
Extracting Configuration Knowledge from
Build Files with Symbolic Analysis

Shurui Zhou,∗ Jafar Al-Kofahi,† Tien N. Nguyen,† Christian Kästner,∗ Sarah Nadi‡
∗School of Computer Science, Carnegie Mellon University

†Electrical and Computer Engineering Department, Iowa State University
‡Technische Universität Darmstadt

Abstract—Build systems contain a lot of configuration
knowledge about a software system, such as under which
conditions specific files are compiled. Extracting such
configuration knowledge is important for many tools analyzing
highly-configurable systems, but very challenging due to the
complex nature of build systems. We design an approach, based
on SYMake, that symbolically evaluates Makefiles and extracts
configuration knowledge in terms of file presence conditions and
conditional parameters. We implement an initial prototype and
demonstrate feasibility on small examples.

I. INTRODUCTION

Build systems are an essential part of software systems.
Among others, they control variability and manage configu-
rations, deciding which files and features to include in the
compiled product. With the increasing number of configuration
options and increasing complexity of build systems, build
scripts become increasingly complex [2, 10, 11]. For example,
in the Linux kernel, the build system (consisting of Makefiles)
decides which files are compiled and with which parameters,
based on over 10,000 configuration options. It is hard to
understand, analyze, and maintain such a system without
understanding its Makefiles. Unfortunately, there are few tools
that support analyzing, refactoring, and maintaining makefiles.
In this paper, we provide tool support with a specific focus on
extracting such variability information.

Our goal is to identify the presence condition of each file or
code fragment that is controlled by the build system, as well
as any additional (potentially optional) parameters needed for
its compilation. A presence condition describes under which
configurations a block of code or an entire file is compiled,
expressed as a boolean formula over configuration options [5,
12]. That is, a file is included in the configuration process if
and only if the presence condition evaluates to true for a given
configuration. Configuration decisions are pervasive in build
scripts, as exemplified in our running example in Figure 1:
the value of the CCFLAGS parameter depends on the current
operating system (Lines 5-9); also, whether the target distrib
has a prerequisite of createDBDir (Lines 15-17) depends on
whether DB is defined or not. Hence, which files are compiled
and how depends on configuration options.

Extracting configuration knowledge from build systems is
important for many forms of variability analysis for highly-
configurable systems. For example, tools as TypeChef [9] and
Undertaker [15] analyze the entire configuration space of a

1 OS=$(shell uname)

2 POI4R:=$(shell pwd)

3 DISTRIB=Poi-0.1.0

4
5 ifeq ($(OS),Linux)

6 CCFLAGS=-O0

7 else

8 CCFLAGS=-O2

9 endif

10
11 distrib:

12 install Poi4R.rb $(DISTRIB)/python

13 g++ -o $@ $(CCFLAGS) -I$(POI4R) poi.o

14
15 ifdef DB

16 distrib: createDBDir

17 endif

18
19 createDBDir:

20 mkdir -p Poi/dbl

21 ifneq($(OS),Linux)

22 install libgcj.5.dylib $(DISTRIB)/gcj

23 endif

Fig. 1. Modified excerpt of the Apache POI project

program to identify type errors or dead code. They extract
presence conditions from conditional compilation directives in
the code (#ifdef) and reason about properties in the code, such
as whether function calls always match a function declaration
in all configurations. For example, in Figure 4, function foo
is called in all configurations with option B selected, but only
defined in configurations with option A deselected (or executed
with parameter ‘-UA’), leading to a compile-time error in all
configurations with A∧B. However, analyses that do not con-
sider variability knowledge from the build system can be mis-
leading, causing both false positives and false negatives: For
example, if we knew that the file in Figure 4 is only compiled
if option A is deselected, we would not issue an error. While
extracting presence conditions from #ifdef directives is rela-
tively straightforward, extracting variability knowledge from
the build system is difficult—it is one of the main challenges
of using TypeChef and similar tools for variability analyses.

