Core-collapse supernovae simulations

Nucleosynthesis network and nuclear energy generation

04.10.2022 | Darmstadt | Gerard Navó B06 | Collaborators: M. Reichert, M. Obergaulinger, A. Arcones

Core-collapse supernovae

SFB 1245

Simulations ingredients

Hydrodynamics ٠ CCSN dynamics Neutrino transport • ٠ Nucleosynthesis. Gravity • ٠ simulations Neutrinos Pre-supernova model ٠ Nuclear EOS Spectra, Light curves • ٠ Composition at baryonic densities GW • ٠

Simulations ingredients

Hydrodynamics ٠ CCSN dynamics Neutrino transport • ٠ Nucleosynthesis. Gravity • ٠ simulations Neutrinos Pre-supernova model ٠ Spectra, Light curves Nuclear EOS • ٠ Composition at baryonic densities GW •

Simulations ingredients

SFB ;

Nucleosynthesis within simulations

- Realistic nuclear reaction network —> too computational expensive to evolve within hydro In post-processing with Lagrangian tracer particles
- Simplified treatments are used:
 - T > 5 GK: Nuclear Statistical equilibrium (NSE) $Y = Y(\rho, T, Y_e)$ —> Tabulated tables are used

• $T \lesssim 5$ GK: No NSE —> Reduced networks.

Energy generation:

$$\dot{E}_{\mathsf{nuc}} = -\sum_{i} N_{\mathsf{A}} \Delta m_{i} c^{2} \dot{Y}_{i}$$

Aenus-Alcar. Composition

Special relativistic (magneto-)hydrodynamics code, two-moment (M1) neutrino transport. (Just et al 2015, Obergaulinger & Aloy 2017)

Aenus-Alcar. Composition

Special relativistic (magneto-)hydrodynamics code, two-moment (M1) neutrino transport. (Just et al 2015, Obergaulinger & Aloy 2017)

T[GK]

• $T > T_{th}$ —>Nuclear EOS + NSE

- $T \le T_{\rm th}$ —>Helmholz EOS + flashing scheme Flashing scheme:
 - n, p and X_h .
 - X_h = ²⁸Si or ⁵⁶Ni

Aenus-Alcar. Composition

Special relativistic (magneto-)hydrodynamics code, two-moment (M1) neutrino transport. (Just et al 2015, Obergaulinger & Aloy 2017)

ReNet: RN16 and RN94

RN16

~ "approx19" (Weaver+1978).

RN94

- Renet242 with equilibrium/steady nuclei.
- Main species synthesized in standard CCSN

Models

• 20 M_{\odot} progenitor (Woosley & Heger 2007).

<u>T > 5.8 GK (0.5 MeV)</u>

SFHo (Steiner et al 2013)NSE

<u>T < 5.8 GK (0.5 MeV)</u>

- I. 1D, no $\dot{E}_{\rm nuc}$. Flashing, NSE, RN16, RN94 II. 1D, $\dot{E}_{\rm nuc}$. RN16 and RN94
- III. 2D, $\dot{E}_{\rm nuc}$. Flashing, RN16, RN94

I. 1D, no \dot{E}_{nuc} . Flashing, NSE, RN16 and RN94.

 $\dot{E}_{
m nuc}$ significant below the shock —> increases explosion energy ~ 15%

 $\dot{E}_{
m nuc}$ in progenitor accreting shells reduces accretion

Impact in the dynamics (2D): 2D_RN94 DARMSTADT $|\dot{E}_{ m nuc}| \, [{ m erg}\,{ m g}^{-1}\,{ m s}^{-1}] \qquad Y_{ m e}$ $|\dot{E}_{ m nuc}| \, [{ m erg}\,{ m g}^{-1}\,{ m s}^{-1}] \qquad Y_{ m e}$ $|\dot{E}_{\rm nuc}| \, [{\rm erg} \, {\rm g}^{-1} \, {\rm s}^{-1}] \qquad Y_{\rm e}$ $10^{15}10^{19}$ 0.35 0.50 0.65 $10^{15}10^{19}$ 0.35 0.50 0.65 $10^{15}10^{19}$ 0.35 0.50 0.65 t=1100 ms t=1400 ms t=1250 ms 8 8 8 6 6 6 4 4 $z\,[10^3\,{ m km}]$ $z\,[10^3\,{ m km}]$ $z \left[10^3 \, \mathrm{km} ight]$ 2 2 2 0 -2 0 0 -2 -2 -4 -6 -6-8 -8 -88 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 $x \, [10^3 \, \mathrm{km}]$ $x \, [10^3 \, \mathrm{km}]$ $x \, [10^3 \, \mathrm{km}]$

