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Abstract. The human visual system differs from a camera in various
aspects such as spatial resolution, brightness sensitivity, dynamic range,
or color perception. Several of these effects depend on the absolute lu-
minance distribution entering the eye which is not readily available from
camera images. In this paper, we argue that absolute luminance is im-
portant for correct image reproduction. We investigate to which extent
it is possible to recover absolute luminance values for any pixel in images
taken from the Internet, extending previous studies on camera calibra-
tion in laboratory settings that are much less challenging. We use the
Moon as a calibration target to estimate the remaining error. We then
evaluate this error in the context of perceptual tonemapping for low dy-
namic range images.
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1 Introduction

Today’s consumer cameras produce visually pleasing images under standard
scene conditions, i.e., images captured with common exposure characteristics.
They work well as long as we are not interested in ‘non-standard’ scenes. E.g.,
images taken under low-light conditions will lead to long exposure times but pro-
duce a sharp, colorful image (disregarding any noise). This is, however, not the
experience an observer would have in the actual scene and such images therefore
tend to look artificial. To better reproduce human perception in these cases, one
would need an estimate of absolute scene luminance. In addition, being able to
recover absolute luminance values is also of interest in other areas such as com-
puter vision. The motivating question for this paper is thus ‘Can we estimate
per-pixel luminance values for everyday Internet images?’.

In theory, the ISO standard 12232 [12] answers this question as it specifies a
relation of camera output to scene exposure. Applying this model in practice, is
however difficult since Internet images might be edited, contain false information,
or because camera manufacturers do not follow the standard. But still, a lot
of images should roughly comply with this model. The interesting question is
therefore ‘How well can we estimate per-pixel luminance values?’.

To answer this question, we need a large amount of images with ground truth
luminance values. In a controlled environment, Wueller and Gabele [28] used a
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luminance meter to measure the scene and then compare to a calibrated cam-
era. But this does not match well with the variations in Internet images which
are taken by many different camera models, show different scenes, or are pos-
sibly post-processed. Instead, our approach is to use images that were actually
downloaded from platforms such as Flickr and Google images. Measuring the
ground-truth with a luminance meter for these images might work for a fre-
quently photographed, indoor scene without many luminance changes (e.g., an
exhibit in a museum). But preferably, we would like to even dispense with the
need of measuring the ground truth and instead use a calibration target with
known luminance.

We found such a target in the Moon and assume that insights gained on lunar
images from the Internet transfer to the more general setting. Working with lunar
images and different models of lunar photometry, we discovered, however, that
observations of the Moon from Earth are not as predictable as expected. Atmo-
spheric effects and unknown observer positions can lead to a significant variation
that is beyond our control (in addition to the uncertainty in the camera model).
To demonstrate the applicability of the approach to a practical problem we im-
plement a re-mapping approach of low dynamic range images that transforms
artificially looking low-light pictures into a perceptually plausible representation.

2 Related Work

Camera Calibration: Radiometric camera calibration is important for many
computer vision tasks that rely on linear luminance measurements, e.g., high
dynamic range reconstruction, image stitching, or photometric stereo. Accord-
ingly, there is a large body of literature on this topic, e.g., [22,9,18,19,15]. These
papers focus mostly on the calibration up to relative luminance values and typ-
ically consider a single camera.

Martinez-Verdu et al. [25] perform a series of measurements to calibrate a
digital camera. After their colorimetric characterization a standard camera can
be used as absolute colorimeter. They discover that predicted colors from the
camera differ from the true values according to an affine model. The characteri-
zation does of course not scale to the multitude of cameras that are used to take
pictures on the Internet. We abandon these rigorous measurements and replace
them with a less reliable but more general model given by the ISO standard
for camera sensitivity. Wueller and Gabele [28] calibrate the opto-elecetronic
conversion function of several digital cameras for a certain exposure level. They
can then transform measurements under different exposure settings to the cal-
ibrated, absolute luminance values. Comparing these values in different scenes
to those measured with a luminance meter they find possible deviations of more
than 30% for colored objects. We must assume that these deviations will even
increase in the case of uncontrolled Internet images.

