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Abstract—The use of Multiple Microsoft Kinects has be-
come prominent in the last two years and enjoyed widespread
acceptance. While several work has been published to mitigate
quality degradations in the precomputed depth image, this
work focuses on employing an optical flow suitable for dot
patterns as employed in the Kinect to retrieve subtle scene
data alterations for reconstruction. The method is employed
in a multiple Kinect vision architecture to detect the interface
of propane flow around occluding objects in air.

I. INTRODUCTION

With the advent of the Microsoft Kinect not only the
human-computer interaction in the consumer market has
been shifted to a new level, the interaction based on motion
capturing, but also computer vision based research has
experienced a sparked since the release. Ranging from
advances in motion capturing and real-time self localisation
and mapping to robust face capturing, the bandwidth of the
research volume related to the Kinect is surprisingly broad.
While most approaches have focused on preprocessed data
of the sensor, i.e. a considerably accurate depth estimate
of the scene, only few have actually considered the raw
IR stream for their data processing. This article exploits
the use of the IR footage, containing greylevel information
about the scene together with sparsely distributed spots
emitted from the IR laser component of the Kinect. While
the nondisclosed algorithm of the Kinect computes a dense
depth image of the scene from considerably shifted posi-
tions of the laser spots, the proposed algorithm will detect
subtle alterations introduced on the captured spots image,
e.g. in the scenario of small light path deviations intro-
duced by a refractive medium. The resulting information
is equivalent to an optical flow image as it quantitatively
denotes the alteration, i.e. pixel movement, introduced on
each spot. It, however, differs from state-of-the-art optical
flow images as it considers only a sparse discrete set of
spots, projected into the scene from a IR laser component
and captured with the IR camera, which are represented
by its barycentric position in the image and its distincitve
shape. Furthermore the information about the projected
pattern allow a computation independent from the actual
resolution of the underlying image stream. We will test
the algorithm in a capturing setup consisting of multiple
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Microsoft Kinects. The refractive index gradient in the
scene is generated by letting propane flow through the
intersecting volume of their viewing cones, Fig. [

The remainder of the article is structured as follows:
After a revision of the state-of-the-art in active-light-based
computer vision research with a focus on optical flow
capturing, Sect. we examine the characteristics of the
spot pattern projected by the Kinect and derive an abstract
model in Sect. that allows us to compute an accurate
estimate of the spot position on the image plane indepen-
dent from the actual resolution of the underlying image
stream. Afterwards, we introduce the subpixel accurate
optical flow computation for detecting subtle changes in
the captured IR stream, Sect. Note, that the proposed
algorithms differs significantly from state-of-the-art optical
flow computation as it considers only sparse samples of
the input images. A global optimization based approach is
therefore not feasible.

The presented method is then applied in the scenario
of capturing the interface of two-phase gas flows, Fig. Il
Sect. [V] and Sect. Finally we discuss the results,
Sect. and conclude, Sect.

II. RELATED WORK

A variety of approaches have been proposed to capture
and visualize the dynamics of gases and fluids, e.g. in
windtunnels. Mostly, two-phase flows are hard to discrim-
inate by imaging tools, because their color appearance is
quite similar. A straight-forward approach is to enhance the
contrast by inserting seeding particles into the flow. Their
buoyancy and density has to match the measured fluids.
The particles are usually illuminated in a way that only a
2d intersection plane is imaged. The technique is known
as Particle Image Velocimetry (PIV), an introduction can
be found in the monograph by [21]. Perpendicular flows
can be detected stereoscopically [9]. Another approach,
the Particle Tracking Velocimetry (PTV) introduced by
Cowen and Monismith [13] is similar to the PIV but
incorporates tracking algorithms for particles over several
images. Bendick et al. [12] rened colored particles to make
the distinction easier. A usual drawback of that approach is,
that the particles deviate slightly from the flow by inertial



