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Figure 1: Our approach allows a novel visual comparison and analysis of multiple MSAs on different levels of detail. Left: A Similarity
Matrix depicting the pairwise MSA similarities of the dataset representing global comparison information. Center: Comparison of two large
MSAs. For a local comparison, the MSA at the bottom highlights differently (red), slightly different (yellow) and consistently aligned residues
(blue) with respect to the reference MSA shown on the top. In contrast, the reference MSA on the top shows this information globally with
respect to all MSAs in the dataset. White highlights depict MSA differences for a specific selection. Right: Different highlighting modes allow
the detection of potentially misaligned regions and local assessment of alignment quality.

Abstract
Multiple Sequence Alignments (MSA) of a set of DNA, RNA or protein sequences form the fundamental basis for various bio-
logical applications such as evolutionary heritage and protein structure prediction. The quality of an MSA is crucial in order to
provide useful and correct results. The analysis of MSAs is, however, still a challenging task since constructing MSAs is an NP
hard problem and thus the optimal MSA is usually unknown. Additionally, MSA quality analysis is often completely ignored,
especially by non-expert users, due to the lack of tools for the visual comparison and the intuitive quality assessment of align-
ments. In this paper, we present an interactive visual approach to simultaneously assess the quality of multiple alternative MSAs
of the same set of sequences. We provide a direct assessment of the alignment quality using different highlighting techniques
in combination with automatic quality measures and editing capabilities. An in-depth evaluation of our approach highlights its
benefits for MSA quality assessment.

Categories and Subject Descriptors (according to ACM CCS): H.1.2 [Information Systems]: User/Machine Systems—Human
information processing J.3 [Computer Applications]: Life and Medical Sciences—Biology and genetics

1. Introduction

One of the most fundamental tasks in computational biology is the
comparison of a set of DNA, RNA or protein sequences by so
called Multiple Sequence Alignments (MSA). Here, evolutionary

related (homologous) regions between the sequences are aligned
to each other by relative shifts and insertions of gaps into the se-
quences. The resulting alignment allows to find corresponding re-
gions and implicitly reveals similarities and differences in the un-
derlying sequences set. These form the basis for several impor-
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tant applications in biology such as evolutionary heritage or pro-
tein structure prediction. During the last years, several algorithms
have been proposed that compute Multiple Sequence Alignments
such as ClustalW [THG94, LBB∗07], MUSCLE [Edg04], MAFFT
[KMKM02], Kalign [LFS09] and ClustalOmega [SWD∗11]. The
basis for most of these algorithms (and the construction of MSAs in
general) is a particular scoring model, i.e. a substitution matrix such
as the BLOSUM- [HH92] or CorBLOSUM matrices [HKGH16]
and an affine gap penalty model. The first models evolutionary sub-
stitution events which can be used as a similarity measure to iden-
tify homologous regions. The second penalizes the existence (Gap
Opening Penalty) and the length (Gap Extension Penalty) of the
aforementioned gaps. This models evolutionary insertion/deletion
events which are considered to be more unlikely than substitution
events and are thus penalized.

Notably, the selection of the optimal substitution matrix and
the most suitable gap penalty values for a given alignment prob-
lem is a non trivial task and thus still part of current research
[Edg09, KD13]. It depends on various factors such as the sequence
data and the chosen MSA algorithm. There is no guarantee that a
particular scoring model produces evolutionary correct alignments.
In addition, the calculation of an optimal MSA for a particular scor-
ing model is NP-hard [WJ94]. Hence, the aforementioned align-
ment methods rely on different heuristics to approximate the op-
timal but usually unknown alignment. This can result in strongly
varying MSAs depending on the chosen algorithm, its parametriza-
tion such as the scoring model, and the sequence data itself.

As a result of these uncertainties, most users – in particular those
without specific knowledge in the field of MSA – often generate
MSAs using an arbitrary and thus potentially suboptimal alignment
algorithm. Additionally, they often use default parameters which
may result in MSAs with questionable quality. Since the quality of
an MSA is crucial for many important applications that build upon
these MSAs, the analysis of an MSA’s quality is fundamental.

As mentioned above, the optimal scoring model for a given set
of sequences and the corresponding optimal MSA is unknown.
Hence, MSA quality is usually assessed with two different meth-
ods [KD13]: The first one is to calculate several alternative align-
ments for the same set of sequences using different alignment algo-
rithms, parameter settings and scoring models. Afterwards, the gen-
erated alignments are analyzed by identifying consistently aligned
regions over all alternative MSAs, which are considered to be valid
[VA90]. The second method is to infer alignment quality only from
the alignment structure itself by analyzing different criteria such as
the number of gaps or the average symbol diversity in the MSA
columns [KD13].

