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Abstract

In this document we explore the theory and potential experimental setups for measuring the near field of a complex luminary.
This work extends on near field photometry by taking filtering issues into account. The physical measurement setups described
here have not been tested at the time of writing this document, we simply describe several possibilities here. Once actual tests
have been performed, the results will be published elsewhere.

1 Introduction

Real-world models for light sources are an important prerequisite for photorealistic image synthesis. Traditionally, the only
measured information available for light sources has been the far field (i.e. directional information for the emitted light from
a point shaped light source), for which most luminary manufacturers provide data bases. Unfortunately, the far field is only a
faithful approximation of the emitted light when the light source is far from the object to be illuminated.

On the other hand, a light field [5, 8] completely represents near and far field illumination of a light source, and can thus be
used to represent the light source without knowing its geometry.

In his work onnear field photometry[1, 2, 3], Ashdown has presented methods for measuring the light field of luminaries
in both its near field and its far field components. On the rendering side, Heidrich et al. [7] have described efficient algorithms
based on a similar representation they called acanned light source. The similarity between the two representations illustrates
that measurement and rendering can use the same data structures, thereby allowing for an efficient pipeline from acquisition to
image synthesis.

In nearfield photometry a number of pinhole cameras are pointed at the luminary to be measured (actually, typically one
camera is moved around), and then the irradiance incident to the film plane is recorded using a CCD chip. The camera positions
correspond to a sampling of some virtual sampling surfaceS (see Figure1). In the simplest case, this could be a plane, and
the viewing directions at the various camera positions could all be parallel. In this case the two-plane parameterization [5, 8] is
obtained, which is also used by Heidrich et al [7].

The use of pinhole cameras in this setting corresponds to taking discrete point samples on the surfaceS that surrounds the
light source. Unfortunately, the light source may produce arbitrarily high spatial frequencies onS, in which case we have just
introduced aliasing by not applying a low-pass filter before the point sampling step.

It should be noted that near field photometry does notactually use pinhole cameras, but rather conventional cameras with
lens systems. These behavealmostlike pinhole cameras, except that they integrate incident radiance over the finite aperture
of the lens. The issue of aliasing has been raised by Halle [6] and was noted by Levoy and Hanrahan [8]. They both propose
to use the finite aperture of the camera lens as a low-pass filter by choosing the aperture size equal to the size of a sample on
the camera plane. Thus, some amount of low-pass filtering is in fact applied, but the shape of the filter kernel is more or less
random (i.e. it depends on the design of the lens system rather than considerations from sampling theory and the task at hand).

In this report, we describe a measurement system that improves on nearfield photometry by projecting the light field emitted
by the light source into a finite basisbeforemeasurement. This is done using a simple optical system. The shape and support
of the basis functions are specifically designed for a particular sampling scheme. Based on the resulting measurements we can
exactlyreconstruct the least-squares approximation of the true light field in our basis. Alternatively, we can reconstruct with a
more efficient, shift-invariant filter, and obtain a close approximation to the least-squares solution.
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Figure 1: In near field photography the light source is measured by taking images with a pinhole camera from a number of
points on a sampling surfaceS.

The remainder of this report is structured as follows: first, we are going to give a rough overview of the basic idea in Section2.
We then review the theory behind our method in Section3, before we discuss a number of physical setups in Section4. We
finally conclude with some ideas for future work.

2 Overview of the Proposed Method

The basic idea of the proposed method is to replace point sampling onS with an area sampling approach. Rather than distribut-
ing a number of pinhole cameras onS, we coverS with optical filters that optically project the emitted light onto a second
surfaceM, themeasurement surface. We assume that we can measure the irradiance arriving atM at a very high resolution.
Thus,M corresponds to the film or CCD chip in a conventional camera.