Recently, the need to make predictions of radiometric calibration on Internet
data has arisen since Internet Photo Collections have become an input source
for computer vision algorithms. Chakrabarti et al. [3] study the imaging pipeline
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from scene luminance to final pixel value in this context. They propose a camera
model that also encompasses the scene-dependent variation, but consider only
relative luminance values. Kuthirummal et al. [17] analyze the statistics of images
in photo collections grouped by camera model and lens settings. They derive a
prior on the joint histogram of irradiances at neighboring pixels and can then
estimate response functions for other camera models in the set. Again, this only
recovers luminance values up to an unknown scaling factor.

The ROLO (RObotic Lunar Observatory) program [1] by USGS is aimed at
providing radiometric calibration for space-based imaging instruments, using the
Moon as a reference source. We follow this idea but apply it in a totally different
context: We assume Earth-based consumer cameras instead of specialized space
equipment and do not know the actual time of capture or the observer’s location.

Luminance of the Moon: The apparent brightness of the Moon has been of
interest for centuries since it is the second brightest object in the sky after
the sun. We will not discuss this in detail and mention only selected works.
Ellis [6] combines previous results about the relative intensity of the Moon with
atmospheric extinction to derive tabulated intensities for varying zenith angle
and lunar phase. These values are relative to the intensity of the full moon and
cannot be used directly for absolute calibration.

In 1994, the Clementine mission produced high resolution images of the lunar
surface from a polar orbit. This enabled an updated model of the lunar albedo
at various wavelengths and a study of the so called opposition effect by Buratti
et al. [2]. The opposition effect leads to an apparent increase of albedo for small
phase angles which has also been studied by Hapke [10]. Using Hapke’s work,
Jensen et al. [13] assembled a model of the complete night sky including the Moon
which can be used for realistic image synthesis. Their formulation is centered on
irradiance which we transform into radiance/luminance at a single camera pixel.
This is the inverse of Kieffer and Stone’s approach [14] processing lunar radiance
measurements in the context of the above mentioned ROLO program.

Finally, in working with Internet images we also encountered pictures of lunar
eclipses since these draw special attention. Hernitschek et al. [11] observe eclipses
with a light meter and devise a model for the luminance of the Moon while in
the Earth’s shadow. Since this is a special case, we do not use images of lunar
eclipses and consider them as outliers in our derivations.

Perceptual Tonemapping: As an application of absolute luminance in images we
study perceptual effects in human vision that depend on the absolute adaption
state of the eye’s receptor cells. Spencer et al. [24] study glare effects arising
from scattering in ocular media and diffraction at the iris. Ward et al. [27] as
well as Ferwerda et al. [7] model glare, color sensitivity, and visual acuity in
the context of rendered high dynamic range scenes. Their focus is on employing
local contrast thresholds for dynamic range compression which also depends on
absolute luminance. Durand and Dorsey [5] extend on this work but still consider
rendered images. They use a global adaption level per image and compare its
estimation to a camera’s exposure metering.
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With the availability of high dynamic range photographs through multiple
exposure algorithms, tone-mapping has also been applied to actual photographs.
Reinhard et al. [21] use relative luminance values and a key value that adjusts the
overall brightness. They do not explicitly model any perceptual effects. These
are then introduced to photographic tone-mapping of high dynamic range videos
by Krawczyk et al. [16]. We show that effects such as reduced acuity in low-
light conditions can also be employed with normal low dynamic range images to
increase their ‘naturalness’.

3 Camera Model

We model a camera as consisting of a linear part defined by its optical system
and linear sensor, and a non-linear processing part that may contain everything
from sensor electronics to post-processing or image editing. The optical system
transforms an incoming scene luminance L into the focal plane exposure H which
is proportional to the integration time ¢, but decreases with the f-number N of
the lens. The proportionality factor according to annex B of the ISO standard

12232 [12] yields:
L-t

H = 0.65 7 - (1)
Fortunately, a lot of images contain the values of ¢ and N in their EXIF meta-
data. The signal is then scaled by the sensor gain and processed by the camera
to yield non-linear 8-bit pixel values p = 255 f(p). We assume f to be a gamma
curve as defined by the sSRGB standard which is commonly used for Internet
images. The missing link between a certain absolute exposure H and an output
pixel value p is then just the sensitivity of the sensor.