To our knowledge, most users do not use these tools to assess the
quality of their calculated MSAs either due to the lack of knowl-
edge of these methods or because they blindly trust the chosen
algorithms. This trend is additionally reinforced by the lack of vi-
sual analysis and comparison tools supporting this task. In this pa-
per, we address this issue by presenting a novel interactive visual
comparison and analysis approach for MSAs. It enables users to
visually explore, compare and analyze multiple MSAs in order to
assess their quality and the impact of different MSA algorithms

and scoring models. Our main contributions and application bene-
fits are:

• Our approach enables the visual comparison of large sets of al-
ternative MSAs on global and local levels in order to assess the
alignment quality and the impact of different scoring models and
algorithms.

• In addition, we present a novel multi-scale visual analysis ap-
proach to visually assess the quality of alignments on different
levels of detail using different highlighting techniques based on
automatic quality assessment.

• For this, we also provide a novel quality measure called Cluster
Shift that allows the user to reveal potentially misaligned regions.

2. Related Work

Our work relates to several topics in the field of Multiple Sequence
Alignment such as MSA (quality) analysis, visualization and visual
comparison. In the following, we first present and discuss measures
for the comparison and quality analysis of MSAs. The remaining
sections present state-of-the-art visualization and visual compari-
son techniques for MSAs in detail.

2.1. MSA Comparison and Quality Analysis

In the last years, several methods have been published that ad-
dress the identification of unreliable alignment regions by com-
paring alternative alignments [VA90, MV96, Vin96, CHK02, LS05,
SAKP15]. Here, consistently aligned regions across a set of alter-
native alignments are considered to be reliable and thus correctly
aligned. In contrast, those with large differences are assumed to be
unreliably aligned.

Another approach by Cline et al. [CHK02] called shift score uses
alignment shift information in order to predict reliable positions.
Here, for each residue x – i.e. a single symbol x in a sequence –
in two alternative MSAs A and B, a shift value is calculated based
on the residues aligned to x in these two MSAs. If x is aligned
with the same residues in both MSAs, the shift is zero. Otherwise,
the shift represents the difference between their indexes (Fig. 3).
The advantage of this method is that it’s calculated on a residue-to-
residue basis which allows the detection of similar aligned regions
independent of their actual column numbers in the different MSAs.
Our approach uses the shift score measure as basis for the visual
pairwise comparison of MSAs (Sections 3.1 and 3.4).

As mentioned in the introduction, there are also approaches to
assess the quality of an alignment directly by analyzing its inner
structure. Two of the most commonly used measures are the col-
umn based consensus and sum-of-pairs [TPP99] scores. The first
measures the overall diversity of residues per column, often based
on a simple majority rule with gaps optionally taken into account.
The sum-of-pairs score (SOP) instead, represents the quality of an
alignment column by accumulating the substitution scores of its
residue pairs using a particular substitution matrix such as BLO-
SUM62 [HH92].

Both methods have the disadvantage that they do not take neigh-
boring columns into account and thus their scores can be mislead-
ing. For example, a diverse and thus low scoring column may be

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



M. Hess, D. Jente, J. Wiemeyer, K. Hamacher & M. Goesele / Visual Analysis and Comparison of Multiple Sequence Alignments

still well aligned if this reduces the number of gaps in the alignment
and thus mitigates the overall gap penalty. In addition, substitution
matrices rate identical residue pairs differently depending on their
type (e.g. BLOSUM62: AA = 4 vs. WW = 11). Hence, there are
multiple maximum SOP scores, preventing a normalized compar-
ison between columns. Nevertheless, we adopted both techniques
into our approach in order to provide state-of-the-art MSA analysis
in form of a rough assessment of alignment quality.

Kececioglu and DeBlasio [KD13] presented further alignment-
only based quality measures for Protein MSAs. Here, the aver-
age sum-of-pairs score based on the BLOSUM62 matrix, the Gap
Open Density (i.e. the ratio between gap occurrence and overall gap
length) and three secondary structure based measures (Secondary
Structure Blockiness, Agreement and Identity) were reported to per-
form best. For the latter, PSIPRED [Jon99] was used to predict
the secondary structure of the sequences. From these, the first one
calculates the number of non overlapping blocks of residues with
identical secondary structure annotation while the second measures
the fraction of identical secondary structures per column. The last
measure calculates the probability that two residues belongs to the
same secondary structure type by averaging the normalized confi-
dence values reported by PSIPRED for neighboring residues. In-
spired by these measures, we developed a novel quality measure
called Cluster Shift which allows the detection of potentially mis-
aligned regions (Section 3.2).

2.2. MSA Visualizations

There are many different visualization tools available which
support editing and/or viewing of sequence alignments (e.g.
ClustalX2 [LBB∗07], Jalview [WPM∗09], SeaView [GGG10],
Webprank [LG10], SuiteMSA [ASM11], SBAL [WBW∗12],
AliView [Lar14]). Some of these tools provide additional func-
tionality such as interfaces to prominent alignment algorithms or
to web services for sequence retrieval or secondary structure pre-
diction. All these tools provide, however, only limited capabilities
to visually analyze alignment quality. As mentioned above, most
of them use consensus or sum-of-pairs scores, which have several
limitations, in order to provide qualitative feedback. In contrast, our
approach provides a broader range of quality measures that are used
to directly present quality information inside the MSA visualization
using several highlighting techniques. Thereby, our method enables
quality assessment on global as well as on local levels and allows
to focus on similarities or differences depending on the user’s de-
mand. Another important limitation of the aforementioned visual-
izations is that they do not provide visual comparisons between
multiple alignments.