Sampling surface
((u,v)−plane)

Measurement surface
((s,t)−plane)

Light Source

Filter

M S

Figure 2: Conceptual setup for the proposed measurement method.
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Symbol Meaning

Ψijkl(u, v, s, t) basis function for approximating the light field
Φi 1D basis used for reconstruction
Φijkl(u, v, s, t) 4D tensor product basis for reconstruction
Φ′i biorthogonal 1D basis used for measurement
Φ′ijkl(u, v, s, t) 4D tensor product basis for measurement
M surface on which the irradiance is measured (measurement surface, or (s, t)-plane)
S surface on which the optical filters are placed (sampling surface, or (u, v)-plane)
L(u, v, s, t) radiance passing through(u, v) onS and(s, t) onM
L̃(u, v, s, t) projection ofL(u, v, s, t) into basis{Ψijkl(u, v, s, t)}
Lmn(u, v, s, t) radianceΦ′mn(u, v) · L(u, v, s, t) projected throughonefilter Φ′mn(u, v)
Emn(s, t) irradiance caused byLmn(u, v, s, t) on the measurement surfaceM
E′mn(s, t) approximation ofEmn(s, t) with simplified geometric term

Table 1: Notation used throughout this document.

Mathematically, the optical filters project the light field emitted by the light source into some function basis. The filters are
designed in such a way that match the desired reconstruction filters. I.e. if a bilinear reconstruction filter onS is desired, then
the optical filter is designed such that it projects the light field into the space of piecewise bilinear functions onS.

For the sake of simplicity, we will in our initial discussion of the theory assume thatM andS are planes, where we parameter-
izeS via the parameters(u, v), andM via the parameters(s, t). This corresponds to the standard two-plane parameterization of
light fields. The underlying assumption of our method is that the true light fieldL(u, v, s, t) is well represented by its projection
L̃(u, v, s, t) into the function space spanned by the optical filters.

Our measurement method also applies to other geometries and parameterizations, and this issue will be discussed when we
describe various physical measurement setups in Section4.

3 Theory

Before we discuss the theory behind the proposed method in detail, we first introduce the mathematical notation used throughout
this document.

For the measurement, we assume that the light field emitted by the light source is well represented by a projection into a
basis{Ψijkl(u, v, s, t)}ijkl∈ZZ:

L(u, v, s, t) ≈ L̃(u, v, s, t) :=
∑
i

∑
j

∑
k

∑
l

Ψijkl(u, v, s, t) · Lijkl. (1)

We assume thatΨijkl has local support, andi, j, k, andl roughly correspond to translations inu, v, s, andt, respectively.
Note, however, that the translated basis functions will not in all cases have the same shape, i.e.Ψi′j′k′l′(u, v, s, t) may not be
an exact copy ofΨijkl(u, v, s, t) in general.

We also define two additional sets of basis functions, one formeasuringand one forreconstruction. For reconstruction we
use a 1D basis{Φi}i∈ZZ with the propertyΦi(x) = Φ(x + i). The 4D reconstruction basis is then given as the tensor product
basis

Φijkl(u, v, s, t) := Φij(u, v) · Φkl(s, t) = Φi(u) · Φj(v) · Φk(s) · Φl(t). (2)

For measurement, we use thebiorthogonal(or dual) {Φ′i(x)}i∈ZZ of the reconstruction basis with

∫ ∞
−∞

Φ′i(x) · Φj(x) dx =
{

1 ; if i = j
0 ; else (3)

and again we use a tensor-product construction for the 4D basis. The notation is summarized in Table1.
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3.1 Measured Irradiance

Our approach is based on being able to measure the irradianceEmn(s, t) in the (s, t)-plane that is caused by the incident
radianceLmn(u, v, s, t) = Φ′mn(u, v) · L(u, v, s, t). In Section4 we will discuss several physical setups for performing this
kind of measurement. The result of such a measurement is

Emn(s, t) =
∫ ∞
−∞

∫ ∞
−∞

cos2 θ(u, v, s, t)
R(u, v, s, t)2

· Φ′mn(u, v) · L(u, v, s, t) du dv

≈
∫ ∞
−∞

∫ ∞
−∞

cos2 θ(u, v, s, t)
R(u, v, s, t)2

· Φ′mn(u, v) ·
∑
i

∑
j

∑
k

∑
l

Ψijkl(u, v, s, t) · Lijkl du dv by Equation1. (4)

=
∑
i

∑
j

∑
k

∑
l

∫ ∞
−∞

∫ ∞
−∞

cos2 θ(u, v, s, t)
R(u, v, s, t)2

· Φ′mn(u, v) ·Ψijkl(u, v, s, t) · Lijkl du dv.