Fig. 1.
In our setup we place a propane gas nozzle (left) in the center of three Kinects (middle) and place projection walls at a fixed distance opposite to
each Kinect. The index gradient causes light path deviations both between the projector and the projection wall and between the projection wall and
the camera (indicated by coloured cones). To reconstruct the underlying gas flow using the proposed optical flow algorithm we register each sensor to
one common world space (right) and reconstruct the visual from silhouettes enclosing the deflected pixel regions in each sensor’s IR-image.

force. In Laser Doppler Anemometry (LDA) a coherent
laser beam is split into two beams focused on the same
point in a flowing volume. A particle passing this point
reflects the lasers light and a photodetector measures the
resulting interference pattern [14]. Other approaches are
non-invasive. Atcheson et al. [5]] designed a high-frequency
background pattern [6] for Background-Oriented-Schlieren
(BOS) detection of gas flows. This approach was refined
by Berger et al. [8] to enable the capturing of gas flows
with occluding objects. They however showed, that purely
image-based methods are limited, and occluders could not
be segmented out crisply. Therefore, Berger et al. [10]
introduced the usage of Kinects for capturing gas flows
around occluders. They imaged gas introduced dierences in
the captured depth stream. When the scene was captured
with multiple Kinects a reconstruction of the visual hull
of the gas was possible, but it was limited to superpixel
resolution. Their work is the closest to ours, as we consider
the same capturing scenario. We however advance it in
the following way: We introduce a new sparse spot-based
optical flow to work directly on the IR input stream of the
sensor and thus are to work on subpixel accurate light-path
deviation data. Furthermore, we do not simply reconstruct
the visual hull of the gas [10], but seek to geometrically
reconstruct the interface between the flowing gas and the
surrounding air by incorporating a total variation approach.

III. SPOT MODEL DERIVATION

As the pattern projected by the Microsoft Kinect has
a unique distinctive shape, it allows for analysing the
geometric properties of the underlying pattern elements, the
spots. Each projected spot pattern is set up in the same way:
in a 3 x 3 repeated regular matrix certain circularly shaped
holes in a mask are filled with opaque matter, while others
are left unfilled, so that light beams may pass through. This
matrix is applied to the optical element of the Kinect’s IR
emitter such that a coded light pattern emerges and projects
into the scene. We analyse the IR-pattern by letting the
emitter projected orthogonally onto a wall at 3m distance
and capturing a statistically significant area of the wall with

We examine small pixel deviations in the IR-stream of the Microsoft Kinect as they are introduced by an index gradient present in the scene.

a digatal single lens reflex (ASLR) camera at a resolution of
4.368 x 2.912px at a distance of 2m. This way, one imaged
projected spot would approximately comprise 128 x 128pzx.
After image rectification we calculate the mean intensity
distribution over all captured spots and the moments with
the intention to fit a suitable continuous 2d distribution
function that characterises the properties of all spots best.
The function would then represent the mean spot. This is
reasoned by the fact that we want to perform the optical
flow computation on the image plane independent from the
actual image resolution. Note, that this mean distribution
would be used for fitting to each spot in each IR-image
in order to locate the center position of each spot. The
computed discrete distribution resembles a 2d Gaussian
profile. However, the distribution shows a skew behavior
and 8 small local peaks in the neighborhood of the mean.
The latter is due to the factory process of the matrix, the
holes filled with opaque matter may transmit a small but
measurable intensity of light. We opt for representing the
continuous distribution by a weighted combination of con-
tinuous 2d skew Gaussian distributions. Such multivariate
distribution can be formalized as follows [23]]:

Consider a multivariate variable Z with each component
being skew-normal with skewness vector A, \; € (—o0, 00),
written as:
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Fig. 2. The input images of the capturing setup for two-phase gas flows (left three) and their warped projector images (right three). The gas flows out
of a valve (bottom) and is imaged from three Kinects placed in an half-arc around it. An occluder is placed above the valve to introduce turbulence
to the gas flow. We examine the both the deflections introduced on the way between projector and wall (right three shadowgraphs) and on the way

between wall and camera (left three).

