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Abstract

Image-based appearance acquisition algorithms are
able to generate realistic 3D models of real objects but
have previously not taken care of calibrated color space.
We integrate a color managed high-dynamic range imag-
ing technique into a recent appearance acquisition algo-
rithm and generate models in CIE XYZ color space. We
compare the final models with spectrophotometric mea-
surements and compute difference images between render-
ings and ground truth images. Displayed renderings and
printouts are compared to the original objects under iden-
tical illumination conditions to evaluate and validate the
complete appearance reproduction pipeline. Working in
CIE XYZ color space allows for expressing the perceiv-
able differences in a standardized measure.

1. Introduction

A visually realistic 3D model of a real object represents
both its geometry as well as its surface properties. Tra-
ditionally, a diffuse texture is pasted onto the geometry
model but realism is limited as a diffuse texture cannot
represent an object’s true reflection properties. Addition-
ally, specular reflections make capturing a diffuse texture
challenging and highlights caused by the illumination are
often baked into the surface leading to visible artifacts. In
contrast to diffuse textures, a bidirectional reflectance dis-
tribution function (BRDF) [16] describes how light is re-
flected off an object’s surface. A BRDF can faithfully re-
produce the appearance of an object’s surface including lo-
cal lighting and view-dependent effects for arbitrary view-
ing and lighting directions (see e.g. [5] for a more detailed
description of the BRDF and its properties). Various phys-
ically based or empirical BRDF models such as the Cook-
Torrance model [2], the He model [7], the Ward model
[19], or the Lafortune model [13] have been proposed to
represent the reflection properties of objects, mainly in
the context of rendering. Several image-based acquisition
techniques [15, 14] have been introduced in recent years to
determine the parameters of these model for real objects.

Two acquired models with spatially varying BRDFs
captured with and without applying color calibration are
shown in Figure 1. The images illustrate the problem of

Figure 1: Calibrated (left) and uncalibrated (right) carafe
dataset. Both datasets are generated from the same input im-
ages – once using the color managed work-flow and once using
standard techniques. Variations in the highlights are caused by
the optimization process used to generate the models.

correct color reproduction: The two images show render-
ings of BRDF models generated from the same input data
that differ mainly in color. Given any of the two images (or
even both), it is impossible to determine the color of the
original object. The objective of our approach is not only
to acquire a BRDF model with correct colors but also to
ensure correct reproduction of the rendered BRDF model
on arbitrary output devices, and to measure the differences
in a standardized way.

1.1. Contribution

In this paper, we integrate ICC-based color management
into an image-based BRDF acquisition system in order to
acquire a high quality model. Our goal is in particular
to achieve best possible color and appearance reproduc-
tion with arbitrary input and output devices using the color
management mechanism (i.e., without manual tuning of
system parameters). The input images are converted into
high dynamic range (HDR) images using a color managed
technique similar to Goesele et al. [6]. The whole BRDF
computation is performed in CIE XYZ color space. We
validate our approach by comparing the model at selected
surface points with spectral measurements. We further-
more compute difference images (∆E) between renderings
of the model and real views thereby checking the integrity
of both the BRDF modeling as well as the color manage-
ment work-flow. Using color managed output devices, we
are able to generate synthetic renderings of real objects that



match the original closely both in color as well as in spec-
ularity. Furthermore, we can extract a “perfect diffuse tex-
ture” from the BRDF data by virtually evaluating it under
standard 45/0 measurement conditions [8].

2. Previous Work

The appearance of a surface is traditionally measured us-
ing a range of spezialized devices [9]. These devices can
usually obtain only a single sample per measurement and
are therefore not well suited to acquire the spatially vary-
ing appearance of a whole object. Image-based techniques
overcome this limitation by simulateously acquiring multi-
ple samples with a single shot of a digital camera. Marsch-
ner et al. [15] used such an approach to acquire a single
BRDF per object. Based on this technique, Lensch et al.
[14] are able to capture a BRDF per surface point (spatially
varying BRDF) yielding a detailed surface representation.
We follow in this paper their approach and extend it with
an ICC-based color management.

Capturing specular highlights on objects as well as
the diffuse reflection require high-dynamic range (HDR)
imaging techniques [3, 17]. These techniques generally
recover a response curve of the camera system used and
combine the resulting linearized input images with differ-
ent exposure settings into a single HDR image. Besides
a simple white balancing step, no color correction can be
used. Goesele et al. [6] used a color management system
to linearize the input images and generate HDR images in
a defined color space. We use an improved version of this
technique to acquire the HDR images.

