial extension of proton wave function

- however, negative CED only occur in A = 70 isotones
- may be explained by a shape change between ⁷⁰Se and ⁷⁰Br
- \rightarrow further lowering of yrast states for $T_z = -1$ nucleus ⁷⁰Kr expected

Isospin symmetry: anomaly at A = 70

- probing the charge symmetry and independence of the nuclear force
- Coulomb energy differences between T = 1 states:

$$CED(J^{\pi}) = E(J^{\pi}, T_z = 0) - E(J^{\pi}, T_z = 1)$$

G. de Angelis et al., Eur. Phys. Jour. A **12** (2001) 51, B. S. Nara Singh et al., Phys. Rev. C **75** (2007) 061301

- CED rise as a function of spin in the sd and fp shell
- *A* = 70 isobars show anomalous Coulomb energy differences
- weakly bound: reduction of Coulomb repulsion due to spatial extension of proton wave function

- however, negative CED only occur in A = 70 isotones
- may be explained by a shape change between ⁷⁰Se and ⁷⁰Br
- \rightarrow further lowering of yrast states for $T_z = -1$ nucleus ⁷⁰Kr expected

Predicted shapes of nuclei

predicted deformation parameters using finite-range droplet macroscopic model

P. Möller et al., ADNDT 109 (2016) 1

dramatic shape change around N = Z, $A \sim 70 - 80$

Predicted shapes of nuclei

predicted deformation parameters using finite-range droplet macroscopic model

P. Möller et al., ADNDT 109 (2016) 1

dramatic shape change around N = Z, $A \sim 70 - 80$

Nilsson plot:

- evolution of the gaps between $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, and $1g_{9/2}$ orbitals
- oblate (34, 36) and prolate (34, 38) minima along the Fermi surface
- variety of shapes can coexist at low excitation energy
- shape coexistence and shape transitions

experimental evidence from lifetime and low-energy Coulomb excitation experiments:

krypton isotopes: prolate ground states up to 76 Kr, strongly mixed 74 Kr (Z = 36, N = 38)

A. Görgen et al., Eur. Phys. Jour. A 26 (2005) 153, E. Clément et al. Phys. Rev. C 75 (2007) 054313

• the ground state of ⁷⁰Se (Z = 34, N = 36) is oblate deformed

A. M. Hurst et al., Phys. Rev. Lett. 98 (2007) 072501, J. Ljungvall et al., Phys. Rev. Lett. 100 (2008) 102502

Nilsson plot:

- evolution of the gaps between $2p_{3/2}$, $1f_{5/2}$, $2p_{1/2}$, and $1g_{9/2}$ orbitals
- oblate (34, 36) and prolate (34, 38) minima along the Fermi surface
- variety of shapes can coexist at low excitation energy
- shape coexistence and shape transitions

experimental evidence from lifetime and low-energy Coulomb excitation experiments:

krypton isotopes: prolate ground states up to ⁷⁶Kr, strongly mixed ⁷⁴Kr (Z = 36, N = 38)

A. Görgen et al., Eur. Phys. Jour. A 26 (2005) 153, E. Clément et al. Phys. Rev. C 75 (2007) 054313

• the ground state of ⁷⁰Se (Z = 34, N = 36) is oblate deformed

A. M. Hurst et al., Phys. Rev. Lett. 98 (2007) 072501, J. Ljungvall et al., Phys. Rev. Lett. 100 (2008) 102502

Shape coexistence in Kr isotopes

- proton-rich Kr isotopes show a variety of shapes
- self-consistent beyond mean-field calculations of potential energy surface

spherical for ^{78,80}Kr, prolate coexisting minimum appears in ⁷⁶Kr

- strong prolate oblate shape mixing in ⁷⁴Kr A. Görgen et al., Eur. Phys. Jour. A 26 (2005) 153, E. Clément et al. Phys. Rev. C 75 (2007) 054313
- Coulomb excitation and lifetime measurements in ⁷²Kr: oblate ground state and rapid oblate - prolate transition with increasing spin
 A. Gade et al., Phys. Rev. Lett. 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502
- excited 0⁺ state in ⁷²Kr with large ρ(E0): large difference in deformation E. Bouchez et al., Phys. Rev. Lett. **90** (2003) 082502
- prediction for ⁷⁰Kr: oblate deformed, but γ -soft
 - \rightarrow spectroscopy and Coulomb excitation of $^{70}\mathrm{Kr}$