Here,cos2 θ(u, v, s, t)/R(u, v, s, t)2 is a geometric term composed of the distanceR of the point on the(u, v)-plane from
the point on the(s, t) plane, as well as the cosine of the angleθ between the plane normals and the vector connecting the two
points. Note that this term also accounts for any differences in the parameterizations on the two planes (i.e. different grid
spacings).

3.2 Exact Reconstruction

We now describe an exact reconstruction algorithm given the measurementsEmn. To this end, we first define what the rela-
tionship between the basis functionsΨijkl and the reconstruction and measurement bases should be. We define

Ψijkl(u, v, s, t) :=
R(u, v, s, t)2

cos2 θ(u, v, s, t)
· Φij(u, v) · Φkl(s, t). (5)

Inserting this definition into Equation4, and using the biorthogonality relationship (Equation3) yields

Emn(s, t) =
∑
i

∑
j

∑
k

∑
l

∫ ∞
−∞

∫ ∞
−∞

Φ′mn(u, v) · Φij(u, v) · Φkl(s, t) · Lijkl du dv

=
∑
k

∑
l

Φkl(s, t) · Lmnkl. (6)

To determine which reconstruction filter to use, we now rewrite Equation1 using Equations5 and6:

L̃(u, v, s, t) =
∑
m

∑
n

∑
k

∑
l

Ψmnkl(u, v, s, t) · Lmnkl

=
∑
m

∑
n

∑
k

∑
l

R(u, v, s, t)2

cos2 θ(u, v, s, t)
· Φmn(u, v) · Φkl(s, t) · Lmnkl (7)

=
∑
m

∑
n

R(u, v, s, t)2

cos2 θ(u, v, s, t)
· Φmn(u, v) · Emn(s, t)

This indicates that we canexactlyreconstruct̃L, the projection ofL into the basis{Ψijkl} using the reconstruction filter
R(u, v, s, t)2/ cos2 θ(u, v, s, t) · Φmn(u, v).

Unfortunately, this reconstruction filter does contain a shift-variant component in form of the geometric term. This makes the
reconstruction slightly more expensive than one would hope – ideally, the reconstruction step should only involve a convolution
with a shift-invariant filter kernel. In the next section, we discuss an approximate reconstruction using a shift-invariant filter
kernel.
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3.3 High-Speed Approximate Reconstruction

For a high-speed reconstruction with a shift-invariant filter kernel we defineΨijkl as a tensor-product basis:Ψijkl(u, v, s, t) :=
Φij(u, v) · Φkl(s, t). From this, we get

Emn(s, t) =
∑
i

∑
j

∑
k

∑
l

∫ ∞
−∞

∫ ∞
−∞

cos2 θ(u, v, s, t)
R(u, v, s, t)2

· Φ′mn(u, v) · Φij(u, v) · Φkl(s, t) · Lijkl du dv (8)

Unfortunately, the geometric term depends on the integration variablesu andv, and can therefore not be moved outside the
integral. However, if the distanced between the(u, v)- and the(s, t)-plane is large compared to the support ofΦij(u, v), and
if θ is small, then this term is well approximated by one constant per point on the(s, t)-plane:

cos2 θ(u, v, s, t)
R(u, v, s, t)2

≈ cos2 θkl(s, t)
Rkl(s, t)2

. (9)

This yields an approximation of the measured irradiance:

