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Abstract

Multi-view stereo reconstruction techniques yield
inherently multi-scale point data typically fed into
surface reconstruction algorithms. Following the
intuition of scale space we assume that sample
points originate from smoothed versions of the orig-
inal surface. The smoothing can be characterized
by a smoothing kernel that suppresses fine-scale
structures. In this paper, we propose a surface re-
construction framework that correctly handles this
multi-scale input data. We represent the surface us-
ing a multi-resolution analysis allowing us to re-
construct scales separately and to merge the sam-
ple points in frequency space. With an underlying
wavelet basis we are able to locally model surface
detail according to the surface properties or sample
distribution. We first demonstrate the effectiveness
of our method on a synthetic data set with known
smoothing. For real-world data obtained by multi-
view stereo we estimate the smoothing kernel and
present reconstruction results with enhanced detail.

1 Introduction

Surface reconstruction from (unorganized) sample
points is a well-researched area but also a contin-
uous challenge. Popular methods include the pio-
neering work of Hoppe et al. [12], range image inte-
gration (VRIP) proposed by Curless and Levoy [8],
and Poisson surface reconstruction by Kazhdan et
al. [17]. Recent papers [10, 23, 26] give a de-
tailed overview of the various methods available
today. The focus of this paper lies on the multi-
scale component inherent to many reconstruction
techniques such as multi-view stereo. These ap-
proaches are able to deal with large scenes, for ex-
ample comprising entire cities [1], and a mixture
of various cameras ranging from mobile phones to
digital SLRs. Drastically different object-to-camera

Figure 1: True surface (black) and multi-scale sam-
ple points (red—coarse, green—medium, blue—fine).
Top: Input data. Middle: Reconstruction (magenta)
treating all sample points equally. Botfom: Our re-
construction which takes scale into account and fol-
lows the true surface more clearly.

distances and varying image resolutions automati-
cally yield multi-scale sample points. When talking
about scales of a surface we typically think of grad-
ually removing detail structures of the original sur-
face with a low-pass filter, which we model using a
smoothing kernel. The main characteristic of multi-
scale input data is that the samples are taken from
successively smoothed versions (i.e., scales) in con-
trast to the simple case where all samples originate
from the same scale (see the reconstruction in Fig. 1
top). In fact, it is commonly assumed that the in-
put points are real point samples of the original sur-
face implying that no or very little smoothing is in-
volved (Fig. 1 middle). The first, and to our knowl-
edge the only, to consider the multi-scale proper-
ties of sample points in a surface reconstruction al-
gorithm are Fuhrmann and Goesele [10]. They es-
sentially remove coarse-scale data points (originat-
ing from strongly smoothed versions of the origi-




nal surface) in areas where fine-scale points (less
smoothed) with high confidence are available. Us-
ing this heuristic they are able to achieve impres-
sive results on real world data sets. However, they
rely on the correlation of resolution and scale sug-
gesting that fine-scale sample points are usually
present in higher resolution than coarse-scale sam-
ples. Also, discarding samples is a binary decision
and information might be thrown away that could
have been useful to close holes or even improve the
fine-scale reconstruction. In summary, the funda-
mental problem of how to correctly merge multi-
scale data points, i.e., combine the coarse- and fine-
scale data instead of discarding the former, is still
not convincingly solved.

In this paper we propose a reconstruction frame-
work for 2.5D height field representations (Sec. 3)
that explicitly models and incorporates the multi-
scale properties of the input data (Fig. 1 bottom).
We use the concept of multi-resolution analysis
(multi-scale approximation) of the original surface.
With the generating scaling functions and wavelets
we are able to simultaneously decompose the sur-
face in space and frequency domain. Given sample
points with known or approximated smoothing ker-
nel we show how the original surface can be recov-
ered correctly. Hereby, our surface representation
allows for locally varying degree of detail accord-
ing to surfaces shape and sample point distribution.
For practical application (Sec. 4) we add a regular-
ization term to the surface recovery and integrate
everything into one quadratic program. We further
propose a specific wavelet representation and dis-
cuss the scale estimation in the context of multi-
view stereo. Finally, we show results demonstrat-
ing the effectiveness of our method (Sec. 5) and
conclude the paper with an outlook on future work
(Sec. 6).

