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Abstract. We introduce an example-based photometric stereo approach that does
not require explicit reference objects. Instead, we use a robust multi-view stereo
technique to create a partial reconstruction of the scene which serves as scene-
intrinsic reference geometry. Similar to the standard approach, we then transfer
normals from reconstructed to unreconstructed regions based on robust photo-
metric matching. In contrast to traditional reference objects, the scene-intrinsic
reference geometry is neither noise free nor does it necessarily contain all possi-
ble normal directions for given materials. We therefore propose several modifica-
tions that allow us to reconstruct high quality normal maps. During integration,
we combine both normal and positional information yielding high quality recon-
structions. We show results on several datasets including an example based on
data solely collected from the Internet.

1 Introduction

Passive large-scale geometry reconstruction of outdoor scenes has so far mostly re-
lied on (multi-view) stereo techniques. In contrast, photometric stereo approaches have
rarely been used on outdoor scenes—mostly due to the lack of control over the scene,
illumination conditions, and capture setup (see Section 2 for details). In fact, we are not
aware of any large scale photometric stereo approach. In this paper, we therefore take
a step in this direction and propose a novel photometric stereo technique generalizing
photometric stereo by example [1]. The approach is applicable to very general indoor
and outdoor scenes and demonstrates strong improvements in terms of accuracy and
completeness compared to standard multi-view stereo approaches.

Photometric stereo by example [1] is an elegant method to determine normal maps
from a set of images with fixed viewpoint and varying, distant illumination. For each
pixel, the vector of color values in all input images is matched to the closest vector
of color values of pixels on one or more reference objects with known geometry. The
corresponding normals are then transferred back yielding a complete normal map. Pho-
tometric stereo by example has two key advantages. First, lighting can be general and
unknown and does not need to be reconstructed. Second, it works for objects with a
broad range of reflectance properties as long as they are well approximated by the ref-
erence objects. Photometric stereo by example is therefore one of the most general
photometric stereo techniques known today. There is, however, one disadvantage: Cur-
rent techniques require explicit reference objects in the scene from which the normals
are transferred. Scenes without reference object cannot be reconstructed.



2 Removing the Example from Example-based Photometric Stereo

a) b) c) d) e)

Fig. 1. Tower model. a) images captured by a static webcam for photometric stereo, b) images
taken casually without special capturing setup for multi-view stereo, c) normal map of partially
reconstructed geometry using multi-view stereo serving as scene-intrinsic reference geometry
(SIRG), d) reconstructed normal map using photometric stereo with SIRG as reference object, e)
final model rendered from novel viewpoint.

Our key observation is that many objects’ geometry can at least be partially recon-
structed using multi-view stereo as long as additional images are available that provide
sufficient parallax (see, e.g., Figure 1). We propose to use this partial geometric scene
model after suitable processing as scene-intrinsic reference geometry (SIRG) for a stan-
dard photometric stereo by example approach. This approach works if the reconstructed
geometry (and therefore the normals) of the SIRG are sufficiently accurate and if the
range of represented normals is wide enough to cover the normal directions represented
in the scene. In addition, the reconstructed reference geometry should be a good repre-
sentation of the reflectance properties in the scene, a condition that is often met since it
is actually part of the scene.

Removing the need for explicit reference objects strongly extends the applicability
of example-based photometric stereo at a comparably small acquisition cost (just a
couple additional images for the multi-view stereo reconstruction). We demonstrate this
with two examples where we base our reconstruction partially or completely on imagery
available from Internet sources. The resulting normal maps and integrated geometry are
nevertheless of high quality.

2 Related Work

Photometric stereo was introduced by Woodham [2] who assumed known distant point
lighting and a known parametric reflectance model. Given three images of a diffuse
surface from the same viewpoint, it is possible to determine the surface normal unless
the illumination directions are coplanar. The basic theory of photometric stereo was
then developed in the 1980s (see, e.g., Horn [3] for an overview) and research focused
on generalizing it in various ways.