2.3. Visual Comparison of MSAs

To our knowledge, there are only two approaches available that
allow a visual comparison of MSAs: SinicView [SLL∗06] and
SuiteMSA [ASM11]. SinicView focuses on genome-scale nu-
cleotide alignments and does not provide residue-to-residue com-
parisons over multiple MSAs. Hence, we compare our approach
primarily with SuiteMSA which provides two independent tools
for alignment comparison: the MSA Comparator and the Pixel Plot

tool. The MSA Comparator allows the visual comparison of two
MSAs – shown one below the other – supported by a bar chart indi-
cating the corresponding column sum-of-pairs scores. Pixel Plot al-
lows a simple comparison of multiple MSAs shown at a very small
scale. In both approaches, an interval of neighboring columns can
be selected to highlight the corresponding residues in the other dis-
played MSAs. While the MSA Comparator highlights differently
and identically aligned residues using different colors, the Pixel
Plot only shows where the residues are positioned in the MSAs
limiting its usefulness for alignment comparison. Also, both ap-
proaches do not provide residue type based coloring and thus the
inner structure of the alignments can be barely assessed. In addi-
tion, a zooming function is missing which limits the comparison of
large MSAs and alignment editing is also not supported.

3. Approach

Typical analysis tasks to assess the quality of an MSA involve the
identification of consistently and differently aligned regions in a
set of alternative MSAs and the analysis of the inherent structure
of an MSA (e.g. conserved columns and local misalignments). To
address these tasks and the limitations mentioned in Section 2, our
approach provides several methods for the interactive visual anal-
ysis and comparison of Protein Multiple Sequence Alignments. It
is designed, to support these tasks on global as well as on local
levels. Our system is implemented in Java 8 in order to ensure its
platform independent usage and supports the import and export of
edited MSAs in the commonly used FASTA format. By using multi
threaded rendering and score calculations, our implementation al-
lows a fast visualization of multiple large MSAs at once only lim-
ited by the user’s display size. To mitigate this issue, we provide
continuous zooming down to a single pixel per residue and multi-
ple window support.

An overview of this system is shown in Fig. 2. An initial visual
assessment of the relative MSA similarity in the dataset is provided
by a sortable Similarity Matrix View (1) showing all pairwise MSA
comparisons of the dataset (Section 3.4). From there or from the
Project View (2), the user can open MSA Views (Fig. 5) or select
a reference MSA for the comparison with other MSAs. The MSA
Views can either be shown in the MSA List (3) or in separate win-
dows for a detailed MSA analysis (see Section 3.4 and 3.5). They
support several overlay and highlighting modes using transparency
or colormaps (4) to show local and global quality or similarity in-
formation directly inside the MSA Visualizations. These modes are
based on state-of-the-art comparison and quality measures and the
here presented approach (see Sections 3.1 and 3.2). In addition, all
visualizations are interlinked in order to provide information across
multiple views.

3.1. MSA Comparison Measures

Our approach aims to provide automatic MSA comparison mea-
sures to support the user in assessing local and global differences
and similarities across multiple MSAs. The basis for our measures
is the shift score by Cline et al. [CHK02]. It allows an accurate as-
sessment of local alignment differences and similarities on a per
residue level. Since the shift score is based on pairwise alignments,
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Figure 2: Overview of our visual comparison approach: (1) The Similarity Matrix View giving an overview over all pairwise MSA com-
parisons using the shift score by Cline et al. [CHK02]. The buttons below allow sorting of the matrix by several quality criteria. (2) The
Project View showing all MSAs in the dataset. The sorting of the entries corresponds to the sorting of the Similarity Matrix View in order
to determine high quality alignments. (3) The MSA List showing three different interlinked MSA Views. The MSA View on top of this list is
chosen as reference indicated by the red title bar. This reference MSA View highlights consistently aligned regions (blue) on a global level –
i.e. over the whole dataset – while the other views highlights these regions with respect to the chosen reference MSA. (4) The selection panel
for switching between different quality overlays and colormaps. From here, the residues shown in the MSA Views can be filtered by setting a
specific scoring threshold.

the following explanations always refer to two different sequences
a and b that are both part of two alternative alignments A and B, i.e.
a,b ∈ {A,B}. Thereby, x denotes a residue of sequence a while the
residues y and z belong to sequence b.

For each residue x that is aligned with residue y in alignment
A and residue z in alignment B, the shift value δ(x) is defined as
the difference of the indexes of y and z in sequence b. An example
illustrating this for two pairwise alignments is shown in Fig. 3. In
alignment A (left side), the red highlighted residue x in the upper
sequence a is aligned with residue y of the lower sequence b. In
alignment B (right side), the same residue x is aligned with residue
z of the lower sequence b. The resulting shift value is δ(x) = 3
because the difference between the index of y and the index of z is
three in sequence b.