o7 is defined as

v _ AU diag((1 — 62)%, ..., (1 —62)2)!
(14 ATU-1))2

We will focus on the bivariate case in order to model

the intensity distribution on the image plane. The density
function can be expressed as

fa(z1,22) = 202(21, 20; W)W (1 21 + a222),  (6)

with w denoting the off-diagonal element of 2. a;; and axs
can be expressed as:
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Note, that w satisfies
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IV. PROPOSED FLOW COMPUTATION FOR CAPTURED
SPOT-PATTERN BASED ACTIVE LIGHT VIDEO DATA

Based on the distribution, that we derived in Sect. we
compute frame-to-frame alterations to emitted spot-pattern
introduced by the scene content. Note, that this sparse flow
computation has a focus on subtle movements that may
be smaller than one pixel of the captured image resolution
and thus distinguishes from state-of the art approaches that
focus on the local disparity estimate in order to compute
scene depth. We discretize Eqn. [6]in a 128 x 128px kernel
that we then use to characterise the mean spot, Fig. 3] We
filter the input images to determine the center position for
each spot by fitting the discretized kernel to all intensity
peaks present in the input image. We look for the intensity
distribution of the dot pattern only once to build our 128 x
128px kernel of a generic spot. This kernel is then used at
each time a Kinect IR stream is read out later.

The sparse optical flow is then computed between the
computed spot center positions for two subsequent images
in the IR-stream in a least squares sense, assuming that the
pixel deviations introduced on the spot pattern are smaller
than the radial distance between two spots in the image.
The local optimum is found by applying a gradient descent
approach

Tpt1 = Tn — WV F(x,),n >0, (10)

where x,, spans the domain, in this case the position on
the image plane, and F' is a bivariate function with defined
and differentiable neighborhood. The gray level image is
denoted F, and the gradient can be provided as a 2D vector.
To account for the low sampling rate, the region of interest,
usually a 5 x 5px region, is upsampled. The stepsize - is set
to a small value, usually .5px. The convergence criterion is
an intensity difference of < 0.01 and the maximum number
of iterations is set to 100. We assume small spot deviations
in the rang of < 1 to 3 pixel in = and y direction. Note,
again, that the resulting optical flow is sparse as well.

V. APPLICATION: CAPTURING OF TWO-PHASE GAS
FLOWS

In our setup we place three Kinects in an half-arc around
the gas flow with projection walls placed opposite to each
Kinect at ~ 2m distance. We may introduce occluders into
the flow. The Kinects are Calibrated to a common world-
space and aligned to frame-accuracy. We let the gas valve
vent for several seconds and capture the gas flow with the
Kinects. The captured images of the IR stream, Fig. 2] are
processed in the following.

A. Projector Image reprojection

We exploit both the sensor information of the infrared
camera and the infrared emitter for the reconstruction. This
way we can also use the shadowgraph regions in the IR-
image for optical flow calculation and consequently for a
silhouette generation that helps refining the final visual hull
enclosing the gas flow. Usually the detected flow direc-
tions in the shadowgraph regions are inverted compared
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Fig. 3. The intensity profile a measured spot in the projected IR-pattern differs considerably from the profile of a standard Gaussian laser beam (left,
black and red error bars and slices, middle and right). In this plot a 5S0mW laser spot is assumed, that is shone onto a planar surface from 3m distance

and sampled with a 125

125px grid. We thus discretize a skew Gaussian distribution to a 125

125px kernel and fit it to the spots in the captured

spot pattern to arrive at a discretized mean intensity distribution. The discretized kernel is later used for our spot-based optical computation.

to the regions that image light path deviations between
the projection wall and the camera. The projector image
is generated by reprojecting the infrared camera image
into the projector image space. The calibration between
projector and camera is done by identifying certain spot
sub-patterns of the projected pattern in the recorded image
that form a rectangle in the projector space and undistorting
them by warping. Then, the corners are identifyed by using
Fofi et al.’s approach [22] in order to calculate the image
homography between the camera image and the projector
image space.