For example, Basri and Jacobs [4] introduced a system that simultaneously recov-
ers unknown distant lighting. Illumination is estimated using a low degree spherical
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harmonics basis suitable for approximately diffuse objects [5]. Shen and Tan [6] ex-
tended this technique to images with varying viewpoints but determine normals only
at sparse points matched between the images. They demonstrate their approach also on
images downloaded from an online image collection. Joshi et al. [7] propose a combi-
nation of multi-view and photometric stereo. They first reconstruct a rough geometry
model using multi-view stereo and refine it with a photometric stereo approach. Her-
nandez et al. [8] describe a multi-view photometric stereo approach that additionally
takes silhouette information into account. A similar approach was shown to work for
dynamic scenes by Vlasic et al. [9] using a highly controlled capture setup. Higo et al.
[10] introduce a system that simultaneously optimizes photoconsistency, normals, and
surface smoothness.

Goldman et al. [11] use known lighting directions and cluster the surface in different
materials. For each cluster, they determine the parameters of an analytic BRDF. Alldrin
et al. [12] follow a similar approach but use a data-driven reflectance model instead of
the analytic BRDF model.

2.1 Example-based Photometric Stereo

Based on Woodham’s ideas, Silver [13] applied photometric stereo to objects with uni-
form but unknown surface reflectance. A matte white sphere serving as calibration ob-
ject is captured under three different lighting conditions. Given its known geometry, one
can construct a lookup table matching triples of intensity values with the sphere’s sur-
face gradient. For reconstruction, other matte white objects are captured under the same
lighting conditions; corresponding surface gradients are determined using the lookup
table.

Hertzmann and Seitz [1] generalized this approach using the orientation-consistency
cue: Two points with the same surface orientation reflect the same light toward the
viewer if they have the same BRDF, all light sources are distant, the camera is ortho-
graphic, and the points are not influenced by non-local lighting effects (e.g., shadows,
interreflections). Their approach is very general and operates with arbitrary distant light-
ing on a very wide class of materials while still yielding high quality results. It requires,
however, one or two reference objects in the captured scene that are used for normal
transfer.

Koppal and Narasimhan [14] also exploit orientation-consistency to find clusters of
iso-normals in a scene captured by a video camera. They do not require a reference
object, but rely on a continuous, unstructured light source path and a dense sampling in
the time domain. In an additional step, a classical photometric stereo approach can as-
sign absolute normals to the clusters or other techniques can use the clusters as starting
point for more detailed reconstructions.

In this work, we show that detailed normal maps can be reconstructed without the
need for explicit reference objects or densely sampled video. We build on the standard
photometric stereo by example approach [1] but replace the separate reference objects
by the captured scene’s own geometry which we partially and approximately recon-
struct using a robust multi-view stereo technique.
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3 Scene-Intrinsic Reference Geometry

Given a static scene, we capture multiple images IPS = {IPS
1 , . . . , IPS

n } from the same
camera position under unknown, distant, varying illumination for photometric stereo.
We make the standard assumption that the camera well approximates an orthographic
camera. We additionally capture another set of images IMVS = {IMVS

1 , . . . , IMVS
m } from

varying viewpoints for multi-view stereo. The latter images should provide sufficient
parallax and lighting suitable for multi-view stereo reconstruction. The images IMVS

and one of the images for photometric stereo, without loss of generality IPS
1 , are regis-

tered using a robust structure from motion system [15]. Since the images IPS were taken
with identical intrinsic and extrinsic camera parameters, all images are now registered
into a common coordinate system. Our goal is to first reconstruct a (partial) geometry
model that serves as scene intrinsic reference geometry. Using the reference geometry,
we then aim at creating a complete and accurate normal map. We finally reconstruct the
scene geometry by integrating the resulting normal field while taking the reconstructed
reference geometry into account.

There is a large body of existing work on multi-view stereo reconstruction (see
Seitz et al. [16] and the accompanying web page) and our proposed technique can be
based on any of them. Since we aim at handling very general input data, we selected the
method of Goesele et al. [17] (see Section 6 for a comparison with a different algorithm)
that is known to be robust and accurate even for very general input data. This method
reconstructs individual, incomplete depth maps using a region-growing approach. We
merge these depth maps into a combined triangular geometry model using volumetric
range image processing (VRIP) [18]. This approach exploits redundancy in the input
depth maps to reduce noise and remove outliers. It also assigns confidence values to
vertices which we use to remove less reliable geometry from the reference geometry.
Finally, we compute per-vertex normals for the reference geometry from surrounding
face normals using area-weighted averaging. Using a variant of Laplacian smoothing,
we iteratively smooth the computed normals according to

nk = nk−1 + λ
∑
i∈N

(
nk−1
i − nk−1

|N |

)
(1)

where N describes the neighborhood of n. The resulting normal vector is normalized.
In our standard matching, we perform 10 iterations with λ = 0.05.