Determining configuration knowledge from a build system
is challenging, because most build systems are written in
sophisticated Turing-complete scripting languages. Extracting
presence conditions exactly is often undecidable, because
many build systems may perform arbitrary computations
by calling shell scripts, such as the $(eval), $(shell),
or $(wildcard) functions. Current approaches use sampling

1 Configuration: [$(OS)=Linux]

2 install Poi4R.rb Poi-0.1.0/python

3 g++ -o distrib -O0 -I/Users/repos/makefiles poi.o

4
5 Configuration: [$(OS)!=Linux]

6 install Poi4R.rb Poi-0.1.0/python

7 g++ -o distrib -O2 -I/Users/repos/makefiles poi.o

8
9 Configuration: [$(OS)=Linux, DB]

10 mkdir -p Poi/dbl

11 install Poi4R.rb Poi-0.1.0/python

12 g++ -o distrib -O0 -I/Users/repos/makefiles poi.o

13
14 Configuration: [$(OS)!=Linux, DB]

15 mkdir -p Poi/dbl

16 install libgcj.5.dylib Poi-0.1.0/gcj

17 install Poi4R.rb Poi-0.1.0/python

18 g++ -o distrib -O2 -I/Users/repos/makefiles poi.o

Fig. 2. Actual executed scripts in different configurations for the Makefile in
Figure 1.

1 install Poi4R.rb Poi-0.1.0/python ---> [TRUE]

2 g++ -o $@ -O0 -I$(POI4R) poi.o ---> [$(OS) = Linux]

3 g++ -c $@ -O2 -I$(POI4R) poi.o ---> [$(OS) != Linux]

4 mkdir -p Poi/dbl ---> [DB]

5 install libgcj.5.dylib Poi-0.1.0/gcj ---> [($(OS) != Linux) ∧ DB]

Fig. 3. Conditional build script with presence conditions

strategies or inaccurate heuristics only [4, 6, 13]. Theoretically,
we could execute the build system in every configuration to
see which files get compiled and how (see scripts in Figure 2),
but such brute-force strategy does not scale and sampling
would yield imprecise results (e.g., the Linux Kernel’s 10,000
options can be combined into more configurations than there
are atoms in the universe).

To extract configuration knowledge, we symbolically ex-
ecute the build script. Symbolic execution allows analyzing
all configurations at once, abstracting over unknown values.
We record options and environment interactions with symbolic
values and approximate all possible executions with corre-
sponding path conditions. From the symbolic execution result,
we extract a conditional dependency graph that describes
the dependencies among targets with presence conditions.
From the conditional dependency graph, we finally derive a
conditional script that describes all possible executions with
presence conditions for every recipe entry, as illustrated in
Figure 3, and the file presence conditions.

In summary, we contribute: (1) an approach to ana-
lyze Makefiles to extract presence condition for files and
code blocks; (2) an extension of the symbolic execute tool
SYMake [14]; (3) a demonstration of feasibility on small
examples with a prototype; (4) a test strategy to ensure
correctness.

II. RELATED WORK

Analyzing build files has been recognized as increasingly
important. Adams et al. [1, 2, 11] have shown how build
systems continue to grow in size and complexity, emphasizing
the importance of analysis and tool support. Researchers have

1 #ifndef A

2 void foo() { }

3 #endif

4 #ifdef B

5 void bar() { foo(); }

6 #endif

Fig. 4. Code example with a type error in configurations with A∧B detectable
with variability analysis tools as TypeChef.

investigated build system analysis from different perspectives
and some even have started extracting presence condition.

Most analysis approaches are dynamic and actually execute
the build to extract information. For example, van der Burg
et al. [16] dynamically detect which files are included in
a build to check license compatibility, Metamorphosis [8]
dynamically analyzes build system to migrate them, and
MkFault [3] combines runtime information with some struc-
tural analysis to localize build faults. However, such dynamic
approaches can only analyze one configuration at a time.

