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Figure 1: Carp dataset [R6t06] with lossless compression at 5.5 bit per voxel (bpv) vs. lossy at 0.5 bpv and christmas tree dataset [KTM*02]
with lossless at 4.1 bpv vs. lossy at 0.5 bpv. Both datasets require 12 bpv in their uncompressed form and are rendering using on-the-fly
calculation of gradients for lighting. Visually, there are some minor differences to be seen in the red regions while the blue regions are
indistinguishable.

Abstract

The sheer size of volume data sampled in a regular grid requires efficient lossless and lossy compression algorithms that
allow for on-the-fly decompression during rendering. While all hardware assisted approaches are based on fixed bit rate block
truncation coding, they suffer from degradation in regions of high variation while wasting space in homogeneous areas. On the
other hand, vector quantization approaches using texture hardware achieve an even distribution of error in the entire volume
at the cost of storing overlapping blocks or bricks. However, these approaches suffer from severe blocking artifacts that need
to be smoothed over during rendering. In contrast to existing approaches, we propose to build a lossy compression scheme on
top of a state-of-the-art lossless compression approach built on non-overlapping bricks by combining it with straight forward
vector quantization. Due to efficient caching and load balancing, the rendering performance of our approach improves with the
compression rate and can achieve interactive to real-time frame rates even at full HD resolution.

Categories and Subject Descriptors (according to ACM CCS): E.4 [Coding and Information Theory]: Data Compaction and
Compression— 1.3.1 [Computer Graphics]: Picture and Image Generation—Graphics processors 1.3.3 [Computer Graphics]:

Picture and Image Generation—Viewing algorithms

1. Introduction

While volume data sampled on a regular grid is the most easy to
handle data structure for representing a three dimensional function
during rendering, it is also the most space consuming. Therefore, a
variety of different lossless and lossy compression approaches have
been presented in the past, mostly based on vector quantization
[NH92,NH93,SW03], wavelets [IP98, KS99,Rod99,NS01, GS04]
or other transformations [FM07,FM12,Lin14, GG16]. While fixed
bit rate approaches are usually the first choice for on-the-fly de-
compression, they also offer the overall highest error for any given
compression ratio. On the other hand, variable bit rate approaches
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offer overall higher quality or even lossless compression for the
same number of bits per voxel. However, these approaches require
additional data structures to hold pointers into the compressed data
if random access during rendering is required. Since this additional
indirection can also be used to implement multiple references to the
same compressed data, i.e. instancing, it can efficiently store vol-
ume data that has been reduced using vector quantization. We thus
propose an on-the-fly decompression algorithm based on vector
quantization and lossless compression of the resulting codebook,
i.e. the individual volume bricks.

In order to evaluate our approach, we based our volume renderer
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on the CUDA SDK direct volume rendering example. While the
performance of our approach was measured on a NVIDIA GeForce
GTX 1080, it works on all Pascal, Maxwell and Kepler based ar-
chitectures as we require only Kepler specific extensions for inter-
thread communication. Note that the increased shared memory
found in the Pascal and Maxwell architectures drastically increases
the performance of our caching and therefore rendering algorithm.
The simpler scheduling and memory interface design of the Pascal
architecture on the other hand makes an efficient caching and load
balancing approach even more important. Our contributions are:

e A lossy extension to the real-time warp-based decompression
and rendering approach of Guthe and Goesele [GG16],

e an improved codebook generation for vector quantization of vol-
ume data,

e an on-the-fly gradient calculation for shading and non-
photorealistic volume rendering, and

e adetailed analysis of the impact of individual components of the
decompression and rendering algorithm.

2. Related Work

In contrast to remote rendering approaches [FSME14, FSE15] that
render the uncompressed volume data and compress the resulting
images, we provide an on-the-fly decompression algorithm for vol-
ume data, the related work can be split into the following four areas:

Hardware Based Compression: All purely hardware based tex-
ture compression approaches in existence today are based on some
form of block truncation coding (BTC [DM79]). Most of these
approaches however are designed with 2D textures in mind, e.g.
the ETC2 compression [SP07] is not capable of directly encoding
three dimensional data and is limited to at most 8 bit per channel.
However, the recently proposed and implemented ASTC compres-
sion [NLP*12], which is based on PACKMAN [SAMO04], supports
three dimensional textures and more than 8 bit per channel natively.