ISO standard 12232 [12] includes several definitions of sensitivity. But cam-
era vendors do not always comply with this standard exactly. Even if they do,
it is usually not apparent from the available meta-data which definition was
used. This can lead to greatly differing exposures for the same pixel value. A
value of 200 for the ISO speed interpreted as standard output sensitivity implies
that H = 10/200 gets mapped to a pixel value of 118. If it is interpreted in-
stead as saturation-based speed, a pixel value 118 corresponds to an exposure of
f71(118/255) - 78/200 = 0.1835 - 78/200 which is 1.43 times the previous one.

According to the EXIF standard, the sensitivity type should be recorded
along with the sensitivity value. Unfortunately, many images contain only the
‘ISO’ tag and do not specify which definition it relates to. We assume that the
standard output sensitivity (SOS) based speed S as defined in Sect. 7.1 of the
standard can be applied for all images. Under these assumptions the luminance
Lgsos that produces an output value of 255 - f(p) = 118 is given as

1000 N?
L =— - — 2
05T 65 St @)
More generally, a pixel value p corresponds to luminance
~L(p/255 1000 N?
L= (p/259) Lsos =p- 545 —— (3)

f-1(118/255) 65 S-t°
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Since we typically deal with color images, we cannot use this formula directly.
Instead, we compute grayscale values by combining the RGB channels according
to Sect. 6.3.3 in ISO 12232:

R G B
p=02125- F1 [ — 71654 - 7 —=— 0721 =—). 4
p=0.2125- f (255)+075 f (255)+007 f (255> (4)

4 The Moon as Calibration Target

We make use of the lunar illumination model in [13] that relates solar irradi-
ance on the Moon Fj,, to the irradiance on Earth arriving from the Moon Eom
depending on the phase angle (:

. 2 C ~ .

Em(p) = 3 - — wnr - Bom - (1= sin(p/2) tan(p/2) log(cot(p/4)))  (5)
We ignore the earthshine component which is only relevant around a new moon.
The average albedo C is set to 0.072 and wy, is the solid angle of the complete
lunar disk as observed from Earth. From our camera model we get luminance
values instead of irradiances. Exchanging radiometric quantities with photomet-
ric ones in (5) gives us the illuminance E,,. The illuminance integrates incoming
luminance L over the whole hemisphere:

E = /L(G) cos(0)dw (6)

Assuming that L is constant for all directions # which correspond to the illu-
minated portion of the Moon {2p, zero everywhere else, and that the sensor is
oriented towards the Moon we get

Em(cp):L/ cos(ﬂ)dwwL/ dw=1L-wp. (7)
.Qp QP
The solid angle wp can be computed from the average radius ry; = 1737 km of
the Moon and its average distance from Earth d = 384400 km

2

UV,

d

wp:P- :P‘(JJM (8)

where P is the percentage of the lunar disc that is illuminated as seen from
Earth. P depends on the phase angle as follows:

P =05 (1+cos(p)). (9)

Thus, our final model of extra-terrestrial, lunar luminance is

E77L 2 C 2 ES’"L

L= 2= o T ey - (1= sinl/2) tan(o/2) og(eot(/4))) . (10)
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Fig. 1. Left: Extra-terrestrial luminance for various phase angles ¢. Right: Expected
luminance distribution at sea level after atmospheric extinction for ¢ = 5°, 25°, 90°.

We use a value of 1.338 - 10° Im/m? for the illuminance of the sun E,, at a
distance of one astronomical unit (1 AU = 149597870.7 km) as in the CIE sky
model [4]. Ignoring the minor deviations of the actual position of the Moon from
1 AU Fig. 1 shows the expected luminance values for a range of phase angles.
Note that we model luminance and not brightness or irradiance. The latter would
fall off much faster, because the illuminated area of the Moon decreases.