Afterwards, the shift value δ(x) is used to calculate the corre-
sponding shift score ∆(x):

∆(x) =
1+ ε

1+ |δ(x)| − ε (1)

Here, ε is a scoring parameter that defines at which shift value the
shift score drops into the negative range. Hence, the shift score
ranges between−ε and 1. As reported by the authors, ε is normally
set to 0.2. Thus accurate positions are scored with a shift score of 1,
while small shifts are still positive reaching zero with a shift value
of 5. Large shifts instead result in negative shift scores approach-

F V - I A x R A A S E  F V - I - A - - x R A A S E

F V P I R y R D z S E  F V P I R y R D z - - - S E

3MSA A MSA B

a:

b:

a:

b:

Figure 3: Illustration of the shift score measure. Shown are two
alternative alignments of the same sequences A (left side) and B
(right side). Left: The red residue x in the upper sequence a is
aligned with residue y in the lower sequence b. Right: The same
residue x in alignment B is aligned with residue z in sequence b.
This results in a shift value of 3 because the difference between the
index of y and the index of z is three in sequence b.

ing −ε. Notably, the shift for residues that are aligned with gaps is
undefined and thus results in a shift score of zero.

As mentioned above, our approach applies the shift score on lo-
cal as well as on global levels. For the local comparison of two
MSAs A and B, we calculate the average of all shift scores ∆(x)
obtained for a single residue x in alignment A to indicate its local
difference to alignment B. We call this measure in the following Av-
erage Residue Shift and use it to highlight per residue differences
between MSAs (see the lower MSA in Fig. 1).

In addition, we calculate another measure denoted as Global
Residue Shift by calculating the average of all Average Residue
Shifts obtained for a single residue in the comparison with all MSAs
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Figure 4: Illustration of the Cluster Shift measure. In this example,
a similarity level of γ = 3 and the BLOSUM62 matrix was cho-
sen for the clustering step. The search range for the second step
was set to k = 2. Left: Shown are the obtained clusters from step
1 highlighted in different colors. Notably, the F and Y residues in
Column 1 belong to the same cluster because the matrix value for
the pair FY is S(F,Y ) = 3 ≥ γ. In contrast, P and K in Column 3
form separate clusters since S(K,P) = −1 < γ. The same occurs
in Column 6 for Y and W because S(Y,W ) = 2 < γ. Right: Here,
the best matching cluster c5 (blue) to the query cluster c3 (red) is
shown while the black box indicates the search window for c3. The
column offset between these clusters is 1 resulting in a Cluster Shift
of δ(c3,c5) = 1.

in the dataset. This allows us to assess a residue’s shift with respect
to the whole dataset (see upper MSA shown in Fig. 1). The last
measure denoted as MSA Shift is defined as the average of all Av-
erage Residue Shift obtained for all residues of alignment A with
respect to MSA B. Thus, the MSA Shift represent scores for the
pairwise comparison of two MSAs A and B which are used in our
Similarity Matrix View (see Fig. 1, left). A detailed description of
these visualization techniques is given in Section 3.4.

3.2. MSA Quality Measures

Analogous to the comparison measures used in our approach, our
goal is to support the user’s analysis task by several MSA quality
measures to select from. We provide state-of-the-art measures such
as sum-of-pairs score [TPP99] based on a user selectable substitu-
tion matrix as well as a consensus style measure we call Symbol
Identity. The latter calculates the fraction of amino acids per col-
umn that have the same equivalence class in spirit in of the Amino
Acid Identity used by Kececioglu and DeBlasio [KD13] (Fig. 1,
right). These equivalence classes represent groups of amino acids
that share similar chemical attributes (e.g. amino acids F, Y and
W that have aromatic side chains). The user can choose from var-
ious reduced alphabets to specify these equivalence classes. These
measures allow an easy but rough assessment of alignment qual-
ity and can be used to identify potentially well aligned columns.
In addition, we use the aforementioned Global Residue Shift score
per residue (Section 3.1) to measure the quality of a single residue
with respect to the whole dataset (see upper MSA shown in Fig. 1).
Here, residues with small Global Residue Shift values indicate con-
sistently aligned regions in the whole dataset which are assumed to
be reliably and thus correctly aligned (see Section 2).

Most MSA analysis approaches use column based quality mea-
sures which only allow the detection of potential misalignments

in single columns. Instead, our goal is to provide a measure that
is able to detect potential misalignments across multiple columns.
Hence, we developed a new quality criteria called Cluster Shift
which searches for misalignments in neighboring columns in spirit
of the Secondary Structure Blockiness measure introduced by Ke-
cecioglu and DeBlasio [KD13].