4 Correspondence and Normal Transfer

In this section, we describe the details of our example-free photometric stereo by ex-
ample approach. We first introduce the basic matching as in [1], restricted to a single
reference object. In contrast to their approach, the scene intrinsic reference geometry is
not a noise-free and complete reference object. We therefore introduce an orientation-
consistency based averaging and an adapted normal transfer approach to achieve high
quality reconstructions.
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a) b) c) d)

Fig. 2. Effect of best matches averaging. a) Ground-truth normal map, b) reconstructed normal
map using only a single best match, c) average computed over 50 best matches, d) average com-
puted over 100 best matches. Note that normals on the scene-intrinsic reference geometry (Fig-
ure 5b) remain unchanged.

4.1 Basic Matching

We first manually segment the target object in the images IPS from the background and
then project the reference geometry into IPS. All pixels are classified into those covered
by the scene-intrinsic reference geometry Q and those for which no reconstruction is
available P. Each pixel q ∈ Q is assigned a unique normal n(q) by projecting the ref-
erence geometry’s vertices onto q. If multiple vertices are mapped to the same pixel, we
choose the normal of the vertex with highest reconstruction confidence. We furthermore
define the observation vector for each point in P and Q which is formed by all the color
values for this particular pixel location in the image stack IPS:

Vp,c = (IPS
1,p,c, . . . , I

PS
n,p,c)

T , Vq,c = (IPS
1,q,c, . . . , I

PS
n,q,c)

T , c ∈ {R,G,B}. (2)

The core of geometry completion is the appropriate transfer of normals derived
from the scene intrinsic reference geometry to positions where reconstruction is miss-
ing. We define the following metric for the similarity between two observation vectors
that models differences of surface albedo using a per-color channel material coefficient
mp,c:

∆ =
∑

c∈{R,G,B}

‖mp,cVq,c − Vp,c‖22 (3)

For a given target point p ∈ P, we first determine for each q ∈ Q optimal per-color
channel material coefficients mp,c:

mp,cVq,c = Vp,c ⇔ mp,cV
T
q,cVq,c = V T

q,cVp,c ⇔ mp,c =
V T
q,cVp,c

V T
q,cVq,c

. (4)

In order to find the best matching observation vector, we then select the q for which the
residual error ∆ in Equation 3 is minimal. We apply these steps for all points p ∈ P
where reconstruction is missing.

Figure 2 (b) shows the resulting normal map for the frog example. Note that normals
show strong artifacts in filled-in regions. This could be due to several reasons: First,
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Algorithm Overview

1. Reconstruct SIRG using MVS.
2. For each pixel p in the object’s mask, i.e. P ∪Q, do:

– Compute mp,c for all q ∈ Q.
– Select the s = 50 matches {qi} ⊂ Q that have minimal error∑

c∈{R,G,B}

‖mp,cVq,c − Vp,c‖22 .

– Average normals for {qi} and transfer result to p.
3. Integrate normals.

Fig. 3. Left: Distribution of normal directions for 500 best matches of two target points p, p̃
(boundaries manually drawn for clarity). Right: Summary of proposed photometric stereo al-
gorithm.

some normal directions are not represented in the reference geometry (including some
individual directions but also most of the downward pointing normals on the frog’s
neck area). Second, the material coefficient mp can only model differences in albedo
but is unable to adapt the specularity by mixing multiple observation vectors (as in [1]).
Third, even if the matching according to the orientation-consistency cue is correct, the
reference geometry can still contain erroneous normal information.

4.2 Averaging Multiple Matches

If we look at a plot of the normal directions corresponding to the s best matching ob-
servation vectors for a given p (Figure 3), we notice that these are spread out over a
range of directions due to the various errors in our approximation. We can, however,
also observe that those normals are clustered around an average direction.