Volume Data Compression: Beyond hardware based texture
compression, there exists a large number of specialized volume
compression algorithms for the GPU. Please refer to the surveys of
Rodriguez at al. [RGG*13] and Beyer et al. [BHP14] for a more
extensive review of existing approaches. The approach of Lind-
strom and Isenburg [LI06] allows for lossless compression of float-
ing point numbers with a given accuracy. However, the coding per-
formance of this approach is very limited. Recently Lindstrom pro-
posed an extension for fixed rate coding using the same basic algo-
rithm [Lin14]. Similar to BTC, the bit stream representing the com-
pressed data is truncated once the target bit rate is exceeded. Even
though the algorithm was designed to be implemented on the GPU,
the actual decompression performance is still too low for real-time
rendering. The lossless compression of Guthe and Goesele [GG16],
on the other hand, implements extensive caching of decompressed
data and can be deployed into any existing rendering algorithm,
achieving at least interactive frame rates for lossless compression.
However, this approach only supports lossless compression.

Vector Quantization: Ning and Hesselink [NH92, NH93] pro-
posed vector quantization (VQ) in the context of volume compres-
sion and volume rendering. Rendering approaches employing VQ

are usually 3D texture based where each brick consists of n3 voxel.
In order to use the hardware texture interpolation, these bricks over-
lap by 1 voxel in every direction. This increases the amount of data
that needs to be stored and makes traditional VQ especially prone to
blocking artifacts which then have to be handled during rendering.
For this, Marton et al. [MGDG14] proposed an approach that im-
plements deblocking by using a temporary buffer prior to applying
the transfer function and shading. However, the main performance
bottleneck for VQ is finding the best codebook when compressing
data. In order to maximize the quantization performance, we apply
the optimizations of Kanungo et al. [KMN*02] combined with the
insights of Hamerly and Drake [HD15] to increase the performance
of distance calculations in the k-means clustering of codewords.

Rendering: Since we decompress the data during rendering and
therefore allow random access and high quality filtering, we
can support advanced volume rendering algorithms like interac-
tive lighting and gradient magnitude modulation [MGS02], multi-
dimensional transfer function [KKHO2] or pre-integrated volume
rendering [EKEO1]. Mensmann et al. [MRH10] present a compre-
hensive overview on GPU raytracing that also includes on-the-fly
gradient calculation. In contrast to their approach, we only require
intra warp communication and do not require special border han-
dling.

3. Compressed Data Representation

Our compressed data representation is equivalent to the data struc-
tures described in [GG16]. During compression the volume is split
into bricks of 4> voxel. In a first step, a given input volume of
N x M x L voxel is split into a list of unique 43 voxel bricks and a
volume of [§] x [%] x [4] containing references to these bricks.
Since these references are offsets into the array of bricks, we call
the smaller volume the offset volume. In terms of vector quantiza-
tion the list of bricks is equivalent to the codebook. Thus, the first
observation that can be made is that each of these can be com-
pressed individually.

3.1. Codebook Compression

Guthe and Goesele [GG16] proposed a codebook compression al-
gorithm that is based on a selection of data transformations as
well as a parallel compression algorithm called recursive bottom
up complete (RBUC) [MAO5]. The RBUC compression is a hier-
archical compression scheme based on Elias codes [Eli75], that
efficiently encodes a group of n small values. In case of Guthe
and Goesele [GG16], the codeword contains two levels of 8 values
each. With this, a compressed brick of 43 voxel is represented by
the minimum and maximum values stored in uncompressed form
and, if the minimum and maximum values are different, a single
hierarchical variable length codeword consisting of:

e One byte containing the value ¢, (number of bits required to rep-
resent all values of ¢;) in the lower 6 bit and the transformation
id in the upper 2 bit.

e One set of ¢, bytes containing the values [c] (0), ... ,c; (7)]
(number of bits required to represent all values of cg)each us-
ing ¢ bits.
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e Eight groups of c¢;(i) bytes containing the values
[co(8i), ... ,co(8i+7)] each using ¢ (i) bits.

Each of the items in the list above is automatically aligned to byte
boundaries making decompression as efficient as possible. The size
of the codeword can be anywhere between 1 and 1+ 4+ 96 byte for
12 bit input data. In order to avoid too much data expansion (the
original size was 96 byte in this case), a value 255 is stored in ¢, to
denote that the following bytes contain the original voxel data.