The Cluster Shift measure is calculated in three steps: In the first
step, we cluster the residues of each column based on their relative
similarity which depends on two parameters, a substitution matrix S
of the user’s choice and a user selectable similarity level γ. The pa-
rameter γ defines at which minimum similarity score two residues x
and y are allowed to belong to the same cluster. Notably, acids of the
same type always form a cluster and gap characters are ignored. An
example clustering result (colored boxes) is illustrated on the left
side of Fig. 4 for γ = 3 and the BLOSUM62 matrix. All columns
with the exception of Column 1, 3 and 6 only consist of identical
acids and thus directly form clusters. The acids in Column 1 form a
single cluster (light blue) since F and Y have a BLOSUM62 score
of S(F,Y ) = 3≥ γ. In contrast, the P and K acids in Column 3 form
two different clusters because the BLOSUM62 score for P and K
is only S(K,P) = −1 < γ. The same occurs in Column 6 since the
BLOSUM62 score of Y and W is S(Y,W ) = 2 which is still smaller
than the required γ.

In the second step, we search the best matching cluster b j for
each identified cluster ci in a range of k neighboring columns. Here,
i and j denote the id of the corresponding cluster. The range pa-
rameter k can be selected by the user and defines the window in
which locally misalignments should be detected. The best match-
ing cluster b j to a cluster ci corresponds to that neighboring cluster
c j which have the highest similarity to cluster ci. In addition, the
set of sequences covered by ci and c j must be fully disjunct, i.e.
the clusters are not allowed to overlap. The similarity corresponds
to the average sum-of-pairs score of all residues in ci to those in
c j. Fig. 4 (right side) shows an example for this step. Here, the
best matching cluster of the red highlighted cluster c3 is cluster c5
colored in blue.

In the third and last step, we filter the obtained cluster-to-best-
match assignments. We check for each identified best matching
cluster b j of cluster ci, if ci is also the best matching cluster for
b j . In other words, we test if both clusters refer to each other as the
best matching cluster. If this is true, we keep these best match as-
signments. Otherwise, we drop these assignments. For the remain-
ing clusters, we calculate the column offset between them in order
to determine the corresponding Cluster Shift Score δ(ci,c j), i.e. the
relative shift of the clusters. For example, the red and blue high-
lighted clusters on the right side of Fig. 4 have a column difference
of 1 resulting in a Cluster Shift of δ(c3,c5) = 1.

By highlighting clusters with a Cluster Shift below or above
a specific threshold (Fig. 1, right), our approach allows to reveal
potentially misaligned regions in an alignment based on relative
amino acid similarity. Since the search window for this measure
can be adaptively adjusted, the user can focus on local misalign-
ments only or on those within a larger range. The visual concepts
using the aforementioned measures are presented in detail in Sec-
tion 3.5.
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3.3. MSA Visualization and Editing

Since our approach focuses on assessing an MSA’s quality, amino
acid similarities play a central role. In order to visually emphasize
these similarities and to assess various analysis aspects, our visual-
ization allows to individually adapt the appearance of the shown
residues, i.e. shape, color and texture. As shown on the left of
Fig. 5, the color of a residue can be used, e.g, to indicate whether
its corresponding amino acid type is hydrophobic or hydrophilic.
Analogous, another amino acid attribute could be mapped to the
residue’s shape while the texture can be used for a third attribute.
These three degrees of freedom can be freely assigned by the user
depending on his or her demands, i.e. the user is not only restricted
to potentially suboptimal visualization presets.

Nonetheless, we also offer different predefined style sets that are
designed to emphasize residue similarities implicitly encoded by
different substitution matrices such as BLOSUM62. By assigning
different colors and shapes to groups of acids that share high acid-
to-acid matrix values, the user can detect whether the acids in a col-
umn are similar and thus provide high scores to the MSA scoring
function or not (Fig. 5, right). For example, the group of aliphatic
amino acids I, L, M, and V are colored in red using a hexagonal
shape. Since this combination of color and shape is unique, only
these four acids appear as similar in the visualization. The texture
of these acids is used to distinguish the different acid types. Several
evaluations of this style set based on our previous work highlighted
its usefulness for the visual assessment of local MSA quality espe-
cially by non-expert users, e.g., casual gamers [HWHG14].

Notably, the user can switch between custom shape or default
shape rendering (colored squares) mode at any time. Analogous,
the texture mode can be switched between custom texture, one let-
ter code or disabled. The grid spacing of the alignment visualiza-
tion can also be freely adjusted. In summary, the user can fully alter
the MSA visualization on demand to focus on various interesting
analysis aspects.

Our approach also features basic editing of MSAs. The user can
easily select residues, e.g., by dragging a selection rectangle or by
double clicking on a residue, which selects all residues of the same
type in the corresponding column. The selected residues can be
moved left or right using the arrow keys on the keyboard. Thereby,
we offer different movements modes which can be triggered by
holding a modifier key such as shift or alt. For example, the user
can shift whole rows or multiple residues, either until neighboring
residues are "touched" or by pushing those residues in the move-
ment direction.

3.4. Visual Comparison of Multiple MSAs

As mentioned above, our approach aims to enable the visual com-
parison of multiple alternative MSAs on global as well as on local
levels. This involves several challenges that need to be addressed.
In the following, we describe these challenges and how we address
them in detail.