- study ⁷⁰Kr by knockout reactions and Coulomb excitation at RIBF
- peripheral collision probe the surface of the nucleus

- remove one nucleon in the collision with a light target
- single-particle properties

- excitation in the electro-magnetic field of a high Z target
- collective properties
- γ -ray emission from excited states detected in DALI2
- ZeroDegree spectrometer for the ejectile identification

- study ⁷⁰Kr by knockout reactions and Coulomb excitation at RIBF
- peripheral collision probe the surface of the nucleus

- remove one nucleon in the collision with a light target
- single-particle properties

- excitation in the electro-magnetic field of a high Z target
- collective properties
- γ -ray emission from excited states detected in DALI2
- ZeroDegree spectrometer for the ejectile identification

- study ⁷⁰Kr by knockout reactions and Coulomb excitation at RIBF
- peripheral collision probe the surface of the nucleus

- remove one nucleon in the collision with a light target
- single-particle properties

- excitation in the electro-magnetic field of a high Z target
- collective properties
- γ-ray emission from excited states detected in DALI2
- ZeroDegree spectrometer for the ejectile identification

The Radioactive Isotope Beam Factory

OEDO and transfer reactions

- Optimized Energy Degrading Optics: monochromatic energy degrader and RF deflector for refocusing
- beam energies 10 50 MeV/u

TINA: A Si/CsI Setup for Light Recoiling Particles from Transfer (and other) Reactions

P. Schrock, K. Wimmer, D. Suzuki, N. Imai et al.

- used in two experiments, Kyushu Tandem and at OEDO
- development of a tritium target

OEDO and transfer reactions

- Optimized Energy Degrading Optics: monochromatic energy degrader and RF deflector for refocusing
- beam energies 10 50 MeV/u

(d,p) gs

TINA:

A Si/CsI Setup for Light Recoiling Particles from Transfer (and other) Reactions

P. Schrock, K. Wimmer, D. Suzuki, N. Imai et al.

- used in two experiments, Kyushu Tandem and at OEDO
- development of a tritium target

ш 8

6

5

3

30

(d,d)

(d,p) ex

40

50

60

 θ_{lab} (deg)

counts

Experimental setup

DALI2

- 186 Nal(TI) detectors
- intrinsic resolution 7 % at 1 MeV
- low in-beam resolution \sim 10 %
- high efficiency ~ 25 % at 1 MeV
- suitable for spectroscopy at the limits

S. Takeuchi et al., Nucl. Instr. Meth. A 763 (2014) 596.

Future γ -ray spectroscopy at RIBF

- new scintillator material GAGG
 Ce:Gd₃Ga₃Al₂O₁₂
 Gadolinium-Aluminum-Gallium-Garnet
- density $\rho = 6.63 \text{ g/cm}^3$
- non hygroscopic, easy to handle, no dead material (except for ESR foil)
- first large volume detectors, 35 × 35 × 100 mm³ HR-GAGG

- detector test at RIKEN Pelletron laboratory (June 2018)
- ²⁷Al(p, γ) reaction excites
 12.5 MeV state in ²⁸Si
- collaboration U Tokyo and RIKEN

T. Amano, N. Ogawa, R. Yamada, T. Ikeda, T. Koiwai, M. Niikura, H. Sakurai, K.Wimmer, University of Tokyo

Spectroscopy and Coulomb excitation of ⁷⁰Kr

- inelastic scattering of ⁷⁰Kr on Be target
- one-neutron removal reaction from ⁷¹Kr
- two-neutron removal from ⁷²Kr
- analogue reactions to ⁷⁰Se
- comparison of spectra and exclusive cross sections
- particle identification for ^{70,71}Kr on Be target

- inelastic scattering of ⁷⁰Kr on Be target
- one-neutron removal reaction from ⁷¹Kr
- two-neutron removal from ⁷²Kr
- analogue reactions to ⁷⁰Se
- comparison of spectra and exclusive cross sections

particle identification for ^{70,71}Kr on Be target

- inelastic scattering of ⁷⁰Kr on Be target
- one-neutron removal reaction from ⁷¹Kr
- two-neutron removal from ⁷²Kr
- analogue reactions to ⁷⁰Se
- comparison of spectra and exclusive cross sections
- particle identification for ^{70,71}Kr on Be target

- inelastic scattering of ⁷⁰Kr on Be target
- one-neutron removal reaction from ⁷¹Kr
- two-neutron removal from ⁷²Kr
- likely-hood fit to obtain γ -ray transitions energies