We therefore propose to not only use the normal corresponding to the best-matching
observation vector but to compute an average normal from the s best matches. This re-
duces the impact of wrong matches and erroneous normals and can interpolate missing
normals. Note that it will not fix the case of normal directions outside the convex hull
of normals observed in the scene intrinsic reference geometry but may at least assign a
nearby normal direction inside the convex hull. Figure 2 shows the effect of averaging
multiple matches for the frog model. Averaging the 50 best-matching normals yields a
much smoother normal field. Increasing the number to 100 leads only to a small im-
provement. We therefore use in all cases shown in this paper s = 50.

4.3 Global Matching

So far, we only transferred normals from Q to P. This assumes, however, that the scene
intrinsic reference geometry is reconstructed with high quality which is typically not
the case (see, e.g., Figure 4 showing an example of a bronze bust). Even after Laplacian
smoothing, the scene-intrinsic reference geometry still contains very noisy normals.
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a) b) c) d) e)

Fig. 4. Effect of global matching. a) Example input image, b) ground-truth normal map, c) SIRG
normal map, d) reconstructed normal map with best matches averaging only on P, e) recon-
structed normal map with global matching.

We therefore apply the orientation-consistency based averaging described in Sec-
tion 4.2 not only to unreconstructed regions but also to the scene-intrinsic reference
geometry, thereby discarding the originally reconstructed normals. More formally, we
adapt the matching in Section 4.1 to transfer normals from Q to both P and Q. In con-
trast to [1], Equation 3 is then minimized not only for p ∈ P, but for p ∈ P ∪Q with
material coefficients computed for all pairs (p, q) ∈ (P ∪Q) ×Q. This considerably
improves the resulting normal map as can be seen in Figure 4 e).

5 Normal Field Integration

Several methods have been developed to integrate normal maps to recover a 3D surface
(e.g. [19–23]). To constrain the possible solutions, some works propose to impose con-
sistency with sparsely given control points from a laser scanner [24], with a visual hull
[9], or with a complete depth map [25].

We follow a similar, optimization based approach as in [25] and [9]. Both operate in
a perspective setting, i.e., optimize for surface pointsR = (Z ·rx, Z ·ry, Z) determined
by their depth Z along the ray (rx, ry, 1). Instead of directly comparing the difference
of optimized normals np to reconstructed normals n̄p, they use the dot product between
the tangent to the optimized surface and the given normal as an error metric.

Nehab et al. [25] additionally propose to introduce per pixel weights for positional
and normal constraints. We use wp as geometry weight (wp = λ for Q, wp = 0 for P)
and up = vp = 1 as gradient weights respectively. The error function is then given as a
sum over all N pixels p ∈ IPS

1 :

E =
∑
p

[
u2p

∥∥∥∥n̄p ·
∂Z

∂x

∥∥∥∥2 + v2p

∥∥∥∥n̄p ·
∂Z

∂y

∥∥∥∥2 + w2
p

∥∥Z̄p − Zp

∥∥2] (5)

where Z̄p is the depth of a reconstructed pixel. Approximating the partial derivatives
with finite differences, the whole system can be written as a least squares problem with
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a) b) c)

d) e) f) g)

Fig. 5. Frog model. a) Example input image, b) partially reconstructed geometry using multi-view
stereo serving as scene-intrinsic reference geometry (SIRG), c) SIRG normal map, d) recon-
structed normal map using PSE with SIRG as reference object, e) final model after integration,
f) final model rendered from a novel viewpoint, g) reconstruction with Furukawa’s multi-view
stereo [26] and poisson surface reconstruction [27].

a sparse 3N ×N matrix (see [25] for details). Because our weighting scheme does not
exclude any gradients from the integration, the matrix has full rank and there exists a
unique solution to the least squares problem.

6 Results

Since it is difficult to acquire ground truth data for large-scale objects, we first present a
quantitative analysis on small objects that can be easily captured in a laboratory setting.
We then give a qualitative evaluation for two large-scale datasets, reconstructed partially
or completely from Internet images.

6.1 Lab-based Datasets

We demonstrate results on three different datasets captured under lab conditions. The
frog is a roughly 25 cm tall clay figure with a close to diffuse surface (see Figure 5).
The scene-intrinsic reference geometry covers 34 % of the foreground region P ∪Q in
the normal maps. The bunny is a plastic figurine with shiny coating (about 20 cm tall,
47 % coverage, see Figure 6). The bronze bust (40 cm tall, 53 % coverage, see Figure 4
a)) exhibits complex surface structure and a difficult BRDF.