One challenge is to provide an useful overview of the overall
MSA similarities that scales well with the number of MSAs in
the dataset. For this, we provide a Similarity Matrix View (see

Fig. 1, left) showing the similarities of the MSAs in the dataset
using different colors. Each cell in the matrix represents the simi-
larity of two specific MSAs by mapping their corresponding MSA
Shift score (Section 3.1) to a specific color retrieved from a user
selectable colormap. This score can also be normalized in order to
investigate small value differences. In Fig. 1, e.g., the "Red Yel-
low Blue" colormap is selected and thus cells representing the pair-
wise comparison of similar MSAs – i.e. those with shift scores near
1.0 – are highlighted in a bluish tone. In contrast, yellow colored
cells indicate slightly different MSAs while those highlighted in
red represent MSAs with different structure. Further details about
single comparisons such as the corresponding MSAs and scores are
shown in a tooltip by moving the mouse cursor over specific cells.
Additionally, the user can sort the matrix by one of the implemented
quality measures (see Section 3.2). This allows the user to get a fast
overview of the overall quality of the dataset and the selection of
interesting or conspicuous MSAs. For example, it enables a global
scale analysis of the impact of different MSA algorithms or scoring
models such as different substitution matrices and gap penalties.

Other challenges arise for the visual comparison of multiple al-
ternative MSAs on local levels by comparing their inner structure.
For example, one challenge is to visualize local differences in the
pairwise comparison of two alignments. Another is the simultane-
ous assessment of local differences of a single MSA to all other
MSAs in order to detect consistently aligned regions over the whole
dataset. Since these regions are assumed to be correctly aligned
(Section 2.1), this comparison can be especially helpful for non-
expert users because it enables an easy assessment of alignment
quality.

As mentioned in Section 3.1, we first address these challenges
in an automatic fashion: We calculate the aforementioned Average
Residue Shift and Global Residue Shift scores for each residue in
an alignment with respect to all other alignments in the dataset. Af-
terwards, we use these scores to visually highlight differently and
consistently aligned residues using transparency or different colors
based on user selectable colormaps (Fig. 6). We offer two com-
parison modes: The first mode emphasizes this information with
respect to a user selectable reference alignment and allows the pair-
wise visual comparison of MSAs. The second mode shows this in-
formation with respect to all MSAs which allows the detection of
high quality regions in the whole dataset at once.

An example for these comparison view modes is shown on the
left side in Fig. 6. Two MSAs are compared in detail with the ref-
erence MSA shown on top as indicated by the red title bar. Lo-
cal per residue differences in the lower MSA with respect to the
reference MSA – i.e. Average Residue Shift values (Section 3.1)
– are highlighted using the "Red Yellow Blue" colormap. Consis-
tently aligned regions are highlighted in blue while slightly and
completely different regions are indicated by yellow and red col-
ors, respectively. This allows the direct visual assessment of local
alignment differences and similarities. In contrast, the highlights
shown in the reference alignment are based on the Global Residue
Shift (see Section 3.1) indicating per residue alignment differences
with respect to the whole dataset. This enables the visual compari-
son of each residue in a global context.

One interesting aspect in the analysis of the per residue align-
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Figure 5: Illustration of our MSA Visualization approach. Left: An example MSA shown with a custom appearance mapping focusing on
two chemical properties. While cyan circles depict hydrophilic amino acids, red circles represent hydrophobic amino acids. Other amino
acids are shown as dark gray stars in order to prevent visual distraction. Right: The same MSA using the BLOSUM62 style set which visually
emphasizes the amino acid similarity information encoded in the BLOSUM62 substitution matrix. A group of acids with high matrix values
to each other is highlighted with a specific color, shape and texture. For example, the aliphatic amino acids I, L, M and V are colored in
red using hexagonal shapes. The texture of these acids is used to distinguish their different acid types inside a group. While the color of a
group is unique and thus represents the most important visual similarity feature, the shape is also used to indicate weaker similarities across
groups. For example, the pink and green squares represent acids that belong to different groups but still have similarities to each other.

Figure 6: Illustration of our visual MSA comparison approach. Left: A pairwise comparison of two large MSAs with the reference alignment
shown on the top. The MSA shown at the bottom highlights local alignment differences and similarities with respect to the reference alignment.
Consistently aligned regions are colored in blue while slightly or completely different regions are colored in yellow and red respectively. In
contrast, the same colors in the reference MSA indicate this information on a global level, i.e. with respect to all other MSAs in the dataset.
Right: A zoomed part of the reference MSA (white box) using the transparency mode. The view is filtered using a Global Residue Shift score
threshold of ≥ 0.12 in order to focus only those residues that are consistently or slightly differently aligned in the whole dataset.

ment differences is the magnitude of the individual shifts. To sup-
port this analysis on a more detailed level, the user can set a thresh-
old to filter residues with shift values smaller or greater and equal
a specific threshold (see Fig. 6, right). Here, a small part of the ref-
erence alignment is shown in more detail (indicated by the white
box on the left). This zoomed part of the reference alignment uses
the transparency view mode and a Global Residue Shift threshold
of ≥ 0.12. Hence, only residues above this threshold are shown
fully opaque to emphasize those regions that are consistently or
only slightly different aligned with respect to whole dataset. Fur-
thermore, the user can select specific or multiple residues in any

alignment to highlight their corresponding counterparts in all other
MSA Views (see center of Fig. 1). This allows an on demand detail
analysis of local alignment differences and similarities.