Emn(s, t) ≈
∑
k

∑
l

cos2 θkl(s, t)
Rkl(s, t)2

· Φkl(s, t) ·
∑
i

∑
j

Lijkl ·
∫ ∞
−∞

∫ ∞
−∞

Φ′mn(u, v) · Φij(u, v) du dv

=
∑
k

∑
l

cos2 θkl(s, t)
Rkl(s, t)2

· Φkl(s, t) · Lmnkl. (10)

Since both the approximate geometric term andΦkl(s, t) are known, it is in principle possible to compute

E′mn(s, t) ≈
∑
k

∑
l

Φkl(s, t) · Lmnkl (11)

by de-convolution. In practice, this is only feasible for basis functionsΦkl(s, t) with a small support. We do not expect this
to be a major problem, however, since the practical measurement setups that will be discussed in Section4 have a very high
resolution on the(s, t)-plane, so that very simple basis functions, such as bilinear interpolation, can be used. Again, we apply
the definition ofΨijkl to determine the appropriate reconstruction filter:

L̃(u, v, s, t) =
∑
m

∑
n

∑
k

∑
l

Ψmnkl(u, v, s, t) · Lmnkl

=
∑
m

∑
n

∑
k

∑
l

Φmn(u, v) · Φkl(s, t) · Lmnkl (12)

≈
∑
m

∑
n

Φmn(u, v) · E′mn(s, t).

Thus, anapproximatereconstruction of̃L, the projection ofL into the basis{Ψijkl} is obtained using the shift-invariant
reconstruction filterΦmn(u, v). For example, ifΦ is a hat function, the reconstruction process is reduced to quadri-linear
interpolation, which is frequently used for light field rendering algorithms. The quality of this approximation depends on the
error introduced by assuming the geometric term constant over the support of basis functionΦij(u, v) in Equation9. Some
error estimates for various setups will be given in the following.

3.4 Estimates of the Approximation Error

As we move the geometric term out of the integral in Equation10, we make the assumption that this term is close to constant
over the support of the filterΦ′mn(u, v).

In analyzing the geometric term for a two-plane parameterization, we get

cos2 θ(u, v, s, t)
R(u, v, s, t)2

= cos4 θ =: g(θ),

if assume the distance between the planes to be unit-size. In order to estimate the error introduced by approximatingg(θ) by a
constant term, we define the absolute error
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Ea(θ0) := max
θ∈F

g(θ)−min
θ∈F

g(θ)

whereF is the support of a filterΦ′mn(u, v) centered at an angleθ0 from a measurement point on the(s, t)-plane. Similarly,
we define the relative error as

Er(θ0) :=
maxθ∈F g(θ)−minθ∈F g(θ)

g(θ0)
.

Figure3 shows a plot of both the relative and the absolute error for several geometric setups. Firstly, we have a situation
where the diameter of a filter is10% of the distance between the two planes. Filter sizes of5cm at plane spacings of50cm
would be a typical configuration for setups 1 and 2 as described in the next section.

We then were interested in an extreme situation, where the filters are made as small as possible compared to the plane spacing.
We plotted an error curve for a filter size of2cm with a plane distance of1m. This would certainly push the limits in terms of
brightness on the measurement planeM.

Finally, we wanted to check the quality of approximation for the other extreme, where the two planes are extremely close
together (filter width equals plane spacing).

As can be seen from Figure3, the first and second scenario produce reasonable results for anglesθ up to45◦. The maximum
relative error for the first scenario is about10%, while that for the second scenario is below2%. This should be sufficient for a
number of applications that do not need the highest precision.

In the third scenario, however, the error explodes even for relatively small angles ofθ. This means the approximation cannot
be used when the filter size is large compared to the plane distance.

4 Possible Experimental Setups

There are several geometric setups that might be considered. One possibility is to create a camera obscura-like setup, where
light shining through the optical filter on the sampling planeS illuminates a diffuse surface (the measurement planeM). A
conventional digital camera is used to measure the irradiance on that plane (this requires high-dynamic range imaging along
the lines of Debevec and Malik [4]).