 $\dot{E}_{\rm nuc}$ sustain low-Ye outflows from the PNS vicinity —> synthesis of heavier nuclei

Impact in the dynamics (2D): 2D_RN94 DARMSTADT $|\dot{E}_{ m nuc}| \, [{ m erg}\,{ m g}^{-1}\,{ m s}^{-1}] \qquad Y_{ m e}$ $|\dot{E}_{ m nuc}| \, [{ m erg}\,{ m g}^{-1}\,{ m s}^{-1}] \qquad Y_{ m e}$ $|\dot{E}_{\rm nuc}| \, [{\rm erg} \, {\rm g}^{-1} \, {\rm s}^{-1}] \qquad Y_{\rm e}$ $10^{15}10^{19}$ 0.35 0.50 0.65 $10^{15}10^{19}$ 0.35 0.50 0.65 $10^{15}10^{19}$ 0.35 0.50 0.65 t=1100 ms t=1250 ms t=1400 ms 8 8 8 6 6 6 4 4 $z\,[10^3\,{ m km}]$ $[10^3~{ m km}]$ $z\,[10^3\,{ m km}]$ 2 2 2 0 -2 0 0 -2 -2 -4 -6 -6-8 -8 -88 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 $x \, [10^3 \, \mathrm{km}]$ $x \, [10^3 \, {\rm km}]$ $x \, [10^3 \, \mathrm{km}]$

 $\dot{E}_{\rm nuc}$ sustain low-Ye outflows from the PNS vicinity —> synthesis of heavier nuclei

Impact in the dynamics (2D): 2D_RN94 DARMSTADT $|\dot{E}_{ m nuc}| \, [{ m erg}\,{ m g}^{-1}\,{ m s}^{-1}] \qquad Y_{ m e}$ $|\dot{E}_{ m nuc}| \, [{ m erg}\,{ m g}^{-1}\,{ m s}^{-1}] \qquad Y_{ m e}$ $|\dot{E}_{\rm nuc}| \, [{\rm erg} \, {\rm g}^{-1} \, {\rm s}^{-1}] \qquad Y_{\rm e}$ $10^{15}10^{19}$ 0.35 0.50 0.65 $10^{15}10^{19}$ 0.35 0.50 0.65 $10^{15}10^{19}$ 0.35 0.50 0.65 t=1100 ms t=1250 ms t=1400 ms 8 8 8 6 6 6 4 4 4 $z\,[10^3\,{ m km}]$ $[10^3~{ m km}]$ $z \left[10^3 \ { m km} ight]$ 2 2 2 0 -2 0 0 -2 -2 -4 -6 -6-8 -8 -88 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 8 6 4 2 0 2 4 6 8 $x \, [10^3 \, \mathrm{km}]$ $x \, [10^3 \, {\rm km}]$ $x \, [10^3 \, \mathrm{km}]$

 $\dot{E}_{\rm nuc}$ sustain low-Ye outflows from the PNS vicinity —> synthesis of heavier nuclei

Impact on the composition (2D)

Impact on the composition (2D)

Impact on the composition (2D)

TECHNISCHE UNIVERSITÄT DARMSTADT

SFB.

Impact on the composition (2D): In situ vs Ex situ

The change in the production of Ti, Cr, Fe isotopes lead to different nucleosynthesis pathways —> Impact abundances

Summary

- Composition impacts amount of n,p —> changes Q_{ν}^{LD} and modifies accretion.
- Energy generation $\dot{E}_{\rm nuc}$:
 - i. In accretion layers: faster shock evolution
 - ii. Behind the shock: larger explosion energy
- \dot{E}_{nuc} on explosion dynamics affects final nucleosynthesis
- Post-processing calculations fail to reproduce low-density regions (in agreent with Harris+17)

Summary

- Composition impacts amount of n,p —> changes Q_{ν}^{LD} and modifies accretion.
- Energy generation $\dot{E}_{\rm nuc}$:
 - i. In accretion layers: faster shock evolution
 - ii. Behind the shock: larger explosion energy
- \dot{E}_{nuc} on explosion dynamics affects final nucleosynthesis
- Post-processing calculations fail to reproduce low-density regions (in agreent with Harris+17)

In situ networks provide more accurate dynamics and nucleosynthesis