Alternatively, some researchers have investigated static anal-
yses for build files. We build on SYMake [14], which uses
symbolic execution to conservatively analyze all possible
executions of a Makefile. It produces a symbolic dependency
graph, which represents all possible build rules and depen-
dencies among targets and prerequisites, as well as recipe
commands. It was originally designed to detect several types
of errors in Makefiles and help building refactoring tools.

We are specifically interested in extracting variability infor-
mation in terms of file presence conditions and conditional
parameters, a challenge which has been addressed by three
research groups so far. A simple dynamic analysis of executing
all possible configurations would yield accurate variability
information, but obviously does not scale. Instead, Dietrich
et al. [6] sample a subset of configurations, trying to activate
each configuration option once. Their approach is simple
due to its sampling nature, but incomplete; it cannot recover
complex conditions with several disjunctions and negations.
Using a different strategy, both Berger et al. [4] and Nadi and
Holt [13] have tried to statically approximate file presence
conditions by parsing specific patterns in build scripts. Their
approaches are designed for common patterns used in Linux’s
Kbuild infrastructure and achieves relatively high precision
for the Linux kernel, but are unable to cope with build files
(or parts thereof) that do not follow these patterns. In our
approach, we use symbolic execution which does not rely on
sampling or specific patterns.

III. EXTRACTING VARIABILITY KNOWLEDGE WITH
SYMBOLIC EXECUTION

The goal of our approach is to extract configuration knowl-
edge from Makefiles. Our idea is to get symbolic scripts of
all executions and extract presence conditions and parameters
from them. We proceed in two steps. First, we use SYMake
to symbolically evaluate the variables and collect rules in
Makefiles. Then we extract the presence conditions of files
and code blocks from the output of SYMake.

A. Step 1: Symbolically evaluate variables and collect rules

SYMake mirrors the first part of the build process in which
targets and recipes are collected into a graph without executing
the build steps’ recipes. However, when faced with unknown
values from options or environment interactions (e.g., from
executing shell commands), instead of concrete values, we use
symbolic values and explore all possible paths. Figure 5 shows
the output graph of our approach that analyzes the Makefiles
of Figure 1. For example, in Line 3, DISTRIB is assigned a
concrete value ‘Poi-0.1.0’, whereas, in Lines 1-2, variables
OS and POI4R are stored as symbolic values, because we
cannot statically know the operating system and directory of
the Makefile’s environment.

When if statements are encountered in which the condition
cannot be evaluated to a concrete value, SYMake executes
both branches with corresponding path conditions. If we
assign a variable with different values under different
path conditions, we preserve all possible values and their
corresponding conditions using Select nodes. For example, in
Figure 5, CCFLAG is assigned with two alternative concrete
values, depending on the value of $(OS). When such a
variable is used, for example, in recipes as ‘g++ -o $@
$(CCFLAGS) -I$(POI4R) poi.o’, SYMake substitutes all
possible values and their corresponding conditions.

While executing Makefiles, SYMake collects all the targets
and their dependencies and recipes in a graph. Targets, de-
pendencies, or recipes found under a path condition are added
to the graph conditionally, storing the condition as an anno-
tation on the edge. In our example, target distrib depends on
createDBDir only if option DB is selected and createDBDir’s
recipe depends on the current operating system. This leads to
a conditional dependency graph as illustrated in Figure 5.1

B. Step 2: Extracting Conditional Build Script

After symbolic execution, we extract a conditional build
script and presence conditions from the output graph of
Step 1. First, we explode recipes that contain internal Select
nodes until we have a number of recipes with conditions
that no longer contain further Select nodes (but possibly
still symbolic values). This corresponds to simple factoring
operations in the choice calculus [7]. Mirroring make’s
behavior, given a main target, we then traverse the graph in
depth first order to get all directly and indirectly dependent
targets of the build graph, as well as their recipes. During
the traversal, we collect all conditions on edges and assign
a presence condition to each node (a conjunction of all edge
conditions). For example, in Figure 5, when processing the
second recipe for createDBDir (rcp4), we know that it is
executed only under condition ($(OS)!=Linux) ∧ DB.