So far, we have only considered luminances as would be observed in free
space, but the luminance gets attenuated by the atmosphere depending on the
amount of air between the observer and the Moon. At sea level, the extinction due
to Rayleigh scattering Rpqy, and aerosol scattering R, can be approximated
according to Green [3] as

F = 2.5128rey T Raer . g — 9 512014514012 4 — 1 9766 A . (11)

The air mass A is defined as 1 when looking straight up (zenith) and can be
calculated from the zenith angle ¢ of the Moon at the observer position:

A = (cos(¢) + 0.025 exp(—11 cos(¢))) " . (12)

Ignoring any wavelength dependent effects, the final observed luminance will be
L=1L,/F.

Since we do not know where an image was taken, we cannot deduce the
zenith angle or the approximate extinction coefficient. To get an impression of
the severity of this error source, we assume an exemplary Gaussian distribution
of zenith angles centered at 55° with a standard deviation of 25°. This reflects
that the Moon is seldom observed at the zenith, but more often close to the
horizon. Fig. 1 then shows the expected luminance distributions for phase angles
@ = 5°,25°,90°. For each phase curve, luminances can vary almost over the
complete range indicating that atmospheric extinction is a major source of error.

5 Predicting Luminance from Internet Images

We downloaded an initial set of about 13000 images from Flickr with tags ‘moon’,
‘full’, ‘night’, and ‘sky’. Those without the necessary EXIF data were automat-
ically removed. Many images show artistic works or landscape shots with the
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Fig. 2. Left: Histogram (blue) of predicted log,, luminances from image meta data
with fitted gaussian (red, p = 3.25,0 = 0.4). Right: Histogram of differences of both
predictions (u = 0.04,0 = 0.4).
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Fig. 3. Left to right: The geometry of lunar illumination coverage, an example image
of the Moon, the binary mask after thresholding, initial coverage (red) assumed as
initialization for the optimization (image mask overlayed in white), estimated coverage
after optimization (¢ = 70°).

Moon as a small, over-exposed disk. We removed most of these by comparison
with an actual photograph of the Moon using the PictureRelate tool [26]. The
remaining 800 images were uploaded to Amazon Mechanical Turk where humans
annotated them with a bounding box of the Moon.

Each image was then transformed according to (4) and thresholded at p = 0.3
to create a binary mask of the Moon. We need the phase angle to evaluate the
model in (10) and predict luminances in each image. This angle can be estimated
from a geometric model of the illumination coverage of the lunar disk. The model
is illustrated in Fig. 3 and accounts for unknown pixel coordinates of the center
(z,y), the radius, a tilt angle, and the phase. Its output is the set of pixels
that correspond to the illuminated part of the Moon (red in Fig. 3). We run an
optimization that fits this model to the binary mask in each image and returns
the estimated lunar phase angles. We can then evaluate (10) to predict the extra-
terrestrial luminance values Ljynq,- These are in the range [1360,2040] cd/m?
as indicated by Fig. 1. For the reference image shown in Fig. 3 we know the
exact date and position of capture. Comparing the estimated phase angle of
¢ = 70° with data provided by NASA’s HORIZONS system [20] ¢ = 65° yields
a deviation that is negligible for our derivations.

Applying (3), we can also compute luminance estimates based on the ac-
tual pixel values and meta-data. We first exclude pixels with p > 250/255 as
over-exposed and then compute per-pixel luminance estimates within the mask.
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These are then averaged to yield the predicted luminance of the Moon based
on image measurements L;y,qq4c. Note that these are Earth-bound and may in-
clude atmospheric effects. The histogram of image-based predictions greater than
30 cd/m? is displayed in Fig. 2 (left). We also removed images with more than
1% overexposed pixels which leads to a total of 395 images.

Finally, we compare both predictions by taking the ratio Liunar/Limage. The
respective histogram is plotted in Fig. 2 (right). We observe that the mean of
both predictions agrees well whereas the standard deviation yields a factor of
10794 ~ 0.4 or 10%* ~ 2.5, respectively. Note that this number includes all
variations and unmodeled effects in the complete pipeline. Common examples
are images with cloudy or not completely black sky, e.g., during dusk.