In summary, the comparison view mode allows a fast detection of
consistently aligned regions on a global level – i.e. over the whole
dataset – and locally with respect to the selected reference MSA.
Since, consistently aligned regions over a large set of alignments
are usually assumed to be correctly aligned [VA90], this mode al-
lows to effectively judge alignment quality on a global and local
level.
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3.5. Visual Quality Analysis of MSAs

The second focus of our approach is the visual quality analysis of
single MSAs solely based on their inherent inner structure. The
challenge here is to provide reasonable quality measures and to vi-
sualize them in a comprehensible way. Similar to the comparison
modes, we address this by offering the user several quality overlays
which highlight well and potentially badly aligned residues using
color and transparency. Again, this information is based on differ-
ent automatic quality criteria (Section 3.2).

The visual quality assessment of an example MSA using differ-
ent overlays is shown on the right side of Fig. 1. The quality over-
lay on the left highlights columns with different conservation based
on the Symbol Identity measure and using the transparency mode.
Analogous to the comparison mode, the user can also switch to a
colormap and can filter the shown results. For example, the user
can toggle the filter mode to focus on highly conserved columns
instead of those with different conservation. This overlay provides
a first but rough overview about locally good or potentially bad
aligned MSA regions.

On the right side, the overlay uses our novel quality measure
Cluster Shift for indicating potential misalignments. Here three dif-
ferent residue types are visually emphasized which could eventu-
ally be better aligned. The user can now easily correct these mis-
alignments by selecting and adjusting the corresponding residues.
Afterwards, these conspicuous regions are no longer highlighted
indicating a local quality improvement of the alignment.

4. Results and Discussion

For the evaluation of our approach, we created a set of 104 alter-
native alignments of 211 HCN (Hyperpolarizationactivated cyclic
nucleotide-gated) ion channel proteins using different algorithms
and parameter settings (Sections 4.1 and 4.2). HCN ion channels
are important for the functionality of cells in the heart and we
thus address current research interests in biomedicine. To obtain
our 211 sequences we run a BLAST search using as a query the
known sequence gi355749904.As a threshold in the E-value
we used 0.00001. In addition, we kept only those sequences anno-
tated as "hyperpolarization" and "cyclic". In a third step, a molec-
ular biologist and bioinformatician deleted thirteen additional se-
quences as non-hits. In total, we obtained a set of 211 valid HCN
sequences [HBW∗14].

Our evaluation covers two common analysis tasks that may oc-
cur when creating MSAs. Our first goal is to investigate alignment
differences and similarities that are induced by the usage of differ-
ent MSA algorithms with their default parameters. This covers the
scenario that a user – and in particular a non-expert user – wants
to create an MSA but does not know which MSA algorithm and
which parameter setting to choose. Our second goal is to analyze
the impact of different scoring models on the resulting MSAs when
using a specific MSA algorithm. This analysis task represents the
scenario that a user has chosen a favorite algorithm but is unsure
which parameter settings work best for the given task. In the fol-
lowing sections, each scenario is discussed in detail.

4.1. Analysis of the impact of different MSA algorithms

One goal of our evaluation is to analyze the impact of different
MSA algorithms on the resulting MSAs. We evaluated 8 MSAs
generated with ClustalW2, ClustalOmega, MUSCLE, Kalign and
MAFFT using their default settings. For the latter, we additionally
used its three different high accuracy modes. In order to detect dif-
ferences between the generated MSAs on a global level, we com-
pared them using our Similarity Matrix View (Fig. 7). Here, the
overall similarity between the MSAs was relatively high with MSA
Shift Scores of≥ 0.9. In order to visually emphasize the differences
between these scores, we switched the Similarity Matrix View to
show the min/max normalized scores. Not surprisingly, the four dif-
ferent MAFFT parameterizations (columns 1 to 4) produced similar
alignments with the Default MAFFT MSA being the most different
one. In contrast, larger differences between the MSAs generated
by MUSCLE, ClustalW2 and Kalign can be observed with normal-
ized MSA Shift scores of < 0.12 as indicated by the red cells. These
alignments are also quite different to the four MAFFT MSAs with
maximum MSA Shift scores of∼ 0.32 for MUSCLE and ClustalW2
and ∼ 0.52 for Kalign, respectively. Interestingly, the MSA calcu-
lated using ClustalOmega (most right Column) is very consistent
with all other MSAs.