3. Acquisition and BRDF Generation

We employ in this work the BRDF measurement tech-
nique by Lensch et al. [14] which we will review here only
shortly. Please refer to the original publication for an in-
depth description of the approach.

The target object is illuminated by a point light source
in a dark and low reflecting room. A digital camera is used
to acquire HDR images of the object from different view-
points and for varying light source positions. Several cal-
ibration steps ensure that the position of both camera and
light source relative to the object are known. Furthermore,
a geometry model of the target object is generated using
3D scanning technology. Given this input data, the sur-
face is clustered in different basis material clusters and the
parameters for the analytical Lafortune BRDF model [12]

f(~u,~v) = ρd +
∑

i

[Cx,i(uxvx + uyvy) + Cz,iuzvz ]
Ni

are determined for each cluster. The actual measurements
per surface point are then projected into a basis formed by
these per-cluster BRDFs in order to recover a truly spa-
tially varying and highly detailed model of the reflection
properties.

3.1. BRDFs in CIE XYZ Color Space

The Lafortune BRDF model is originally defined in linear
RGB color space which is closely related to the CIE XYZ
color space used in the profile connection space (PCS)
of an ICC-based color management system. The simi-
larity of the color spaces makes BRDF generation in CIE
XYZ straightforward. The different topologies of the color
spaces (e.g. different definitions of the luminance chan-
nel) require however some parameter changes in the non-
linear fitting of the BRDF model to the input data where
at some stages chromaticity and luminance are considered
separately.

4. Color Managed HDR Imaging

The acquisition was performed with a Kodak DCS 560
digital camera and a K5600 Joker Bug 800 W HMI lamp
as point light source. To generate an ICC profile [11] for
this combination, a diffusor box was attached to the lamp
in order to illuminate a test chart (GretaggMacbeth Col-
orchecker DC) evenly. A set of images of the test chart
with varying exposure time was captured. All images were
converted to the camera’s native linear color space. Before
creating ICC profiles with ProfileMaker 3.1.5 we applied a
standard gamma correction (γ = 2.2) which improved the
quality of the profiles. Out of the resulting set of profiles,
the profile with largest gamut was selected for further use
(which corresponded to correct exposure).

4.1. Data Acquisition
For each view we acquired a set of images {Ij} with dif-
ferent exposure times Tj . HDR image generation follows
standard procedures [3, 17]: We mark pixels in the in-
put images as invalid for which at least one channel is
overexposed or for which all channels are underexposed
resp. below a certain threshold. All valid pixels are then
converted to CIE XYZ color space [1] using the Little
CMS color management engine [18] with high precision
setting and relative colorimetric intent. This ensures that
no gamut compression is applied and in-gamut colors are
reproduced faithfully. The images are then converted to
xyY color space in order to separate chromaticity and lu-
minance channels. The luminance channel Y is used as
a confidence measure and we define a weighting function
w(Y ) that emphasizes reliable pixels, suppresses less reli-
able pixels, and is zero for invalid pixels.

We assume here that the reliability of the chromatic-
ity information is correlated with the luminance channel
(i.e., colors in bright areas are captured more reliably) and
consequently define the weighting function only in terms
of Y . Compared to previous work [6] where the origi-
nal XYZ colors were used as parameters of the weighting
function, the weighting function based on the luminance
channel alone is not only adapted to the structure of the



xyY color space but also reflects the fact that chromatic-
ity information in brighter areas seems to be better repre-
sented/converted by the profile mechanism.

The value of a pixel i in the final HDR image is then
computed as

xi =

∑
j xi,jw(Yi,j )∑

j w(Yi,j)

yi =

∑
j yi,jw(Yi,j)∑

j w(Yi,j )

Yi =

∑
j Yi,jT

−1

j w(Yi,j )∑
j w(Yi,j)

(1)

The generated HDR image is converted back to CIE XYZ
color space and used as input for BRDF generation.

5. Experimental Validation

Several objects – a clay model of a bird, a corroded bronze
bust, and a porcelain caraffe – were acquired using the
presented technique. We first compare the acquired ap-
pearance model with spectrophotometric measurements of
the real objects in order to check color fidelity. In a sec-
ond step, we render the model illuminated by a point light
source and compare it to a photograph acquired under
identical lighting conditions.

