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ABSTRACT

Film sequences generated using image-based rendering techniques
are commonly used in broadcasting, especially for sporting events.
In many cases, however, image-based rending sequences contain
artifacts, and these must be manually located. Here, we propose
an algorithm to automatically detect not only the presence of the
two most disturbing classes of artifact (popping and ghosting), but
also the strength of each instance of an artifact. A simple percep-
tual evaluation of the technique shows that it performs well.

Index Terms — image-based rendering, artifact detection

1. INTRODUCTION

Most image-based rendering (IBR) sequences involve a camera
moving through a (mostly) static scene and are usually constructed
from individual photographs, with the occasional support of depth
maps. The fact that such scenes do not require expensive record-
ing equipment has helped to make them increasingly popular (e.g.
Google Street View, sports broadcasts). Unfortunately, the ren-
dered sequences often exhibit artifacts like ghosting and popping,
which must be manually located. Once located, these artifacts can
generally be removed or at least reduced through the use of addi-
tional photographs (or through better depth maps). Naturally, the
manual search for artifacts is very tedious and time consuming.
Thus, the ability to automatically detect the location and strength
of artifacts in a sequence would be very helpful, especially if it
could also be coupled with additional steps to maximize the fi-
nal rendering quality while minimizing the amount of additional
photographs that are required.

2. RELATED WORK

In order to develop a perceptually-meaningful image-quality mea-
sure for artifacts in IBR sequences, we need to examine the rele-
vant aspects of the human visual system, standard IBR algorithms,
and artifact detection.

The Human Visual System: In order to quantify the perceived
quality of an image sequence, we need to know how images are
processed by the human visual system. The fact that over 50% of
the cerebral cortex is dedicated solely to visual perception [1] em-
phasizes the incredible complexity of the human visual system. As
a natural consequence of this complexity, most of the research into
visual perception over the last 150 years has focused on the early
stages visual processing, primarily on how visual features are ex-
tracted and represented [2]. Despite the fact that many layers of
complex processing follow the early stages—and that these have a
strong influence on what information we can see or use—several
models of early visual processing have been used to successfully

detect changes in an image using only very simple visual features
such as contrast and spatial frequency [3].

The very first stage of visual processing is the enhancement
of local contrast (using the lateral inhibition between cells in the
retina). This, combined with other aspects of the early visual sys-
tem help to detect and enhance edges [4]. The central role of high-
contrast edges in visual processing can be seen in the fact that ev-
ery model of visual processing focuses—sometimes exclusively—
on edges [5].

The perception of changes over time is likewise a central as-
pect of visual perception [6]. Indeed, there is an increasing body
of evidence that the earliest cells in the visual cortex are not static
detectors of edges as previously thought, but change the shape of
their receptive field over time (i.e., respond to complex, dynamic
edges) [7]. Thus, the sensitivity to temporal modulation and edges
are inherently linked and combine for impressive sensitivity [8].

Of course, color also plays an important role. The human
visual system represents color in a three-dimensional space. Ini-
tially, this space is based on the response properties of the three
types of cone in the fovea. Rather quickly, though, the system
switches over to a color-opponent system, which is approximated
well by the CIELAB color space. The three axes of CIELAB—
which are statistically independent from each other—are lumi-
nance (L), red-to-green (A), and blue-to-yellow (B). We use the
CIELAB color space in all our calculations. More detailed infor-
mation on the relationship between image statistics and the human
visual system can be found in [5].

In sum, the early visual system is tuned to temporal disconti-
nuities (i.e., sudden disappearances or appearances) and rapidly-
changing, high-contrast edges [9]. It should not be surprising,
then, that the most noticeable artifacts in IBR sequences occur
when moving edges (or indeed entire objects) suddenly appear/dis-
appear (popping) or when they fade in/out (ghosting).

Image-Based Rendering: One of the first IBR algorithms was
based on view interpolation [10]. Even though this approach used
depth maps to interpolate between images, it produced strong
ghosting artifacts and popping. In contrast, lumigraph-based ap-
proaches [11] do not use a depth map, but instead represent a sig-
nificant part of the plenoptic function (note that depth informa-
tion may be implicitly encoded in the plenoptic function). Even
with a lumigraph, however, interpolation between different views
is required, unless an unreasonable amount of data is involved.
This will, in turn, cause a lot of ghosting. The unstructured lu-
migraph [12] tries to compensate for this by providing a better
parametrization of the plenoptic function, but ghosting still re-
mains an issue. View-depended texture maps [13], which rely on
globally consistent geometry, are prone to producing ghosting arti-
facts for small details that are not well represented in the geometry.
Floating textures [14] try to improve on this by warping the view-
dependent textures instead of just interpolating between them. The
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Bayesian approach by Cayon et al. [15] is a hybrid approach us-
ing depth-based, coherent, superpixel warping together with view
interpolation. Although better, this approach still produces some
ghosting and popping artifacts, especially if the estimated depth is
not entirely accurate.