B. GPU-based Reconstruction

The reconstruction follows a GPU-based approach from
Ladikos et al. [24], where silhouettes of the detected
gasflow are downsampled so that every voxel projects into
a single pixel. This way the projection of the voxel center
point suffices for the lookup in the silhouette images. Note,
that the silhouettes need not necessarily be coherent regions
of genus 0. In our case we simply performed an opening
on the spot regions with sufficiently large optical flow to
arrive at a binary mask that we used as silhouette input
for the hull generation. The downsampling is done by
Gaussian smoothing followed by a downscaling. The kernel
is then executed for every voxel by deriving the 3D position
from its id and by projecting the voxel center point into
the image. Early rejection based on image occupancy is
performed to ease computational burden.

VI. DISCUSSION
A. Optical Flow Comparison

We compared the subpixel accurate sparse pattern-
based distortion detection against Horn-Schunck [2], Lucas-
Kanade [[I] and Drulea-Nedevschi [3] with a synthetic spot
image and the same image modulated by the Groove2-
owmap from the Middlebury database [25[], that have
been altered with varying noise and increasing amount of
blurriness. We evaluated the average angular error (AAE)
compared to the ground truth and found that the proposed
method shows a lower AAE with increasing image degra-
dation compared to the other flow algorithms, Fig. @ Thus,

the proposed algorithm is more robust against the noise
introduced by the capturing setup.

B. Gas flow and occluder segmentation

The occluders have been segmented out by removing the
overexposed regions in the input image. The projected area
of the gas flow could be determined accurately to subpixel
level in the input images for both the original IR camera
image and the warped projector image.

C. GPU-based reconstruction

The reconstruction is written in C for CUDA and per-
forms in 52.76ms at 642 voxel, in 417.79 ms 1283 voxel
and in 3033.89 ms at 2563 voxel on an Intel Corei7-
3960X (Six Core Extreme, 15MB Cache) Overclocked up
to 4.0Ghz with a 4GB GDDRS5 NVIDIA GeForce GTX
690 graphics card. Significant gain in performance can be
achieved by using an octree-based approach. An exemplaric
visualization of the reconstructed volumes is depicted in
Fig. ] for different occluders: We captured a sequence of
39 frames with three Microsoft Kinects and processed it
as proposed. It can be seen that the droplet occluder (first
row) smoothly introduces into the flow, while the golfball
(second row) forces the gas to direct leftwards. The bridge
occluder obstructs the gas flow and forces the flow to be
inverted downwards.

VII. CONCLUSION

We presented a new method for subpixel accurate flow
detection for sparse image data such as the Microsoft
Kinect spot pattern. We found that the discretized skew
Gaussian approach outperforms traditional and current opti-
cal flow approaches in the context of the Kinect’s IR image
stream. We tested the algorithm in a multiple Kinect vision
architectur to detect the interface of propane flow around
occluding objects in air. In that use case scenario we sought
to reconstruct the geometric extend of gas flows under the
presence of occluders captured with three Kinect placed in
an half-arc around the flow with projection walls placed
at a fixed distance opposite to each Kinect. We exploited
the sparse spot detection algorithm to provide masks for a
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Fig. 4. Comparison of state of the optical flows to the proposed spot-based optical flow for varying levels of noise (left) and blur (right) applied to a
synthetic spot pattern. The ground truth optical flow is generated with the groove2 dataset from the Middlebury database [25]]. The proposed approach
(blue) outperforms the state-of-the art approaches in the range relevant for Kinect data stream processing (light blue region).

GPU-based visual hull reconstruction. By incorporating the
projector extrinsics we doubled the reprojection information
in order to increase accuracy. In the future we seek to pro-
vide for a real-time solution consisting of multiple Kinects
in the context of the Kinect at home project [26]], that has
been recently launched. The goal would be to provide for
realtime detection of gas leakages or heat dissipation within
the living room environment.
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Fig. 5. A sequence of 39 frames captured with three Microsoft Kinects and processed with the proposed algorithm for propane gas flowing around
obstructing objects with different aerodynamic properties. The voxel volumes have resolution 1283, each input image roughly consists of 2000 spots
in the region of interest. While the droplet occluder (first row) smoothly introduces into the flow, the golfball (second row) forces the gas to direct
leftwards. The bridge occluder completely obstructs the gas flow, its flow direction is inverted downwards.
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