As an alternative, we also support an uncompressed codebook
in our rendering approach as this allows to do a trade-off be-
tween compression rate, compression quality and rendering perfor-
mance, i.e. increasing rendering performance at the same quality
with lower compression rate or same compression rate with lower
quality (see Section 6 for detailed performance evaluation). In this
case 43 voxels of 12 bits per voxel are stored using bit packing,
leading to 96 bytes.

3.2. Offset Volume

Each codebook entry is uniquely identified by its index (0...k — 1
for k codewords) or its starting address which is equivalent to an
offset into the codebook. However, only the starting address allows
for random access to the codeword itself if the size of the code-
words varies. Thus, for representing the offset volume, we first have
to distinguish between two scenarios.

In case of an uncompressed codebook, the starting address of
a codebook entry is always a multiple of the codeword index and
the fixed brick size. We therefore simply need to store the index
of the brick in the offset volume. Again, if the highest index can
be represented using n bits, we only store n bits per offset volume
entry and use bit packing again.

In case of a compressed codebook, we have two options. We
either directly store the starting address of the compressed bricks
in the offset volume (direct mapping) or we store the index and
need an additional data structure for converting indices to starting
addresses (indirect mapping). If we assume that we have a total of
N entries in the offset volume and M codewords, where each index
requires a bit and each starting address b bit, we can calculate the
size of both representations as follows. The direct mapping requires
[%W byte whereas the indirect mapping requires [%-‘ + %
byte. Based on this, we pick the representation that yields the fewer
number of bytes. Note that there is a slight performance penalty for
the additional lookup when decompressing the brick data but on the
other hand, the memory bandwidth requirement for every cache hit
is lower. As can be seen in Section 6, these effects are unnoticeable
in the final rendering performance.

4. Data Reduction

Prior to compressing the offset volume and the codebook, we can
apply vector quantization to reduce the number of entries in the
codebook. Our implementation of vector quantization uses an op-
timized version of k-means clustering as described by Kanungo et
al. [KMN*02]. However, since the dimensionality of our data, i.e.
the number of voxel per codeword, is 64, the more involved op-
timizations, i.e. kd-trees, cannot be used. However, Hamerly and
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Algorithm 1: Function for calculating the squared distance given
a maximum distance to check against.

Function DistanceS (dsm : max. distance®, a, b : codeword)
if (a.d — b.d) (a.d — b.d) > d2,, then
‘ return d,zmu, // triangle inequality

end

return a.d> +b.d> —2a-b
end

Drake [HD15] note that a lot of distance calculations are unnec-
essary and can be avoided using the triangle inequality and stor-
ing the distance of each codeword and cluster center to the ori-
gin. In addition, since we are only interested in the order of dis-
tances rather than the actual value, we can use squared distances
instead. When calculating the distance between to vectors @ and
b given a maximum squared distance d%ay, we first check for

S \2
(HZI’H — HbH) > d2qx. If this condition is met, the distance d be-

tween @ and b cannot be below dimay and the actual distance cal-
culation can be skipped. If the condition is not met, the squared
distance is calculated as d” = ||@||* + ||b||> — 2d - b (see Algorithm
1 for the complete function).

As noted by Kanungo et al. [KMN™02], the furthest first initial-
ization usually leads to both the best compression quality and least
number of iterations. Starting with the codeword closest to the ori-
gin, we continue to create cluster centers at codewords that are fur-
thest away from all existing centers. For this, we maintain a priority
queue that contains the distance and the number of cluster centers
taken into account so far. If the entry with the largest distance took
all existing centers into account, we add it as a new cluster center.
Otherwise, we update the distance put it back into the queue (see
Algorithm 2). Note that for very large data sets and very conser-
vative data reduction, we do not use the priority queue but simply
update the closest cluster center for each block in parallel.

