Overview and perspectives: Equation of state and nucleosynthesis programs

C I T C I C I P

SFB Workshop (4-7, Oct. 2022)

Nuclear astrophysics @ SFB 1245

B01 Weak interactions B05 Neutron stars and equation of state B06 Core-collapse supernovae B07 Neutron star mergers

Pls: Almudena Arcones, Andreas Bauswein, Jens Braun, Kai Hebeler, Gabriel Martinez-Pinedo, Achim Schwenk

Core-collapse supernovae (B06)

Post-explosion evolution of core-collapse supernovae

Weak r-process: (α , n) reactions

Key (α ,n) reactions in supernova neutron-rich ejecta -> possible in current and future RIB facilities Reduction of theoretical uncertainties Comparison to observations -> with new PI Camilla J. Hansen

Weak r-process: (α , n) reactions

Key (α ,n) reactions in supernova neutron-rich ejecta -> possible in current and future RIB facilities Reduction of theoretical uncertainties

Weak r-process: (α , n) reactions

Key (α ,n) reactions in supernova neutron-rich ejecta -> possible in current and future RIB facilities Reduction of theoretical uncertainties Comparison to observations -> with new PI Camilla J. Hansen

Bliss et al. 2020, Psaltis et al. 2022

Equation of state

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Effective mass: **PNS** contraction

Equation of state

First systematic study of nuclear matter properties 1D simulations, FLASH + M1 + increased neutrino heating

Effective mass: **PNS** contraction

Talks: Sabrina Huth, Maximilian Jacobi

Neutrino oscillations

Equation for neutrino flavor evolution:

- Neutrino oscillations:
 - Vacuum mixing
 - Mikheyev–Smirnov-Wolfenstein (MSW) effect
 - Collective neutrino oscillations and flavor instability -(associated with special flavor modes enhancing the small flavor mixing resulted from neutrino propagation) 1.Slow oscillations: lead to splitting of energy spectrum 2.Fast oscillations: triggered by angular spectral crossing 3. Collisional oscillations: asymmetric collisional rates of emission and absorption

Collisional neutrino oscillations

- Evolve flavor evolution equation with background matter profiles provided from CCSN simulations
- Collisional flavor instability develops when [Johns, 2021]

 $\alpha_n \lesssim \alpha_C$ with asymmetry factors

$$\alpha_n \sim \left| \frac{n_{\nu} - n_{\bar{\nu}}}{n_{\nu} + n_{\bar{\nu}}} \right| \text{ and } \alpha_C \sim \left| \frac{C - \bar{C}}{C + \bar{C}} \right|$$

- Results:
 - Collisional flavor instability can occur near the neutrino sphere
 - ν_e and $ar{
 u}_e$ convert to u_μ and $ar{
 u}_\mu$ when flavor instability occurs
 - Spectra of ν_e and $\bar{\nu}_e$ are quickly restored by the emissions

Xiong, Martinez-Pinedo, et al. (to be submitted)

20

Talk: Ignacio Lopez de Arbina

E [MeV]

 10^{1}

70

60

t=0.000ms

t=0.020ms

t=0.160ms

Neutron star mergers (B07)

- Immediate outcome of a NSM: black hole or NS remnant (may collapse later) ullet
- Characterised by M_{thres}
- All observables affected by collapse $-> M_{thres}$ measurable (M_{tot} from GW inspired) ullet
- Determine EOS dependence of M_{thres} •

Collapse behaviour

- EOS dependence -> EOS constraints •
- For M_{tot} of GW170817 (likely no prompt collapse) -> lower limit on NS radius •

Phys. Rev. Lett. 125, 141103 (2020), Phys. Rev. D 103, 123004 (2021)

Talk: Sebastian Blacker

Gravitational wave spectra and templates

Analytic models of post merger GW signal indispensable:

- For GW data analysis, i.e. detection and parameter estimation
- For understanding merger dynamics

Phys. Rev. D 105, 043020 (2022)

Identification of new spectral features

Essentially all features of GW spectrum explained

Mergers simulations: new tool

- 3D mergers simulations challenging even with today supercomputer capabilities
- First relativistic moving-mesh hydrodynamics simulations of NS merger
 - moving mesh minimises advection errors
 - significantly less numerical damping
 - less damping of physical features: GW signal, fluid oscillations, angular momentum,

Submitted to MNRAS, arXiv:2208.04267 (2022)

R-process: observations and galactic chemical evolution

Largest set of homogenised abundances in dwarf galaxies: R-process sites? Reichert et al. 2020, Molero et al. 2021

With new PI Camilla J. Hansen

Reichert, Hansen, Arcones (2021)

With new PI Camilla J. Hansen

R-process: observations and galactic chemical evolution

Neutron star equation of state (B05)

Equation of state for astrophysical applications

- chiral EFT: systematic theoretical uncertainties at nuclear densities
- fRG: ab initio calculations of EOS at high densities based on QCD
- combine and cross-benchmark EOS results from chiral EFT and fRG
- provide EOS with theoretical error bars for astrophysical applications

Equation of state for astrophysical applications

- generalization of chiral EFT calc. to finite temperature and general proton fractions
- implementation of Gaussian process emulator for efficient evaluations of EOS data
- implementation of dynamical hadronization techniques in fRG calculations
- inclusion of additional operators in fRG needed to extend results to lower densities

Weak interactions in astrophysics (B01)

Evolution intermediate mass stars: Forbidden transitions ²⁰Ne and ²⁴Na

- Second forbidden transitions on ²⁰Ne and ²⁴Na determine evolution intermediate mass stars
- Experimental data increases ²⁰Ne electron capture rate by 8 orders of magnitude. Thermonuclear explosion favored over collapse as final fate of star.

Forbidden electron capture on ²⁴Na impacts temperature profile and triggers convective instabilities

Nuclear astrophysics @ SFB 1245

B01 Weak interactions B05 Neutron stars and equation of state B06 Core-collapse supernovae B07 Neutron star mergers

Pls:

Almudena Arcones, Andreas Bauswein, Jens Braun, Kai Hebeler, Gabriel Martinez-Pinedo, Achim Schwenk 3rd period: Camilla J. Hansen