K. Wimmer et al., Phys. Lett B (2018) accepted

Comparison of analogue reactions

- population of the known 2⁺₁, 2⁺₂, 4⁺₁, and (3⁻₁) states in ⁷⁰Se with similar intensity
- assignment of (2⁺₂) and (4⁺₁)
- $\gamma \gamma$ coincidences

東京大学

 (3⁻) state populated in inelastic scattering in all A = 70 nuclei

first spectroscopy of ⁷⁰Kr

K. Wimmer et al., Phys. Lett B (2018) accepted

 beyond mean-field Hartree-Fock-Bogoliubov calculations mapped on a five-dimensional collective Hamiltonian (CHFB-5DCH)

J. P. Delaroche, et al., Phys. Rev. C 81 (2010) 014303

- symmetry-conserving configuration-mixing calculations based on Gogny D1S: axial - oblate yrast band, but prolate - triaxial excited band T. R. Rodríguez, Phys. Rev. C 90 (2014) 034306
- experimentally, there is no constraint on the shape from the present data
- in-beam spectroscopy is the only way to study this nucleus
- measurements of quadrupole moments are beyond the reach of even the next generation radioactive beam facilities

 beyond mean-field Hartree-Fock-Bogoliubov calculations mapped on a five-dimensional collective Hamiltonian (CHFB-5DCH)

J. P. Delaroche, et al., Phys. Rev. C 81 (2010) 014303

- symmetry-conserving configuration-mixing calculations based on Gogny D1S: axial - oblate yrast band, but prolate - triaxial excited band T. R. Rodríguez, Phys. Rev. C 90 (2014) 034306
- experimentally, there is no constraint on the shape from the present data
- in-beam spectroscopy is the only way to study this nucleus
- measurements of quadrupole moments are beyond the reach of even the next generation radioactive beam facilities

- nuclear inelastic scattering and Coulomb excitation of ⁷⁰Kr
- high statistics run for ⁷²Kr to test the analysis
- high-spin ⁷²Kr level scheme well known from fusion evaporation reactions
 N. S. Kelsall et al., Phys. Rev. C 64 (2001) 024309, S. M. Fisher et al., Phys. Rev. C 67 (2003) 064318
- excited states in ⁷²Kr populated in inelastic scattering off Be and Au targets

- populated known 2⁺ and 4⁺ states
- four new transitions in the nuclear scattering
- 1148(5) keV transition also in Coulomb excitation \rightarrow 2⁺ state

Extended spectroscopy of ⁷²Kr

- placing new transition into the level scheme
- coincidence analysis, comparison with the expected number of counts

Extended spectroscopy of ⁷²Kr

- placing new transition into the level scheme
- coincidence analysis, comparison with the expected number of counts

Band mixing model

- mixing of prolate and oblate bands
- obtain unperturbed energies from Harris extrapolation assuming a smooth evolution of the moment of inertia

Band mixing model

- mixing of prolate and oblate bands
- obtain unperturbed energies from Harris extrapolation assuming a smooth evolution of the moment of inertia

Coulomb excitation of ⁷²Kr

- second 2⁺ state observed in Be and Au target inelastic scattering
- nuclear deformation length and E2 matrix elements obtained from comparison with FRESCO (DWCC) calculations

angular distribution well reproduced

state	β_{n}	β_{C}	<i>B</i> (E2 ↑) (e ² fm ⁴) this	$B(E2\uparrow)$ (e ² fm ⁴) prev.
2+	0.30(1)	0.30(1)	4000(250) _{stat.}	4997(647)
				4050(750)
2 ₂ ⁺	0.10(1)	0.11(1)	555(65) _{stat.}	-

A. Gade et al., Phys. Rev. Lett. 95 (2005) 022502, H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502

agreement with previous experiments, validation of the analysis (also for ⁶⁸Se)

Coulomb excitation of ⁷⁰Kr

- nuclear deformation length from Be target data $\beta_n = 0.20(2)$
- E2 matrix elements obtained from comparison with FRESCO (DWCC) calculations
- feeding corrections estimated from ⁷²Kr and ⁶⁸Se
- preliminary result: $B(E2\uparrow) = 2000(250)_{stat.} e^{2} fm^{4} \text{ or } \beta_{C} = 0.21(1)$

Evolution along the Kr isotopes

comparison to several theoretical models for the proton-rich Kr isotopes

 H. Iwasaki et al., Phys. Rev. Lett. 112 (2014) 142502,
 E. Clement et al., Phys. Rev. C 75 (2007) 054313, F. Becker et al., Nucl. Phys. A 770 (2006) 107