6 Perceptual Remapping of Internet Images

In the previous sections we have seen that it is possible to reconstruct absolute
luminance values for each pixel in an image from meta-data. Absolute lumi-
nances are important for a lot of perceptual effects that depend on the absolute
adaption level. Cameras aim at reproducing images an observer has seen in pho-
topic conditions. But important changes in perception occur in the mesopic and
scotopic range of low-light illumination. A camera will therefore fail to produce
plausible images under such conditions. We will focus on two such effects and
show how absolute luminances can be employed to re-render night images in a
perceptually more plausible way.

Visual Acuity: Acuity expresses the spatial resolution of the visual system. This
can also be seen as sharpness and is typically measured in cycles per visual
degree. For human vision, a basic test from ophthalmology is for example to
have the patient read letters of decreasing size at a fixed distance. It has been
shown by Shaler [23] that performance in these tests depends on the adapting
luminance. Under moonlight conditions, acuity drops significantly and spatial
detail is lost even for healthy observers.

Ward et al. [27] derive the following relation of luminance to maximal resolv-
able frequency from Shaler’s data:

F(L) =25.72+17.25 - tan~" (1.4 log;(L) + 0.35) . (13)

To simulate this effect we blur the image with a low-pass filter that removes fre-
quencies above f(L). Note that the adaption luminance is not constant over the
whole image, but may change locally. Different levels of blur will be appropriate
in different regions of the image. We borrow from Krawczyk et al. [16] and use
the same kernels as in their high dynamic range work.

Rod and Cone Activity: Another effect that becomes apparent in low-light is the
loss of color. In the scotopic range of about 1076 to 1072 ed/m? the cone cells in
the human eye are inactive and vision is solely based on the rod photoreceptor
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cells. Again, cameras mimic the human eye under photopic conditions when the
three types of cones would provide a perception of color.

The rods have a spectral sensitivity that differs from the luminosity func-
tion of the cones which is usually applied in photometry. Without knowing the
spectral distribution of incoming light, it is not possible to directly translate one
into the other. We therefore neglect this effect, use photopic luminance values in
both cases, and implement the loss of color perception by blending a grayscale
image and a colored one. The blending coefficient simulates the decrease in rod
activity with increasing adaption luminance. Again, these coefficients can vary
spatially over the image.

Ferwerda et al. [7] propose a linear blending weight for the mesopic range
whereas Durand and Dorsey [5] employ the ratio of two linear functions of adap-
tion luminance. We use the same method as Krawczyk et al. [16] who define the

blending weight as
0.04

)= — =
oL)=50irL

effectively disabling rod contribution for luminances above 10 cd/m?.

(14)

Implementation: We assume an sRGB image as input and first transform it into
the xyY space. Using (3) we scale the Y channel to obtain absolute luminance
values. We then build a Gaussian pyramid of successively blurred luminance
images similar to Krawczyk et al. [16] but without their approximation of kernels
since we are not concerned about real-time performance. Based on the absolute
luminance and (13) we select the appropriate pyramid level for each pixel and
obtain a blurred luminance map L.

To store the result, we need to arrive at relative pixel values. Reversing (3)
gives f/ac which is then split into a scotopic part Ys = 0(Lac) ~I~/ac and a photopic
one Y, = (1 — 0(Lac)) - Lae- The blending coefficient still depends on absolute
luminances. Finally, we transform the original chromaticities zy with Y}, into the
XYZ space and add the grayscale image obtained from Y and x = 1/3,y = 1/3.

Fig. 4 shows the different images occurring in this algorithm. The original
was taken in a dark capture lab with the white glove still recognizable by a
human. The color checker became visible after a short period of dark adaption.
The sharp and colored camera picture with an exposure time of 15 s is very far
from the experience a human would have in this setting.

Results on Internet Images: To test our simulation of human perception, we
downloaded images from Flickr that were taken with only little light, but still
look sharp and colorful due to long exposure times. It is immediately apparent
that the original images in the left column of Fig. 5 look artificial. This is of
course intended and an artistic choice by the photographer, but we are interested
in how a human would actually have perceived the scene. In our results in the
right column, the loss of acuity can be well observed on the surface of the rock
in the first row, at the air vent in the second row, and at the fence in the third
row. Similarly, colors are much less saturated. Note especially the green plants
and tufts of grass in the third row and the overall appearance in the first row.