Once all cluster centers have been found, each codeword gets
assigned to the closest cluster center (see Algorithm 4). In each it-
eration of the k-means clustering algorithm, we in turn update the
cluster centers and then assign each codeword to the closest center.
While updating the closest cluster center, we can encounter three
different scenarios. If the distance between a codeword and the
closest cluster center is 0, we do not need to check any other clus-
ter center. If a codeword was closest to a cluster center that did not
change, we know that it is further away from all other unchanged
cluster centers. Thus, we only have to check against the changed
cluster centers. If a codeword was closest to a cluster center that
did change, we calculate the new distance and compare it against
the old one. If distance decreased (which is more likely), we again
only need to check against the list of cluster centers that changed. If
the distance increased, we need to check against all cluster centers
(see Algorithm 3). In other words, we only need to calculate the
distance to all cluster center if a codeword is further away from its
center after the previous cluster center update.

Once all codewords have been assigned to their corresponding
cluster, we update the center and sort them into the changed and
unchanged list until the list of changed cluster center is empty.
For calculating the cluster center, each codeword is weighted with
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Algorithm 2: Initialization of cluster center.

Algorithm 4: k-means clustering algorithm.

Data : codebook CB
Data : number of cluster k
Data : priority queue Q
Data : list of cluster center C
dpin = 00
// find codeword closest to origin
foreach cw € CB do
cw.d < \/ew - cw
if cw.d < dpj, then
i — cw.d
closest <— cw

// distance to origin

end
end
// closest becomes first cluster center
C.append (closest)
closest.center <— C.last
// initialize priority queue Q
foreach cw € CB\ closest do
cw.p < DistanceS (0o, cw, closest)
cw.center <— closest
cw.eval <1
Q.insert (1)
end
while C.size < k do
cw < Q.top
Q.pop ()
// loop over unaccounted cluster
while cw.eval < k do
d < DistanceS (cw.p, cw, C [cw.eval])
if d < cw.p then
cw.p <—d
cw.center <— C[cw.eval]
end
cw.eval <— cw.eval + 1
end
if cw.p > Q.top.p then
// cw is still furthest
C.append (cw)
cw.center <— C.last

else Q.insert (cw)

end

Algorithm 3: Function to checking a codeword against a list of
cluster center.

Function FindCenter (c : codeword, CL : list of cluster center)
cw.p <—d
centery <— cw.center
foreach ¢ € CL \ cw.center do
dy < DistanceS (d, cw, c)
if d, < d then
d +d,
centery <— ¢
end
end
// if closest cluster center changed, remove from old
center and attach to new one
if center, # cw.center then
cw.center.remove (cw)
centery.add (cw)
cw.center <— centery
cw.p < dy

end
end

the number of appearances in the volume. Even though we see a
speedup of over two orders of magnitude, less aggressive quantiza-
tions are still very costly. A 1GB data set takes about 12 hours for
a 2:1 reduction. The actual compression of the reduced data only
takes a couple of seconds.

Data : codebook CB
Data : list of cluster center C
Data : number of cluster k
Data : list of update cluster center U
// attach each cw to the closest cluster
foreach cw € CB do
while cw.eval < k do
d < DistanceS (cw.p, cw, C [ew.eval])
if d < cw.p then
cw.p <—d
cw.center < C [cw.eval)
end
cw.eval <— cw.eval + 1
end
¢ < cw.center
c.add (cw)
end
U<« C
while U # () do
foreach cw € CB do
if (cw.center € U) then d <— DistanceS (oo, cw, cw.center)
elsed < cw.p
if d > 0 then
if d > cw.p then
| FindCenter (c,C)
else
‘ FindCenter (c,U)
end
else
‘ cw.p +—d
end

end

clear (U)

foreach ¢ € C do

c.update ()

if c.changed then
| U.add(c)

end

end
end

5. Rendering

Since we use the same codebook compression as Guthe and Goe-
sele [GG16], the decompression and caching approach stays the
same. Note that both the decompression and caching operate on a
per-warp basis and each warp operates on n samples per ray of a
m x [ group of rays. If we restrict n, m and [ to be at least two, we
can use warp shuffle operations to get the sample data from neigh-
boring sample location. We can also do the same set of operations
to get the corresponding sample positions. Using this data, we can
derive the local gradient of the scalar volume data for shading as
follows. We define ag to be the current sample value at position py
and ay, ay & az at position p, p> & p3 to be the sample values re-
turned by the warp shuffle operations. The derivatives are defined as
= H‘i’%‘ﬂo along the direction d; = 2=20 for i =[1..3].
pi—poll l15i—poll
In contrast to Mensmann et al. [MRH10], we cannot rely on the
directions to be close to orthogonal. Instead we define the matrix
D where each row contains one vector d; and solve the following
equation for X by matrix inversion.