5.1. Spectrophotometric Measurements

We used a GretagMacbeth Eye-One spectrophotometer
with a 45/0 measurement geometry to perform spectral
measurements of the target objects at selected surface
points. This proved to be difficult due to the curved surface
geometry of the test objects and due to the bulky measure-
ment head. In order to minimize errors, we selected near-
flat regions and averaged multiple measurements. The
BRDF data was generated by sampling at several locations
and averaging the results. As the BRDFs are originally
estimated up to a linear scale factor we determine an opti-
mal scale factor per object based on the luminance channel
and scale the BRDF data accordingly. Table 1 shows the
resulting CIE XYZ values and x, y chromaticity coordi-
nates. The difference between the measured and modeled
values is given in ∆E (computed from the rescaled CIE
XYZ values). All measurements were performed for illu-
minant D50 and 2 degree standard observer.

The results show that a ∆E of about 4 can be achieved
for some of the materials. The orange and white sur-
faces of the bird show a much larger error. This is at
least partly caused by the inhomogeneous color of the real
model (often the yellow color of the base material shines
through). Furthermore, the complex geometry of the or-
ange and white parts of the bird and the white parts of the
caraffe make sampling with the spectrophotometer diffi-
cult and less reliable.

5.2. Validation of the Complete Model

To evaluate the quality of the complete BRDF model (i.e.,
including the modeling of highlights), we acquired addi-
tional images of the objects illuminated by a point light
source. The camera pose and the position of the light
source were computed using the same calibration steps
employed in the original BRDF acquisition process.

Figure 2 shows a side-by-side comparison of a photo-
graph of the corroded bust and the acquired model (both
images were converted to sRGB space for display using
the color management work-flow). The false-color image
shows the difference between them in ∆E.

The BRDF model is clearly able to capture not only
the general appearance of the object but also many details:
The overall color reproduction is quite good, highlights are
preserved and have the correct shape. The face and neck
region appear however to be desaturated (especially the
dark green area on the bust’s neck) while the helmet is re-
produced correctly. The highlights are generally not crisp
enough. These problems lead to an average ∆E of 9.8995
for which all non-black pixels with ∆E < 30 were counted
(we assume that larger differences are mainly caused by
other problems – see below).

Some effects not related to the appearance model can
be observed as well: By far the largest error occurs in re-
gions where the shadow-boundaries are misaligned. This
can be caused by a misregistration of light source and ob-
ject as seen at the shadow of the nose. Another error source
is inaccurate geometry which leads for example to the loss
of detail in the hair region. The 3D geometry model used in
this example was smoothed to remove noise and contains
about 120k triangles which was not sufficient to represent
small-scale details.

6. Calibrated Rendering and Output

Up to this point, we only validated renderings generated
from the actual BRDF model that did not consider the
properties of the output devices. We compare therefore
in this section renderings displayed on a CRT screen and
color printouts to the real objects under identical illumina-
tion conditions.

6.1. Rendering of Calibrated BRDF Models

For high quality output, our BRDF rendering algorithm
computes high-dynamic range images with floating-point
precision in real time. The rendered HDR images require
clamping and scaling in order to generate a low-dynamic
range version. The resulting images are then transformed
by the ICC profile for low-dynamic display into a device
dependent RGB or CMYK color space. Again, a suitable
ICC profile needs to be generated for each output device.
If no such profile is available, the sRGB color space [10]
can be used as default.



BRDF Spectrophotometer BRDF Spectrophotometer ∆E
(CIE XYZ) (CIE XYZ) (xy chromaticity) (xy chromaticity)

Bird yellow 59.41, 61.23, 14.58 61.40, 61.51, 13.42 0.439 0.453 0.450, 0.451 4.158
Bird orange 42.28, 33.17, 8.02 43.73, 32.73, 5.95 0.507, 0.397 0.530, 0.397 7.923
Bird blue 34.99, 40.09,46.65 32.74, 37.48, 48.16 0.287, 0.329 0.277, 0.317 4.283
Bird white 68.79, 73.35, 61.04 76.67, 78.75, 58.77 0.339, 0.361 0.358, 0.368 7.168

Caraffe blue 17.63, 18.67, 33.26 17.72, 19.34, 36.325 0.253, 0.268 0.242, 0.263 3.398
Caraffe white 57.16, 58.33, 52.11 54.00, 56.23, 43.27 0.341, 0.348 0.352, 0.366 7.003

Table 1: Comparison between the BRDF model in CIE XYZ color space and with spectrophotometric measurements. CIE XYZ values
and x, y chromaticity coordinates are computed for illuminant D50 and 2 degree standard observer. The ∆E values are computed from
the CIE XYZ values.

