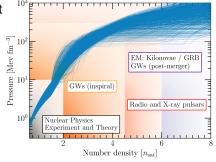

Constraining neutron-star matter with microscopic and macroscopic collisions

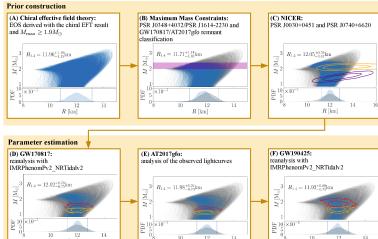

TECHNISCHE UNIVERSITÄT DARMSTADT

Equation of state (EOS) for neutron stars

- EOS is well constrained at low (chiral EFT) and high densities (pQCD)
- Intermediate densities are sensitive to observations \Rightarrow No tight constraints so far
- Heavy-ion collision (HIC) experiment offer complementary information
- Also promising: fRG calculations
 Leonhardt et al., PRL (2020); Braun & Schallmo, arXiv:2204.00358

Constrain EOS with combined information from HICs and observations

Pang et al., arXiv:2205.08513 (2022)


UNIVERSITÄT DARMSTADT

Bayesian multi-messenger framework

Dietrich et al., Science (2020)

TECHNISCHE UNIVERSITÄT DARMSTADT

10

R [km]

14

10

R [km]

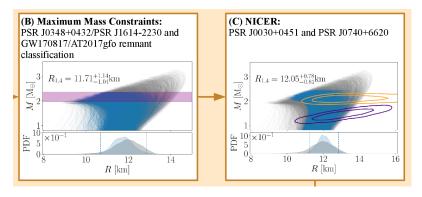
October 5, 2022 | SFB workshop - B01 | Sabrina Huth | 3

10

R [km]

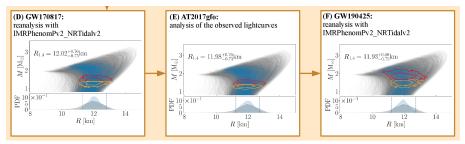
14

Prior construction


- Set of 15000 EOS
- Chiral EFT for $n \le 1.5 n_{\rm sat}$
- Speed of sound extension for higher densities
- General assumptions:
 - $M_{\rm max} \geq 1.9 M_{\odot}$
 - Causality $c_{s} \leq c$

(A) Chiral effective field theory: EOS derived with the chiral EFT result and $M_{\rm max} \geq 1.9 M_{\odot}$ $[^{\odot}M]_{M}^{2}$ $R_{1.4} = 11.96^{+1.18}_{-1.15} \text{km}$ $\times 10^{-3}$ PDF 5 10 Ŕ 12 14 R [km]

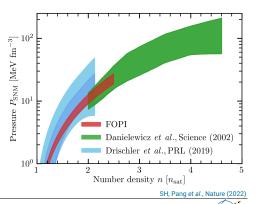
- $M_{\rm max}$ constraint from heavy pulsar masses and GW170817 estimates
- Results for mass and radius for two pulsars from NICER



M_{max} and NICER

Gravitational wave (GW) data

- Evaluation of GW170817 and GW190425 with improved waveform model
- Information of observed kilonova lightcurves from GW170817

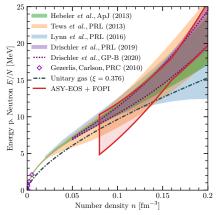


Heavy-ion collision constraints

Danielewicz et al., Science (2002); Le Fèvre et al., Nucl. Phys. A (2016)

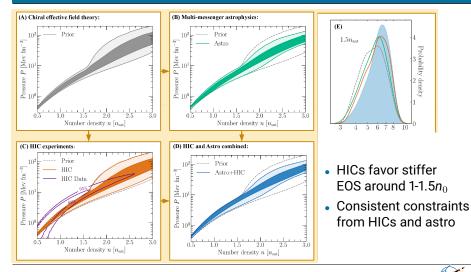
- FOPI experiment: elliptic flow measurement from $^{197}Au + ^{197}Au$ at GSI
- Constraint for $n \sim 1-3n_0$ for symmetric nuclear matter
- Result for incompressibility: $K = 220 \pm 25 \text{ MeV}$
- consistent with chiral EFT
- Danielewicz et al.:
 - Consistent with FOPI
 - Used in density range where constraint for neutron-star matter is sensitive

Heavy-ion collision constraints


Russotto et al., PRC (2016)

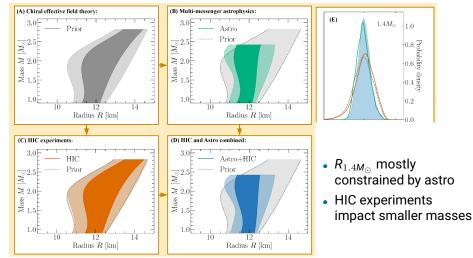
- ASY-EOS experiment: elliptic flow ratio for ¹⁹⁷Au +¹⁹⁷Au collision at GSI
- Constraint for n ~ 1-2n₀ for symmetry energy

$$S(n) = E_{\mathrm{kin},0} \left(rac{n}{n_0}
ight)^{2/3} + E_{\mathrm{pot},0} \left(rac{n}{n_0}
ight)^{\gamma_{\mathrm{asy}}}$$


- γ_{asy} fitted to experimental data for $E_{sym} = 31 \text{ MeV}$ and 34 MeV
- Combination of FOPI and ASY-EOS yields constraint for neutron-star matter

Constraints on the EOS

SH, Pang et al., Nature (2022)

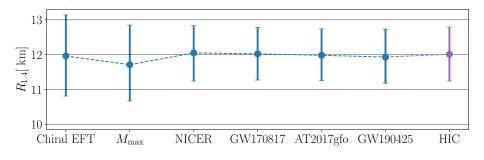


TECHNISCHE UNIVERSITÄT DARMSTADT

Constraints on neutron star mass and radius

SH, Pang et al., Nature (2022)

TECHNISCHE UNIVERSITÄT DARMSTADT


Bayesian multi-messenger framework

NICER prefers stiffer EOS while GW data point to smaller radii

UNIVERSITÄT DARMSTADT

SH. Pang et al., Nature (2022)

• HIC shifts R_{1.4} towards larger radii, similar to NICER

- Systematic and interdisciplinary study that combines nuclear theory, nuclear experiment, and observations
- Remarkable consistency between HIC experiments and constraints from nuclear theory and astrophysics
 - \rightarrow Future HIC constraints to pin down EOS uncertainty need:
 - intermediate densities where chiral EET and observations are less sensitive
 - smaller uncertainties

- Systematic and interdisciplinary study that combines nuclear theory, nuclear experiment, and observations
- Remarkable consistency between HIC experiments and constraints from nuclear theory and astrophysics
 - \rightarrow Future HIC constraints to pin down EOS uncertainty need:
 - intermediate densities where chiral EFT and observations are less sensitive
 - smaller uncertainties

Thank you for your attention!

Collaborators:

K. Agarwal, M. Bulla, M.W. Coughlin, T. Dietrich, A. Le Fèvre, P.T.H. Pang, A. Schwenk, I. Tews, W. Trautmann, C. Van Den Broeck