DX =V
=Dy
Just like gradients calculated using central differences, the gradi-
ent X is defined in voxel space. Note that the derivatives are calcu-
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data set dimensions bpv voxel
Carp 256 X 256 x 512 12 33,554,432
Bunny 512 x 512 x 361 12 94,633,984
C. Present 492 x 492 x 442 12 106,992,288
C. Tree 512 x 499 x 512 12 130,809,856
Porsche 559 x 1023 x 347 8 198,434,379
Stag Beetle 832 x 832 x 494 12 341,958,656
Pawpawsaurus 958 x 646 x 1088 16 673,328,384
Flower 1024 x 1024 x 1024 8 1,073,741,824

Table 1: Data set dimensions and raw data sizes.

lated by swapping data between adjacent rays which means that two
neighboring pixel will always share one common derivative. The
overhead of this on-the-fly estimation is a lot lower than calculating
additional samples for directly computing the derivatives along the
axis of the coordinate system. As mentioned before, the whole al-
gorithm rendering system is split into independent sections via tem-
plate objects. The warp based tracing algorithm itself is unaware of
how the volume is sampled and what kind of shading takes place.
Thus, we can deploy any shading algorithm available today. For
our evaluation, we implemented a simple post-classification ren-
derer that allows for optional shading based on gradients and gra-
dient magnitude modulation of the opacity, i.e. non-photorealistic
rendering.

6. Results

In order to evaluate the whole algorithm, we need to analyze all
parts of the decompression and rendering pipeline using real-world
data. All tests were run using an Intel(R) Core(TM) 17-3930K CPU
@3.20GHz, 64GB system memory, an NVIDIA GeForce GTX
1080 with CUDA 8.0, driver version 368.39, and an extension of
the volume rendering example found in the CUDA SDK. We eval-
uated the rendering time in ms for every data set at two different
resolutions using lossy compression and 10 different quantization
settings. The compression is either with or without compressed
codebook. The rendering for the uncompressed codebook has two
different versions, one with per-warp caching enabled and one with
direct access to individual voxel.

6.1. Data Sets

We tested a variety of data sets, including 8 bit per voxel (bpv) and
12 bpv scalar data, ranging in size from 48 MB up to about 489
MB of raw data, see Figure 2 and Table 1. Note that the volume
data sets do not necessarily contain cubic voxel but usually have an
actual voxel extend as defined by the data set, e.g. 1.0 X 0.5 x 1.28
for the Carp data set. We use the PSNR for comparing the quality
of both data sets and images in a consistent way (see [HTGO8] for
a discussion on the applicability of this measure).

6.2. Compression

For evaluating the compression, we compare against the lossy
ASTC texture compression [NLP*12], the lossy fixed rate float-
ing point compression of Lindstrom [Lin14], as well as against the
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lossless compression of Guthe and Goesele [GG16] both with com-
pressed and uncompressed codebook. For the ASTC compression
we used block sizes of 3 x3x3,4x4x4,5x5x5and 6 X6 x6,
resulting in fixed bit rates of 4.74, 2, 1.024 and 0.59259 bit per
voxel (bpv). For the fixed rate floating point compression (ZFP),
we set a target bit rate of 4, 2, 1, 0.5, 0.25 and 0.125 bpv. Finally,

for our compression, we reduce the number of unique bricks to %,

%, %, 5% and ﬁ, producing bit rates in the range of 6 to 0.8

bpv. The compression results for all of these settings can be seen in
Figure 3.

Overall, the compression results show that our approach with
the compressed codebook is able to substantially outperform all
other approaches. Even with the uncompressed codebook, the vec-
tor quantization performs better than ASTC in all cases except for
the 8 bit Porsche data set above 0.5 bpv and better than ZFP except
for 4 bpv of the Carp, Bunny and Porsche data set. For the stag-
beetle data set, even the lossless compression without compressed
codebook leads to fewer bit per voxel as ASTC is able to generate.