By listing all identified recipes and their corresponding
conditions in order, we create a conditional build script as
illustrated in Figure 3. The conditional build script is a single
compact description of all possible build scripts that could be

1Technically, as discussed elsewhere [14], SYMake distinguishes between
different internal models, shaded with different colors in the figure.

created with a brute-force strategy (cf. Figure 2), except that
it may include symbolic values where SYMake cannot resolve
environment interactions. It can be considered as a single file
with #ifdef directives that a preprocessor could process to
create a concrete build script for a specific configuration.

Finally, we extract presence conditions of files and param-
eters from the conditional scripts we obtained. We identify all
build steps that use specific commands, as gcc or g++, and
parse the instruction to identify files and additional parameters.
If a file is compiled under different conditions, we track that
file’s presence condition as a disjunction of all individual
conditions. We proceed similarly with parameters per file. For
example, in Figure 1, the file poi.o is compiled if ($(OS) =
Linux) ∨ ($(OS) != Linux) ≡ True, but it is compiled with dif-
ferent parameters under different conditions. This is precisely
the information needed for TypeChef and similar tools.

IV. PROTOTYPE/TESTING

We have built a prototype implementation for our approach
that covers most language constructs of make and performs the
described postprocessing to extract configuration knowledge.
The implementation is not complete yet. For example, sub-
make calls are not yet supported (i.e., tracking values when
descending to nested make calls). Although this prevents us
from running large-scale experiments on Linux or similar
systems, we can already evaluate simpler makefiles.

To test our implementation, we have set up a differential
testing framework, in which we compare the symbolic scripts
extracted from SYMake (cf. Figure 3) with the scripts gen-
erated in a brute-force execution of all configurations (cf.
Figure 2). Figure 6 outlines our testing approach: We first run
symbolic execution on the input Makefiles to produce a con-
ditional dependency graph and subsequently extract the condi-
tional build script. To obtain the individual scripts to which to
compare, we determine the different configurations the Make-
file can execute under and execute make as ‘make -n’ with ‘-D’
or ‘-U’ parameters to define or undefine values for each option.
As shown in Figure 6, we expect that the conditional build
script should be equivalent to all the individual scripts from
the different configurations, except for symbolic values that are
replaced by concrete values in the individual concrete execu-
tions. We automated this comparison by comparing the scripts’
output and all values in the heap at the end of the execution.

While we expect our approach to scale for large build
scripts with many configuration options, our testing approach
relies on brute force and thus limits us to tests with few
options. We use a selection of over 10 artificial Makefiles as
well as parts of real Makefiles as tests, containing various
configuration mechanisms, such as conditional assignments,
conditional dependencies, conditional targets, and so forth.
All tests have at most 8 options, yielding up tp 256 possible
configurations, which are still quick to execute. All test cases
pass in our current implementation, which gives us confidence
in the correctness of our prototype. Our postprocessing and
testing infrastructure is available online at https://github.com/
shuiblue/MakefileScript.

distrib

createDBDir

install Poi4R.rb Poi-0.1.0/python

mkdir -p Poi/dbl

install libgcj.5.dylib Poi-0.1.0/gcj

DB g++ -o distrib

select

-O0 -O2

-I

$(OS) != Linux]$(OS)=Linux

True

$(OS) != Linux]

True

True poi.o

--- Target

Concat

--- Recipe node

--- Literal evaluation

--- Select node, Choice

--- Concatenation

rcp1

rcp2

rcp4

rcp3 $(POI4R)

Fig. 5. Conditional dependency graph for the Makefile in Figure 1.