10 Jens Ackermann Michael Goesele

Fig. 4. Stages of perceptual simulation. Top: The original image taken with a long ex-
posure time shows bright colors and sharp details (left). We remove spatial frequencies
that could not be resolved by an observer under low-light conditions (right). Bottom:
Rod responses are simulated through a grayscale image (left) which is then blended
with the colored one according to local rod activity. The final result (right) shows both
effects combined.

In general, our images look more plausible with regard to a night time scene
than the original long-exposure shots. Of course, day light images should not be
affected by our simulation and we show one such example in Fig. 6.

In these examples, we are dealing with a range of luminances from starlight
at about 0.001 cd/m? to clouded sky illumination of 1000 cd/m?. Fig. 7 shows
false color images of the absolute log luminances in all four images. To study
the impact that possible false estimates of the luminance factor could have on
overall image appearance, we artificially introduced an additional scale factor «
which we varied among 0.2,0.5,1.0,2.0,5.0. Fig. 8 shows that deviations by a
factor of 5 are clearly discernible. For a = 2 we can make out a difference but
the overall impression of a low-light scene is still preserved.

7 Discussion

We originally posed the question of how well we can estimate absolute luminance
values on uncontrolled, real-world images. Using images of the Moon downloaded
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Fig. 5. Results. Left: The original, unprocessed images (rows 1-3: Flickr users Joselito
Tagarao, Markus Lehr, Wayne Grivell). Right: Results show-casing reduced acuity and
color perception in low-light conditions. The daylight picture in Fig. 6 is not affected.
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Fig. 6. Results on daylight image. Left: The original image. Right: Results of applying
the pipeline. As expected, the daylight picture is not affected.
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Fig. 7. Colormapped log,, of absolute luminance. Images from left to right correspond
to rows in Fig. 5 and Fig. 6. The respective logarithmic mean of estimated luminances
is: 0.0003 cd/m?,0.014 cd/m?,0.018 cd/m?, 92.86 cd/m>. The estimated luminance
factor is: 0.087 cd/m?,0.576 cd/m?,0.407 cd/m?,1128.23 cd/m?.

b Lho - ow s
log,, luminance [cd/(m*m)]

IS

from the Internet we compute luminance values once through a photometric
model of the Moon and again through an image formation model based on
the available information. Ideally, both estimates would agree at least to the
uncertainty within each of these models. We can, however, not control or even
estimate several parameters of these models such as atmospheric extinction,
the way of reporting ISO settings, or other effects that are “invisible” (e.g.,
filters in front of the lens, photographing through a telescope). This makes it
impossible to exactly quantify the uncertainties in the overall system. We are
also aware of the fact that our camera model is an inexact approximation in
many cases. The major concerns are incorrect meta-data, post-processed images,
non-standard response curves, and vendor-specific changes. We briefly tested the
latter two factors by capturing a color checker with our Canon EOS camera and
simultaneously acquiring measurements with a luminance meter. It turned out
that our predicted luminances according to Sect. 3 deviated approximately £30%
from ground truth. This matches with the findings by Wueller and Gabele [28)]
who even calibrated the camera’s response.

Can we still gain insights from our investigations? Yes, since the discrepancies
we observe, e.g., illustrated in Fig. 2, are an upper bound for the question of
how accurately we can recover absolute luminances. If the deviations stemmed
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Fig. 8. Impact of possible false estimates. Left to right: results for an additional scaling
factor of 0.2,0.5,1,2,5 in the luminance estimation.

purely from the photometric model, then luminance recovery from meta-data
would be precise. If on the other hand the photometric model was precise, the
observed variance would be the answer to our initial question. The truth will be
somewhere between these extrema, but our investigations still provide an upper
bound.

Finally, we can refine our motivating question and ask ‘How accurate do
we have to be?” This of course depends on the application. In this work, we
have studied the case of perceptual re-mapping of low-light images which clearly
improves the realism of very dim images but becomes only possible through
our estimated luminances. In this context, a factor of 2 (or one exposure stop
in photography terms) seems to be still acceptable (see Fig. 8). Affirming this
impression through a user study would be an interesting avenue for future work.
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