This basic idea can be realized in two flavors: firstly, the filter itself could be moved relative to both the light source and the
M plane, as well as the camera (Figure4). The problem with this approach is that this setup is mechanically challenging to set
up in a precise way.

An alternative possibility is to keep the observing camera, theM plane, and the filter in a fixed relative position (maybe
even a common housing), and to move the light source relative to this setup (Figure5). This should be mechanically much
more feasible. Another advantage of this setup is that it corresponds to anM plane at infinity (similar to a planes at infinity
described in the original work on light fields and Lumigraphs [8, 5]), which provides a nice separation of spatial and directional
information. This separation can be advantageous for efficient rendering [7]. Finally, by implementing other motions than
translations for the light source, one can implement other light field geometries than the two-plane parameterization. For
example, a cylindrical scan could be implemented easily with a shift-invariant filter (other geometries would require different
filter kernels for different filter positions which may not be feasible).

A shortcoming of both approaches discussed so far are calibration issues with respect to geometric optics and photometry.
Because the camera looks at theM plane at an angle, perspective distortion and lens distortion have to be accounted for.
Photometrically, it is difficult to avoid or compensate for interreflections in the setup (if camera, filter, andM plane are put
into an enclosure), or residual light from the outside environment (if they are not). The material of theM plane is likely not
100% diffuse, which may pose a problem (although the diffuse assumption should mostly hold if the grazing angles can be
avoided). Also, the material may not be as homogeneous as one would want, causing some undesirable spatial patterns in the
measurements. Finally, due to geometric constraints, the distance betweenM andS plane may have to be relatively large so
that the illumination level on theM plane might be quite low for darker light sources. This would mean that the camera would
have to be operated at long exposure times which reduces the signal-to-noise ratio.

A possible way for avoiding these problems is a third setup, in which the CCD element of the digital camera is directly
used as th eM plane, and the camera optical system is replaced by the filter (Figure6). This setup is mechanically by far the
easiest to realize, the CCD surface is precision manufactured, and the camera interior is optimized to avoid interreflections. The
distance between filter and measurement plane is now much lower, which avoids long exposure times. However, this smaller
distance also makes the measurements less suitable for the approximate reconstruction (as discussed in the previous section.
Another potential problem could be a narrower field of view dictated by the relatively small size of the CCD chip.
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Figure 3: Absolute error (top) and relative error (bottom) of the approximation of the geometry term.

Table4 summarizes the advantages and disadvantages of the different setups. Setup 1 clearly looks like the least promising
approach. The relative merits of setups 2 and 3 will have to be determined experimentally.

5 Future Work

There is a host of possibilities for future work. These include

• Experimenting with different basis functions, trading off different degrees of smoothness for narrower or wider support.

• Exploring the possibilities for using non-planar sampling geometry. Some of these are straightforward (e.g. cylindrical
sampling geometries), but in the general case this will require shift-variant filter kernels with all the disadvantages that
implies (i.e. the need for different physical filters and the associated alignment problems).

• Hierarchical and adaptive sampling (Wavelets). This is strongly related to the choice of basis function and non-planar
geometry.
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Figure 4: Setup 1

Diffuse Reflector M

Camera

Moving Light Source

Opaque mask S with
fixed filter

Filter

Figure 5: Setup 2

• Some of the issues arising from non-planar geometry could be solved with filters that can be changed electronically,
for example by replacing the filter with an LCD panel. This approach, however, poses its own challenges, including
polarization of light (meaning that already polarized light might get lost in the measurement) and limited optical density
(i.e. limited contrast) of the current displays.
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Moving Camera
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Light Source

Figure 6: Setup 3

Setup 1 Setup 2 Setup 3

Mechanical complexity - ◦ +
Mechanical calibration effort - ◦ +
Photometric calibration effort - - +
Utilization of light intensity ◦ ◦ +
Quality of approximate reconstruction + + -
Separation of spatial and directional resolution - + +
Wide range of directional samples + + ◦
Extensible to non-planar sampling space - + +

Table 2: A comparison of the different measurement setups.
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