Fig. 6. Overview of our testing approach

V. CONCLUSION

We symbolically execute build scripts to extract config-
uration knowledge in the form of file presence conditions
and conditional parameters. As intermediate steps, we build
conditional call graphs and conditional build scripts. In con-
trast to prior work based on sampling, our approach can also
detect more complex presence conditions. In contrast to prior
parsing-based approaches, it does not rely on specific patterns
in the build scripts, making it more generally applicable.

Our approach is conceptually limited though in that it
replaces all environment interactions (e.g., escaping to the
shell) by symbolic values. Such approximation is needed to
deal with undecidability issues, but whether this is a significant
obstacle when analyzing real-world systems is a question for
future evaluations. In contrast to prior tools that would just
miss certain conditions or provide imprecise constraints, we
argue that symbolic values provide at least an exact indication
of where our analysis is imprecise, which can be used to
interpret the results in downstream tools. In the near future,
we expect to extend our analysis to support real-world systems
and integrate it with TypeChef.

ACKNOWLEDGMENT

Zhou and Kästner’s work is supported by NSF award CCF-
1318808, Al-Kofahi and Tien’s work is supported by NSF

award CCF-1320578 and Nadi’s work is supported by the
DFG, project E1 within CRC 1119 CROSSING.

REFERENCES

[1] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter.
MAKAO. In Proc. Int’l Conf. Software Maintenance (ICSM), pages 517–518.
IEEE Computer Society, 2007.

[2] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. The
evolution of the linux build system. Electronic Communications of the ECEASST,
8, 2008.

[3] Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N. Nguyen. Fault localization for
build code errors in makefiles. In Companion Proc. Conf. on Software Engineering,
pages 600–601. ACM, 2014.

[4] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej
Wąsowski. Feature-to-code mapping in two large product lines. In Proc. Int’l
Software Product Line Conf. (SPLC), pages 498–499. Springer-Verlag, 2010.

[5] Krzysztof Czarnecki and MichałAntkiewicz. Mapping features to models: A
template approach based on superimposed variants. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE), pages 422–437. Springer-
Verlag, 2005.

[6] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. A robust approach for variability extraction from the linux build system.
In Proc. Int’l Software Product Line Conf. (SPLC), pages 21–30. ACM, 2012.

[7] Martin Erwig and Eric Walkingshaw. The choice calculus: A representation for
software variation. ACM Trans. Softw. Eng. Methodol. (TOSEM), 21(1):6:1–6:27,
2011.

[8] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman
Narasamdya, and Benjamin Livshits. Automated migration of build scripts using
dynamic analysis and search-based refactoring. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 599–616.
ACM, 2014.

[9] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. Variability-aware parsing in the presence of
lexical macros and conditional compilation. In Proc. Int’l Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 805–824.
ACM, 2011.

[10] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. Evolution of the linux kernel variability model. In Proc. Int’l Software
Product Line Conf. (SPLC), pages 136–150. Springer-Verlag, 2010.

[11] Shane McIntosh, Bram Adams, Thanh H.D. Nguyen, Yasutaka Kamei, and
Ahmed E. Hassan. An empirical study of build maintenance effort. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 141–150. ACM, 2011.

[12] Sarah Nadi and Ric Holt. Mining kbuild to detect variability anomalies in linux.
In Proc. Europ. Conf. Software Maintenance and Reengineering (CSMR), pages
107–116. IEEE Computer Society, 2012.

[13] Sarah Nadi and Richard C. Holt. The linux kernel: a case study of build system
variability. Journal of Software: Evolution and Process, 26(8):730–746, 2014.

[14] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen.
Build code analysis with symbolic evaluation. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 650–660. IEEE Press, 2012.

[15] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-
Preikschat. Feature consistency in compile-time-configurable system software:
Facing the linux 10,000 feature problem. In Proc. Europ. Conf. Computer Systems
(EuroSys), pages 47–60. ACM, 2011.

[16] Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius Davies, Daniel M.
German, and Armijn Hemel. Tracing software build processes to uncover license
compliance inconsistencies. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 731–742. ACM, 2014.