The datasets were all acquired using a 7 M pixel consumer camera. We captured 15-
20 IPS images from a fixed camera position while manually moving a simple light bulb
around the object. We additionally captured ≈ 50 IMVS images from various positions



Removing the Example from Example-based Photometric Stereo 9

a) b) c) d) e)

Fig. 6. Bunny model. a) Example input image, b) normal map of partially reconstructed geometry
using multi-view stereo serving as scene-intrinsic reference geometry (SIRG), c) reconstructed
normal map, d) ground truth, e) final model rendered from a novel viewpoint.

facing the front side of the objects. Neither camera nor light source were calibrated.
In order to evaluate our reconstructions quantitatively, we scanned the objects using a
structured light scanner. From the merged and cleaned point model, we created ground-
truth normal maps for comparison. Note that these ground-truth normal maps show
holes in areas where scanning was difficult due to self-occlusion, e.g., the bunny’s ear
region in Figure 6.

Evaluation Figures 5, 4, and 6 demonstrate clearly that our approach is able to re-
construct high quality normal maps without requiring special reference objects in the
scene. Even small details such as the flowers on the bunny’s dress are reconstructed.
Normals outside the convex hull of captured normal directions such as the chin area in
Figure 4 or areas with self shadowing around the bust’s nose are reconstructed plausibly
without introducing strong artifacts. The final integrated models are of high quality and
avoid large scale distortions due to the inclusion of reference geometry in the integration
routine.

Figure 7 shows for all lab datasets histograms over the deviation of reconstructed
normals compared to normals computed from the scanned ground truth model. The
graphs clearly show that normals obtained from multi-view stereo techniques are im-
proved by our proposed normal transfer.

To demonstrate that our technique works also with more general lighting, we cap-
tured two additional datasets for the bust where we used a studio light with and with-
out diffuser for illumination. The close-ups in Figure 8 demonstrate that the recovered
normals change only marginally. Note that this is a key requirement for applying the
technique to outdoor scenes as shown in the next section.

It does not matter to our approach in which manner the scene intrinsic reference
geometry is obtained. We therefore additionally applied the multi-view stereo algo-
rithm of Furukawa and Ponce [26] to the bunny and frog datasets. The resulting point
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Fig. 7. Normal deviation in degrees against ground truth for a) frog, b) bunny, and c) bust. The
purple (green) line shows the deviation of the SIRG obtained by multi-view stereo of Goesele et
al. (Furukawa et al.) after Laplacian smoothing. The orange (blue) line demonstrates the result
of our complete pipeline on Goesele et al. (Furukawa et al.) multi-view stereo input data. Data
point 46 represents deviations greater than 45◦. Values out of scale are: a) SIRG G. 9.4%, SIRG
F. 29.5%, Rec. F. 9.8%; b) SIRG F. 15.9%, Rec. G. 7.1%, Rec. F. 7.2%; c) SIRG G. 8.9%, SIRG
F. 14.2%.

a) b) c)

Fig. 8. Reconstruction of bust for light situations a) diffuse spot, b) bright spot, and c) point light.

set was then used as input to our adapted photometric stereo by example technique.
Figure 7 shows the deviation of the results from groundtruth. Like for the input from
Goesele et al., we observe a significant improvement (blue lines) of the normals (green
lines) through our matching scheme. Furthermore, the figure shows that input normals
from Furukawa’s method (green lines) are farther away from the groundtruth than those
reconstructed by VRIP and Goesele’s method (purple lines). Obviously, this leads to
the differences in the resulting normal map’s quality (comparing the orange and blue
lines). We also attempted to reconstruct a triangle mesh from the point cloud created
by Furukawa’s method using Poisson surface reconstruction [27] but despite several tri-
als with different parameter settings the Poisson reconstruction did not yield satisfying
results (see Figure 5 g) for an example).
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a) b)

Fig. 9. Cathedral dataset. Left: Images captured by a static webcam used as IPS. Right: Images
downloaded from a community photo collection site used as IMVS.

a) b) c)

Fig. 10. Cathedral model. a) Normal map of partially reconstructed geometry using multi-view
stereo serving as scene-intrinsic reference geometry (SIRG), b) reconstructed normal map, c)
final model rendered from novel viewpoint.