Artifact Detection: In general, automatic evaluations of IBR
quality tend to be reference based [3, 16, 17, 18]. Moreover, most
of the related work on artifact detection concentrates on detect-
ing compression [19, 20] or application specific artifacts, such as
MRI scanning related artifacts [21]. Vangorp et al. [22] investi-
gated artifacts in the context of IBR and classified them according
to type (blending/ghosting, popping, and parallax distortion), vis-
ibility, and severity, but did not supply an automatic way to detect
these artifacts. Berger et al. [23] presented a method for detecting
ghosting artifacts that is based on detecting edges. They explicitly
use still images, however, and do not take any temporal effects into
account. Schwarz and Stamminger [24] presented a perceptually-
motivated popping detection algorithm which can not easily be
extended to detecting ghosting artifacts.

3. ARTIFACT DETECTION

The first step in automatically detecting artifacts in IBR should
be to detect the most disturbing artifacts: ghosting and popping.
Since both of these are explicitly edge- and motion-based, we need
to be able to detect and track moving edges. For this, we chose the
optical flow algorithm of Farnebäck [25] since it efficiently (i.e.,
with low computational complexity) produces a robust dense op-
tical flow. Once we know the correspondences between pixels, we
can classify each pixel as ghosting, popping or no-artifact. Notice
that some pixels will lack a correspondence because the surface
they represent has become occluded or left the scene (and are not
popping). Thus, we initially focus on static scenes and do not
evaluate the border pixels (which generally will leave the scene)
which we define as the outermost 1% of the input image width
and height.

3.1. Ghosting

Conceptually, we define ghosting as a smooth, almost linear tran-
sition of colors for a moving pixel over the duration of several
frames. First, we define xt as the position of a pixel in frame
t, ut as the corresponding flow vector, and I (xt) as its color in
frame t. The corresponding position xt+1 in frame t + 1 is thus
xt+1 = xt+ut. We now define a pixel as a candidate for ghosting
if the color changes significantly over several (2n) frames, i.e.

I (xt−n) 6= I (xt+n) (1)

and if the change in color is almost constant over these frames.

I (xt−n)− I (xt−n+1) ≈ I (xt−n+1)− I (xt−n+2)

≈ . . . (2)

≈ I (xt+n−1)− I (xt+n)

We have to assume that there is a certain amount of noise in
the input sequence and that there is some inaccuracy in the opti-
cal flow. Thus, we define two thresholds cghost, cnonlinear and
consider a pixel to be a ghosting pixel if

‖I (xt−n)− I (xt+n)‖ > cghost (3)

and

‖I (xt+i−1)− 2I (xt+i) + I (xt+i+1)‖ ≤ cnonlinear (4)

for all −n < i < n. Note that Equations 2 and 4 need to be
evaluated in the color space of the IBR algorithm. The strength sg
of the ghosting artifact depends on the color difference found in
Equation 3.

3.2. Popping

Similar to ghosting, we look at corresponding pixels. However, for
popping artifacts, we are only interested in the difference between
the current and the previous frames. Thus, Equation 1 changes to:

I (xt) 6= I (xt−1) (5)

To compensate for noise in the input sequence, we again use a
detection threshold cpop and only consider a pixel to be popping
if

‖I (xt)− I (xt−1)‖ > cpop (6)

Unfortunately, this approach is very sensitive to inaccuracies in the
optical flow calculations. Thus, we need to check a small (3× 3)
neighborhood around the pixel xt−1 to see if one of its neighbors
might have been a better correspondence. If we find any pixel y
such that

‖I (xt)− I (yt−1)‖ ≤ cpop (7)

we decide that popping did not occur and discard the pixel xt. The
strength sp of the popping artifact depends on the color difference
found in Equation 6.

4. QUALITY METRIC

After the detection phase, the strength of each artifact is defined
for individual pixels in individual frames. To rate the entire se-
quence, we need to combine these separate numbers into a single
quality measure, starting by determining the quality of individual
frames. Given a sequence of T frames where each frame t has N
pixels, we define Dt to be the collection of all pixels in frame t
that were detected as artifacts. Since Vangorp et al. [22] found that
ghosting artifacts elicit a stronger response, we scale the artifact
strength by a constant factor wg . If a pixel was detected as both
ghosting and popping, we use the stronger detection. Thus, the
overall artifact strength St for any given frame is

St =
∑

xi∈Dt

max (sp (xi) , wg · sg (xi)) (8)

Note that we skip over all frames where more than 25% of the
pixels were detected as popping artifacts since we consider these
frames to be scene changes.