- HFB calculations with the Gogny D1S interaction reproduce the trend and magnitude of $B(E2; 2_1^+ \rightarrow 0_1^+)$ and $B(E2; 4_1^+ \rightarrow 2_1^+)$ values J. P. Delaroche et al., Phys. Rev. C 81 (2010) 014303
- symmetry-conserving configuration mixing (SCCM) method over-estimate $B(E2; 2^+_1 \rightarrow 0^+_1)$ T. R. Rodríguez, Phys. Rev. C **90** (2014) 034306
- shell model calculations predict too low collectivity

Isospin symmetry

alternative way to test isospin symmetry:

 determine multipole matrix elements from measured B(E2) values

$$B(\text{E2}; J_{\text{i}} \rightarrow J_{\text{f}}) = \frac{e^2 M_{\text{p}}^2}{2J_{\text{i}} + 1}$$

■ in isospin representation:

$$M_{\rm n/p} = \frac{1}{2} \left(M_0(T_z) \pm M_1(T_z) \right)$$

• in T = 1 triplets the proton multipole matrix elements test isospin symmetry

Isospin symmetry

alternative way to test isospin symmetry:

 determine multipole matrix elements from measured B(E2) values

$$B(\text{E2}; J_{\text{i}} \rightarrow J_{\text{f}}) = \frac{e^2 M_{\text{p}}^2}{2J_{\text{i}} + 1}$$

in isospin representation:

$$M_{n/p} = \frac{1}{2} (M_0(T_z) \pm M_1(T_z))$$

• in T = 1 triplets the proton multipole matrix elements test isospin symmetry

systematic uncertainties from different measurements using different techniques
 new experiment approved to study A = 62 and 66

Kathrin Wimmer

Workshop SFB 1245

Outlook

shell evolution in exotic nuclei

- ab-initio calculations of heavy nuclei
- testable predictions close to magic nuclei

Spectroscopy of ¹⁰⁰Sn

simulations for existing γ -ray spectrometers

¹⁰⁰Sn heaviest self-conjugate nucleus

- N = Z = 50 predicted doubly magic
- prediction of the 2^+ excitation energy

T. D. Morris et al., Phys. Rev. Lett. 120 (2018) 152503

GAGG offers highest peak-to-total and resolving power

new detectors required for the spectroscopy of exotic nuclei

Outlook

Outlook

shell evolution in exotic nuclei

- ab-initio calculations of heavy nuclei
- testable predictions close to magic nuclei

Kathrin Wimmer

Workshop SFB 1245

- require good energy resolution
- GAGG array in the forward wall configuration
- coupling to high-resolution Ge arrays (GRAPE, CAGRA, AGATA, GRETA)
- and multiple active diamond target for lifetime measurements

- require good energy resolution
- GAGG array in the forward wall configuration
- coupling to high-resolution Ge arrays (GRAPE, CAGRA, AGATA, GRETA)
- and multiple active diamond target for lifetime measurements

- reactions in different targets overlap
- knowing which target induced the reaction allows for multiplying the statistics
- measurement at different beam energies simultaneously
- sensitive to a large range of lifetimes

Summary

- very high beam intensities at RIBF allow for studies at the driplines
- investigate isospin symmetry and shape transitions around ⁷⁰Kr
- extended spectroscopy of ⁷²Kr:
 - ightarrow rapid transition to prolate deformation in the ground state band
- first unambiguous spectroscopy of ⁷⁰Kr: second structure identified, 2⁺₂ and 4⁺₂
 → no evidence for shape change between Se and Kr
- Coulomb excitation of ⁷²Kr: second, less deformed (prolate) 2⁺
- Ioss of collectivity in ⁷⁰Kr
- HFB-5DCH calculations predict energies and B(E2) values well
- isospin symmetry of multipole matrix elements maybe violated at A = 70
- in-beam γ-ray spectroscopy with new detectors offers exciting possibilities

Summary

- very high beam intensities at RIBF allow for studies at the driplines
- investigate isospin symmetry and shape transitions around ⁷⁰Kr
- extended spectroscopy of ⁷²Kr:
 - ightarrow rapid transition to prolate deformation in the ground state band
- first unambiguous spectroscopy of ⁷⁰Kr: second structure identified, 2⁺₂ and 4⁺₂
 → no evidence for shape change between Se and Kr
- Coulomb excitation of ⁷²Kr: second, less deformed (prolate) 2⁺
- loss of collectivity in ⁷⁰Kr
- HFB-5DCH calculations predict energies and B(E2) values well
- isospin symmetry of multipole matrix elements maybe violated at A = 70
- in-beam γ-ray spectroscopy with new detectors offers exciting possibilities