6.2 Outdoor Datasets

We discuss the performance on outdoor scenes using two large buildings (about 60 m
and 90 m tall) with non-planar surfaces and interesting details. For each dataset, we
retrieved an image of a public webcam every 20 min over the course of 3 months. The
webcam images have VGA resolution.

We manually selected 11 suitable IPS images for the cathedral dataset (all taken
between 10 am and 5 pm) and 36 images for the tower dataset (taken between 9 am
an 7 pm) on different days, see Figures 9 a), 1 a). For the cathedral, we furthermore
downloaded 2000 IMVS images from the community photo platform Flickr (see Figure
9 b)). The multi-view stereo step automatically selected a suitable subset of those for
reconstruction of the scene intrinsic reference geometry achieving a completeness of
84 %. The SIRG for the tower was reconstructed from 324 images taken by a student
with a consumer camera (see Figure 1 b)) and covers 58 % of the foreground.
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Evaluation Figure 10 demonstrates the results for the cathedral model. The fairly
complete reference geometry is a good basis for reconstruction. The global matching
softens the extremes in the normal map but strongly increases the available detail. Arti-
facts can be seen due to cast shadows on the object that violate the assumption of distant
illumination and are not modeled by our approach (e.g., lower right corner of Figure 10
c)).

As a cylindrical object, the tower is well-suited for reconstruction. Parameterizing
its surface by height h ∈ [0, H] and angle ϕ, a normal at (h, ϕ) can be reconstructed
quite accurately if some normal on the line ([0, H], ϕ) is contained in the reference
geometry. This works so well that the bottom of the tower can be recovered up to fine
details like individual stones (see Figure 1 d)). Even if the roof has a different albedo
and only sparse coverage of normal directions pointing to the right, we are able to
reconstruct it quite convincingly.

7 Discussion

Being able to reconstruct sufficient geometry for the SIRG is a key requirement of
our algorithm. However for some scenes, it will most likely be impossible to recon-
struct sufficient geometry with any multi-view stereo algorithm. Such scenes need to
be treated differently. We argue, however, that this is a rare case and that the chosen
multi-view stereo algorithm [17] (or another MVS approach) will for most scenes be
able to reconstruct at least some geometry. We demonstrated that this geometry can be
used as reference geometry, bootstrapping the photometric stereo by example approach.
This yields the clear benefit that neither lighting nor scene reflectance need to be known
or even controlled.

Another critical point is the reasoning in Section 4.2 why averaging multiple matches
works. It is, e.g., clear that averaging multiple normal directions will not handle a mis-
match in reflectance between a point and the scene intrinsic reference geometry as well
as mixing the contributions of two reference objects in [1] would do. We found, how-
ever, that it is a procedure based on the available information that in practice yields
surprisingly good results.

8 Conclusion and Future Work

Reconstructing accurate normals for large-scale objects with photometric stereo meth-
ods is a non-trivial task. As we cannot put whole buildings in a laboratory, many tradi-
tional photometric stereo methods cannot be easily applied. In this paper we presented
a combination of multi-view stereo and photometric stereo that is able to cope with
outdoor imagery and has minimal capturing requirements. Like standard photometric
stereo by example, it neither requires known lighting or reflectance nor does it recon-
struct either of them explicitly. By introducing the scene-intrinsic reference geometry,
we are able to extend the applicability of photometric stereo by example to scenes for
which it is undesired or even impossible to include reference objects.

The reference geometry can be seen as a set of noisy samples of the function f from
observation vectors to normals. The current best matches averaging does not consider
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how close the individual matches actually are to the candidate and it does not model the
noise in the input data. This could be remedied by interpolation methods like Kriging
that estimates unknown values based on known values at nearby points. However, better
understanding of the space of observation vectors and their distribution is needed and
we will further explore this field. A starting point is already provided by Sato et al.
[28] who investigate similarity measures for observation vectors and apply a dimension
reduction technique to the space of observation vectors.

In the future, we would furthermore like to improve robustness against cast shadows
and local influences. Finally, the reconstructed 3D geometry might benefit from better
integration, e.g., by avoiding to integrate over depth discontinuities similar to Vlasic et
al. [9] or Agrawal et al. [29].
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