Since the quality is reciprocal to the number and strength of
the artifacts, we define the quality for frames that has artifacts as:

Qt =
N

St
(9)

If no artifacts were detected, the quality becomes infinite, sim-
ilar to the PSNR in the absence of noise. Further, for a whole
sequence, we define Qavg as the average quality

Qavg =
N · T∑T
t=1 St

(10)

and the minimum quality

Qmin = min
t∈[1..T ]

Qt (11)

Note that even if a single frame does not contain any artifacts, the
quality of a video sequence Qavg will not be infinite as long as
there is a single artifact in any of the frames.



(a) outdoor 1 (b) outdoor 2

(c) outdoor 3 (d) outdoor 4

(e) indoor 1 (f) indoor 2

Figure 1: Scenes are sorted in each class according to the results
of our quality metric from worst to best. All outdoor sequences (a-
d) were taken from Cayon et al. [15]. The second indoor sequence
(f) is the ground truth for the first indoor sequence (e).

5. RESULTS

We tested our quality metric on 5 IBR sequences, and one real
scene. As seen in Figure 1, four of the sequences depict outdoor
environments while two show indoor scenes. Note that the second
indoor scene is a ground truth video for validation purposes.

We computed the quality metrics (Qavg and Qmin) using the
following pre-determined thresholds: cghost = 7.5, cnonlinear =
5, and cpop = 10. Since the color distance calculations are in
CIELAB color space, a value of 1 corresponds to roughly 1% of
the difference between back and white, and is perceptually just no-
ticeable. Even though most current IBR algorithms use CIELAB
space during rendering, the cnonlinear term can compensate for
those that use RGB space during interpolation. We analyzed the
IBR sequences and searched for the frames with the highest ar-
tifact detection. Figure 2 shows the frame that had the highest
popping and overall artifact detection for each sequence. Over-
all, it seems that the ghosting artifact weight wg needs to be set
to approximately 10 to compensate for the difference in detection
strengths.

We conducted a small perceptual validation with 18 partici-
pants (12 male, 5 female, aged between 25 and 45). In the study,
participants were asked to rate the quality of each video based
on the 5-point Likert-type scale (with 5 being very good and 1
very bad). Artifacts were never mentioned and participants were
explicitly told to use their own intuitive definition of ”image qual-
ity”. The ratings were submitted to a one-way, within-participants
ANOVA, which showed that the ratings of sequences differ signif-
icantly from each other (F(5,85)=37.78, p<0.0001)1.

1for more on inferential statistics, see [26].

(a) previous frame (b) current frame

(c) popping detection (d) ghosting detection

Figure 2: Popping (c) and ghosting (d) detection for a single frame
of the first outdoor sequence. Most of the detected popping arti-
facts are easily visible when comparing the current frame (b) with
the previous one (a).
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Figure 3: Qmin compared against 5-point Likert-type ratings (er-
ror bars show the 95% confidence interval). The dashed line
shows the linear regression though both the outdoor (blue) and
indoor (red) sequences.

As can be seen in Figures 3 and 4, the minimum quality Qmin

correlates very well with the average user rating (the Pearson cor-
relation coefficient R is 0.9339) but the average quality Qavg does
not (with R = −0.2641). A possible explanation is that the ghost-
ing detection assumes an almost constant movement and thus lin-
ear blending for the 5 frames used in the detection. Since some
of the outdoor sequences do not have constant motion for large
parts of the video, the detection of ghosting artifacts fails for these
frames. Also, the camera comes to a nearly complete stop multi-
ple times during these sequences, so there is no artifact detection at
all. Finally, after the experiment, we asked participants how they
rated the images and they explained that they rated a sequence
based on the worst couple of frames rather than the average.

6. CONCLUSION AND FUTURE WORK

We presented a perceptually-motivated algorithm that is able to
detect both popping and ghosting artifacts in an IBR sequence.
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Figure 4: Qavg does not correlate well to the participants’ ratings,
particularly if the speed of camera movement varies a lot as in the
outdoor sequences (blue).

The algorithm includes two ways of generating a single quality
score for the whole sequence. One of them, the minimum quality,
is able to predict human image-quality ratings. The fact that the
minimum quality score can predict human performance, but the
average quality score cannot confirmed our assumption that the
quality of a IBR sequence is based on the worst artifacts rather
than the overall impression.

In the future, we will examined methods for making ghosting
detection more robust against changing camera motions. We will
also explore how to use our quality estimate to find the next best
camera in view planning or view selection problems.
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