Summary

- very high beam intensities at RIBF allow for studies at the driplines
- investigate isospin symmetry and shape transitions around ⁷⁰Kr
- extended spectroscopy of ⁷²Kr:
 - ightarrow rapid transition to prolate deformation in the ground state band
- first unambiguous spectroscopy of ⁷⁰Kr: second structure identified, 2⁺₂ and 4⁺₂
 → no evidence for shape change between Se and Kr
- Coulomb excitation of ⁷²Kr: second, less deformed (prolate) 2⁺
- loss of collectivity in ⁷⁰Kr
- HFB-5DCH calculations predict energies and B(E2) values well
- isospin symmetry of multipole matrix elements maybe violated at A = 70
- in-beam γ-ray spectroscopy with new detectors offers exciting possibilities

Collaboration

W. Korten, T. Arici, P. Doornenbal, P. Aguilera, A. Algora, T. Ando, H. Baba, B. Blank,
A. Boso, S. Chen, A. Corsi, P. Davies, G. de Angelis, G. de France, D. Doherty, J. Gerl,
R. Gernhäuser, D. Jenkins, S. Koyama, T. Motobayashi, S. Nagamine, M. Niikura,
A. Obertelli, D. Lubos, B. Rubio, E. Sahin, H. Sakurai, T. Saito, L. Sinclair,
D. Steppenbeck, R. Taniuchi, R. Wadsworth, and M. Zielinska

U Tokyo, RIKEN, CEA Saclay, GSI, U Giessen, CCEN, U Valencia, U Bordeaux, INFN Padova, U York, INFN Legnaro, GANIL, TU München, U Olso

Thank you for your attention

Backup

東京大学 High energy response of GAGG

- ²⁷Al(p,γ) reaction excites 12.5 MeV state in ²⁸Si
- detector test at RIKEN Pelletron laboratory (June 2018)
- Iarge volume HR-GAGG, wrapping ESR and Teflon, extended red PMT

T. Amano, N. Ogawa, R. Yamada, T. Ikeda, T. Koiwai, M. Niikura, H. Sakurai, K.Wimmer, University of Tokyo

Coincidence spectroscopy of ⁷⁰Kr

all transitions built on the 2⁺ state

- placing new transition into the level scheme
- coincidence analysis, comparison with the expected number of counts

- 1148 keV not in coincidence with the 2⁺ state
- indication for a 434 keV $2^+_2 \rightarrow 2^+_1$ transition
- 947 KeV in coincidence with 1148 keV \rightarrow 4⁺₂
- 3⁻ state based on systematics

- placing new transition into the level scheme
- coincidence analysis, comparison with the expected number of counts

- 1148 keV not in coincidence with the 2⁺ state
- indication for a 434 keV $2^+_2 \rightarrow 2^+_1$ transition
- 947 KeV in coincidence with 1148 keV \rightarrow 4⁺₂
- 3⁻ state based on systematics

- placing new transition into the level scheme
- coincidence analysis, comparison with the expected number of counts

- placing new transition into the level scheme
- coincidence analysis, comparison with the expected number of counts

- placing new transition into the level scheme
- coincidence analysis, comparison with the expected number of counts

Future plans:

Lifetime measurements for excited states in exotic nuclei

- Coulomb excitation of exotic (and stable) nuclei has uncertainties and model dependence ($\sigma \leftrightarrow \delta/\beta \leftrightarrow B(E2)$)
- with fast and intermediate beam energies access only to (yrast) 2⁺ states
- Iow-energy (safe) Coulomb excitation needs large beam intensities
- \rightarrow lifetime measurements
 - no model dependence, access to all states
 - rely difference in Doppler-correction as position and velocity at emission point are different from the reaction point

- Coulomb excitation of exotic (and stable) nuclei has uncertainties and model dependence ($\sigma \leftrightarrow \delta/\beta \leftrightarrow B(E2)$)
- with fast and intermediate beam energies access only to (yrast) 2⁺ states
- Iow-energy (safe) Coulomb excitation needs large beam intensities
- \rightarrow lifetime measurements
 - no model dependence, access to all states
 - rely difference in Doppler-correction as position and velocity at emission point are different from the reaction point