For a detailed analysis, we compared the MUSCLE MSA with
the ClustalOmega MSA selected as reference (Fig. 7, right). Here,
the leading parts of these large alignments are shown with the
ClustalOmega MSA depicted at the top. Interestingly, the residues
on the right side of the ClustalOmega MSA – i.e. the center of the
MSAs – are highlighted in blue. This indicates that the blue re-
gions are consistently aligned in the whole dataset independent of
the chosen MSA algorithm and thus can be assumed to be correctly
aligned. In contrast, the residues at the beginning of the sequences
differ to a greater extend. This is visually emphasized by the white
highlights showing selected residues in both MSAs. In MUSCLE
these regions are more compactly aligned, while ClustalOmega
tends to generate more spread out alignment blocks.

4.2. Analysis of the impact of different scoring models

In the second part of our evaluation, we analyzed the effect of
using different parameter settings with the same algorithm. We
selected the MUSCLE algorithm as basis for our evaluation be-
cause MUSCLE is reported to be one the most accurate MSA algo-
rithms. Using MUSCLE, we constructed three different MSA sub-
sets based on the BLOSUM50, BLOSUM62 and CorBLOSUM49
matrix and different gap penalties. For the latter, we varied the gap
open penalties between 5 and 20 and the gap extension penalties be-
tween 1 and 2, respectively. Similar to the first evaluation, we first
investigated the MSA differences on a global level. Again, we an-
alyzed the pairwise MSA similarities using normalized MSA Shift
scores since the overall MSA similarity is rather high.

As shown in Fig. 8, the similarity of the created MSAs varied
depending on the chosen substitution matrix. The MSAs based on
the CorBLOSUM49 matrix showed mixed results. Here, the most
consistent MSAs are those generated with relatively high gap open
penalties. While the overall similarity of MSAs generated using the
BLOSUM50 matrix is rather small, BLOSUM62 produced more
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Figure 7: Left: Shown is the Similarity Matrix View depicting the pairwise comparison of the eight MSAs calculated by the different algo-
rithms using their default settings. Right: The detailed comparison of the MUSCLE MSA (bottom) with the ClustalOmega MSA (top) selected
as reference for the comparison. While the residues on the right side of the MSAs are consistently aligned (indicated by the blue colored
residues), those red colored residues at the beginning of the sequences differ to a greater extend. To analyze these differences in more detail,
a set of residues is selected in the upper MSA (white colored residues) to highlight their exact alignment differences in the lower MSA (white).

CorBLOSUM 49

BLOSUM 50 BLOSUM 62

Figure 8: Assessment of the impact of different scoring models on the MSAs using MUSCLE. Left: The Similarity Matrix Views showing the
overall MSA similarity for each of three MSA datasets. The usage of the BLOSUM62 produced the most stable MSAs. Right: Comparison
between two BLOSUM62 MSAs generated with different gap open penalties. The reference MSA shown at the top was constructed using
a gap opening penalty of 16, while the MSA on the bottom was calculated with a gap opening penalty of 5. The gap extension was set to
2 for both MSAs. As expected, the lower MSA shows more gaps in total on the left side, while the MSA on top is aligned more compactly.
Independent of the chosen penalties, both MSAs consistently aligned the highly conserved regions on the right (blue).

consistent alignments. In summary, the most consistent MSAs were
constructed using high gap open penalties of ≥ 12. The gap exten-
sion penalty showed no apparent impact on the consistency of the
generated MSAs.

In order to analyze the influence of the chosen gap penalties on
a local level, we compared two different BLOSUM62 based MSAs
in detail (see Fig. 8). Here, the BLOSUM62 MSA based on a gap
opening penalty of 16 was chosen as reference shown on top. At
the bottom, the comparison MSA based on a gap opening penalty
of 5 is shown. As expected, the lower MSA shows much more gaps

in total on the left side, while the MSA on top is aligned in a more
compact way. The highly conserved regions on the right (blue) are
aligned consistently independent of the chosen penalties.

5. Limitations and Future Work

Even though our approach provides several benefits for the visual
comparison and analysis of MSAs, there are still some limitations.
Our approach only supports basic MSA editing in comparison to
other tools, e.g. we do not provide auto-alignment or masking
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mechanisms to hide specific parts of large alignments. Addition-
ally, our evaluation is focused on the analysis task only and does not
directly investigate the chosen visualizations. We plan to address
these issues in the future. Additionally, we would like to integrate
further quality criteria and information such as protein secondary
structure to provide an even better MSA analysis approach.

6. Conclusion

We presented a novel interactive visual comparison and analysis
approach to assess the quality of a set of alternative Multiple Se-
quence Alignments. Our approach combines automatic compari-
son and quality measures with different highlighting techniques to
reveal differently and consistently alignment regions on global and
local levels. This enables the users to visually explore, compare and
analyze multiple alternative MSAs in order to assess their quality.
We evaluated our approach on a large set of alternative MSAs based
on real biological data (211 HCN ion channel proteins) that have
current research interests in biomedicine. Here, we were able to as-
sess the impact of different MSA algorithms and scoring models
on the resulting alignments. In particular, our approach revealed
consistently (and thus probably correct) aligned regions and was
able to highlight alignment differences on a per residue level. This
information led to a better understanding of different alignment pa-
rameters and enables a more reliable selection of a representative
alignment for the use in further applications such as protein struc-
ture prediction.
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