Figure 2: From left to right: Photograph of the corroded bust, rendered BRDF model, difference image (∆E), diffuse texture computed
from the BRDF model. The false-color difference image covers the range of [0, 50]; areas with larger difference (mostly misaligned
shadow boundaries) were cropped.

An alternative approach to clamping and scaling would
be to apply a tone-mapping operator [4] which compresses
the dynamic range such that structures in dark and in bright
regions still remain visible. To our knowledge, nobody so
far has reported the application of a tone-mapping operator
in the context of color management.

6.2. Validation Including Output Devices

Figure 4 shows two photographs of a comparison setup
with a CRT screen on the left, the real object in the mid-
dle, and a printout on the right. (The exposure times of
both halves differ in order to compensate for the different
luminance levels of the CRT and the rest of the scene).
The models were rendered under identical conditions (i.e.,
same camera view point and illumination) as the real ob-
ject.

The rendered image is displayed on a calibrated CRT
monitor. The printout was performed by a calibrated HP
Color LaserJet 8550 color laser printer. The system utilizes
the complete color management pipeline and no manual

color tuning was performed. Under this conditions we can
expect best possible color reproduction within the limits of
the devices involved. Figure 4 shows that our BRDF mea-
surement pipeline based on ICC color management suc-
ceeded to reproduce the appearance on different output de-
vice with only small color deviations. Note that part of
these are also caused by the digital camera used to capture
the validation images.

The comparison between CRT display and printout
shows also some of the limitations of the output devices:
The dynamic range of the color laser printer is only 1:28
so that highlights appear very dim. In addition, Figure 3
shows a plot of the gamut (the range of reproducible col-
ors) of the camera system (black), the monitor (green), and
the color laser printer (red). The printer gamut is smallest
so that colors are most likely wrong on the printout.

7. Discussion

The overhead of adding color management to the pre-
sented appearance acquisition system is limited as it es-



Figure 3: Gamut plot of the camera system (black), the monitor
(green), and the color laser printer (red) used in Figure 4.

sentially replaces only the standard HDR computation rou-
tine. Compared to the benefit to reference the recovered
appearance models to a standardized color space, it should
be a worthwhile effort. This is especially evident in the
comparison to spectrophotometric measurements in Sec-
tion 5.1.

7.1. Accuracy of Color Management

The accuracy of the color management system both in
color reproduction as well as in linearity is crucial for
the approach. In the current system, we use therefore a
rather aggressive weighting function w(Y ) to achieve re-
liable colors. Strongly overexposed or underexposed pixel
values that are quite common in an HDR image series are
problematic for the chosen color management setup and
can bias the result. We expect however, that this problem
could be addressed by optimizations in the profile genera-
tion phase.

7.2. CIE XYZ versus sRGB Color Space

The fact that CIE XYZ is one of the color spaces used in
the PCS of ICC-based color management system makes it
a convenient and obvious choice of working color space.
Nevertheless, the data could also be transfered to (lin-
ear) sRGB color space at various stages of the processing
pipeline.

We opted to perform all computations in CIE XYZ
mainy due to conceptual simplicity but also due to its large
gamut. Our goal is to create an accurate appearance model
of an object for which we utilize the full gamut of our ac-
quisition system that is larger than sRGB even if sRGB
covers the gamut of most current display and output sys-
tems. Note, however, that the assumption of the BRDF
model that there is no cross-talk between the three color

Figure 4: Photographic comparison of the appearance model
with the original object. The images show a rendered image on
a CRT screen (left), the original object under the same pose and
illumination conditions (middle), and a color laser printer print-
out of the rendered model (right). The luminance levels required
a longer exposure times for the screen compared to the other
parts. The lower image is composed from 3 individual images
taken under identical conditions as the model was broken during
the acquisition.

channels may be violated by the CIE XYZ color space with
its overlapping spectra.

8. Conclusion

The presented image-based BRDF acquisition pipeline is
long and complex: The target object is imaged with a
digital camera under defined illumination converting from
the physical (spectral) representation to tristimulus val-
ues. The color management system applies then a com-
plex transform to convert to CIE XYZ color space. The
parameters of the nonlinear Lafortune BRDF model are
fitted and the model is evaluated resp. rendered for some il-
lumination condition. Nevertheless, the result (which does
not yet include conversion to an output or display color
space) matches the reference data from spectrophotometer
measurements quite closely. The presented pipeline allows
for the first time to measure a standardized error between
the measured appearance model and the original object.
Our experiments show that color management techniques
can be successfully applied to high-dynamic range imag-



ing, i.e., even beyond their original purpose. Especially
image-based acquisition techniques can benefit from this
development.
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