6.3. Rendering

All performance measurements were done using warp-based direct
volume rendering with a sample distance of a quarter of the min-
imal voxel extend and a transfer function that maps scalar values
to opacity and color (see Rottger et al. [RGW™*03] for a discussion
of minimal sampling distances in this context). The threshold for
early ray termination is an opacity of 0.995, i.e. only Isb errors.
The transfer function used for the performance testing can be seen
in Figure 2.

The renderer is designed using template classes and explicit in-
stantiation to be able to switch to any different combination of com-
pression, shading and warp layout at run-time. The compile-time
for all variants is about 15 minutes on our test machine.

As seen in Figure 4 and Table 2, the rendering performance is at
least interactive for all data sets at a resolution of 1920 x 1080 and
real-time at a resolution 512 x 512 for smaller data sets and inter-
active at 5125 x 512 for larger data sets. In case of uncompressed
codebooks, the direct access is faster than warp-based caching as
long as the access to memory is regular enough. Once the num-
ber of codewords is small enough to scatter reading throughout
the entire codebook, the caching becomes more efficient. Also the
compressed codebook becomes more efficient as soon as the cache
produces additional hits to cached bricks. However, for some data
sets, the performance goes down initially when increasing the com-
pression ratio. This is due to the percentage of bricks encoded with
the expensive gradient predictor. There is no real explanation as to
why this percentage goes up except for the observation that bricks
encoded with simpler predictors are merged before bricks encoded
with the gradient predictor. The maximum sampling performance
for the Stagbeetle data set is 15Gsamples/s with codebook com-
pression and 17Gsamples/s without codebook compression at a res-
olution of 1920 x 1080. Each sample is based on tri-linear interpo-
lation of 8 voxel, leading to a bandwidth of 180GB/s or 204GB/s to
the compressed voxel data. For comparison, the raw memory band-
width of the GTX 1080 without caches is 320GB/s but the sampling
performance is 61Gsample/s or 732GB/s.
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(g) Pawpawsaurus [Dig16]: 11.12bpv vs. 0.30bpv (PSNR: 25.6 dB)

(b) Bunny [R6t06]: 5.66bpv vs. 0.50bpv (PSNR: 42.4 dB)

(d) Christmas Tree [KTM™*02]: 4.11bpv vs. 0.47bpv (PSNR: 25.7 dB)

(h) Flower: 3.39bpv vs. 0.48bpv (PSNR: 43.52 dB)

Figure 2: Data sets used for evaluation rendered with lighting and with (b, ¢ and e) or without (a, d, f, g and h) gradient magnitude modulation.
All gradients were constructed on-the-fly during rendering. From left to right: lossless compression, 32:1 reduction (256:1 for Pawpawsuarus)
and false color difference image. PSNR of rendered images measured at a resolution of 1024 x 1024.

In comparison to un-shaded rendering, calculating the gradients
on-the-fly and doing the lighting calculation increases the render-
ing time somewhere between 5% to 15% over all performance mea-
sures. For rendering using uncompressed textures, the performance
hit is substantially larger around 40% on average. However, us-
ing additional samples to calculate gradients causes an overhead
of almost 300% for compressed and about 100% for uncompressed
textures since every sample requires four lookups into the volume
data.

7. Conclusion & Future Work

We have shown an efficient lossy compression that is able to out-
perform all current block based compression approaches such as
ASTC and ZFP. Our codebook generation is able to handle even

the largest data sets available in a feasible amount of time. We also
proposed a rendering approach that calculated gradients on-the-fly
without requiring additional samples of the volume which can be
used for shading and non-photorealistic rendering. Finally, we did
an in-detail analysis of the performance of our entire decompres-
sion, caching and rendering pipeline.

In the future, we want to look into possible multi-resolution ex-
tensions to our rendering approach. While the extension of the
compression to multi-resolution is straight forward, sampling be-
tween different resolutions is not. In addition, the on-the-fly gra-
dient calculation causes issues with the adaptive sampling steps
commonly used in multi-resolution approaches such as Guthe and
Strasser [GS04].
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Figure 4: Quantization setting vs. rendering time @1920 x 1080 and @512 x 512 (light colors), including frame rate for lossless compres-
sion (compression setting = 0) and baseline (green) for uncompressed texture. For vector quantization without compression only the faster
rendering time (caching enabled/disabled) is displayed. All times were measured using the same rendering settings as seen in Figure 2.
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