- Coulomb excitation of exotic (and stable) nuclei has uncertainties and model dependence ($\sigma \leftrightarrow \delta/\beta \leftrightarrow B(E2)$)
- with fast and intermediate beam energies access only to (yrast) 2⁺ states
- Iow-energy (safe) Coulomb excitation needs large beam intensities
- \rightarrow lifetime measurements
 - no model dependence, access to all states
 - rely difference in Doppler-correction as position and velocity at emission point are different from the reaction point

- Coulomb excitation of exotic (and stable) nuclei has uncertainties and model dependence ($\sigma \leftrightarrow \delta/\beta \leftrightarrow B(E2)$)
- with fast and intermediate beam energies access only to (yrast) 2⁺ states
- Iow-energy (safe) Coulomb excitation needs large beam intensities
- \rightarrow lifetime measurements
 - no model dependence, access to all states
 - rely difference in Doppler-correction as position and velocity at emission point are different from the reaction point

- lineshape method: decay in flight after the target
 - ightarrow shift in peak position (short lifetimes) and shape (long lifetimes)
- plunger method: add a degrader to change the ejectile velocity
 - ightarrow two peaks intensity varies with distance

K. Wimmer et al., NSCL experiment

T. Braunroth et al., Phys. Rev. C 92 (2015) 034306

- plunger method very precise, but systematic uncertainties related to reactions in the degrader
- \blacksquare thin targets \rightarrow high beam intensity

- multiple target to increase the luminosity
- 200 MeV/u, ¹²⁸Pd, 1 MeV, 50 ps, 3 × 100 mg/cm² C targets, distance 10 mm
- Doppler correction assuming β and z of first target

reactions in different targets overlap

knowing which target induced the reaction allows for multiplying the statistics
 measurement at different beam energies simultaneously.

- multiple target to increase the luminosity
- 200 MeV/u, ¹²⁸Pd, 1 MeV, 50 ps, 3 × 100 mg/cm² C targets, distance 10 mm
- Doppler correction assuming β and z of first target

reactions in different targets overlap

knowing which target induced the reaction allows for multiplying the statisticsmeasurement at different beam energies simultaneously

- multiple target to increase the luminosity
- 200 MeV/u, ¹²⁸Pd, 1 MeV, 50 ps, 3 × 100 mg/cm² C targets, distance 10 mm
- Doppler correction assuming β and z of first target

- reactions in different targets overlap
- knowing which target induced the reaction allows for multiplying the statistics
- measurement at different beam energies simultaneously

- multiple target to increase the luminosity
- 200 MeV/u, ¹²⁸Pd, 1 MeV, 50 ps, 3 × 100 mg/cm² C targets, distance 10 mm
- Doppler correction assuming β and z of first target

- reactions in different targets overlap
- knowing which target induced the reaction allows for multiplying the statistics
- measurement at different beam energies simultaneously

Workshop SFB 1245

- multiple target to increase the luminosity
- $\blacksquare~200~\text{MeV/u},~^{128}\text{Pd},~1~\text{MeV},~50~\text{ps},~3~\times~100~\text{mg/cm}^2~\text{C}$ targets, distance 10 mm
- Doppler correction assuming β and z of first target

Active targets

- proton knockout, change in $Z \rightarrow$ different energy loss
- \blacksquare measure energy loss in each target \rightarrow reaction position
- \blacksquare required resolution $\sim\%$

E. Berdermann et al., Diamond and Related Materials 17 (2008) 1159

ightarrow seems possible

- Differential recoil distance method
- 200 MeV/u, ¹²⁸Pd, 1 MeV, 3 × 100 mg/cm² C targets, distance 1 mm
- Doppler correction assuming β and z of first target

ratio of counts in target and degrader gives lifetime without changing distances
 P. Bednarczyk et al., Acta. Phys. Pol. B. 41 (2010) 505,
 H. Iwasaki et al., Nucl. Instr. Meth. 806 (2016) 123

systematic uncertainties due to reactions in the degrader

- Differential recoil distance method
- 200 MeV/u, ¹²⁸Pd, 1 MeV, 3 × 100 mg/cm² C targets, distance 1 mm
- Doppler correction assuming β and z of first target

ratio of counts in target and degrader gives lifetime without changing distances
P. Bednarczyk et al., Acta. Phys. Pol. B. 41 (2010) 505,
H. Iwasaki et al., Nucl. Instr. Meth. 806 (2016) 123

systematic uncertainties due to reactions in the degrader