2 Related work

Classic surface reconstruction methods work on
regularly sampled, some also on multi-resolution
data points [8,12,17,26]. The data is assumed to be
single-scale which means that all points share the
same noise model with the true surface as mean. A
few recent approaches deviate from this paradigm.
Klowsky et al. [20] use a Gaussian noise model
but assign to each sample point a different standard
deviation. They build a confidence volume repre-

sented in an octree and compute a minimum cut to
reconstruct the surface (similar to other graph-cut
based methods [3, 13,27]). Fuhrmann and Goesele
[10] integrate depth maps, similar to VRIP [8], into
a hierarchical signed distance field (hSDF). They
subsequently prune the hSDF removing coarse-
scale data in regions where fine-scale data is avail-
able. The final surface is then extracted using a vari-
ant of the marching tetrahedra algorithm. Bailer et
al. [2] handle the scale problem in a similar man-
ner and also select locally the highest scale re-
construction available. Zach et al. [31] integrate
range images into a global signed distance field and
add a regularization term that minimizes the total
variation (L1-regularization) of the SDF. Some of
these methods support multi-resolution representa-
tions with locally varying level-of-detail and are ca-
pable of producing impressive results even on un-
controlled multi-view stereo data sets. However,
none of them combines data from different scales
while modeling the different degree of smoothing,
i.e., sample points are still assumed to lie on the
true surface when neglecting noise.

Pauly et al. [25] clarify the difference between
multi-scale and multi-resolution surface representa-
tion. They use approximate low-pass filters to cre-
ate a point-based multi-scale surface representation
for the context of surface editing. Kazhdan [16]
incorporates Fourier theory for surface reconstruc-
tion. The method aims at recovering the characteris-
tic function of the solid by reconstructing its Fourier
coefficients. While theoretically well founded the
method requires summing over all input points to
compute each single Fourier coefficient. This is
computationally extremely expensive and implies
that a single point influences the entire model which
is counterintuitive. It also requires some heuristics
to process non-uniformly sampled data. In a re-
cent work, Digne et al. [9] propose a scale space
meshing method that implements the mean curva-
ture motion (MCM) on the raw point set. They re-
construct a smooth mesh first and then revert the
MCM. It would be interesting to investigate han-
dling of multi-scale data with this approach.

Several authors proposed surface reconstruction
methods using smooth basis functions possibly in-
tegrated in a wavelet space. In the early work of
Pastor and Rodriguez [24] spherical wavelets are
used which naturally limits the application to ob-
jects that are topologically equivalent to a sphere.



Carr et al. [5] reconstruct smooth surfaces on the
basis of smooth radial basis functions from noisy
data. By computing the Fourier coefficients Kazh-
dan [16] actually represents the indicator function
using dilations and translations of the sine function.
Manson et al. [23] improve on this idea and apply
wavelets instead, exploiting the local support to de-
crease complexity. A direct surface representation
in Monge’s form, as used in this paper, was pro-
posed by Johnson et al. [15]. They use B-Splines
and associated wavelets for scattered data recon-
struction and give a theoretical error analysis. For
better preserving depth discontinuities Ji et al. [14]
seek for a piecewise smooth approximation in tight
wavelet frames. In contrast to our work, all of these
and other related methods in scattered data inter-
polation do not tackle the problem of multi-scale
input data as we do in this paper. Also, the multi-
scale structure of the basis functions is not exploited
in order to adjust the granularity of the final recon-
struction according to the input data.

3 Reconstruction framework

The basis of our reconstruction framework is a sur-
face representation that allows us to operate on dif-
ferent scales of the surface. With that we can model
surfaces with locally varying detail, either due to
the surface itself or due to the distribution of the
sample points. The classic Fourier transform is
unsuited due to boundary handling issues and the
missing locality. The latter also implies a constant
frequency resolution over the entire space without
taking into account the actual sample distribution.
This involves the risk to hallucinate high frequency
details in regions that are not sampled at all. In the
following we first introduce our surface representa-
tion and describe afterwards how the surface can be
recovered correctly from multi-scale sample points.

3.1 Surface representation

In this paper, we use an explicit surface represen-
tation assuming the surface can be parameterized
as a height field f(x). For simplicity the follow-
ing derivation is for the 1D case x € R but it can
be easily extended to higher dimensions applying
standard multi-dimensional wavelet construction as
described by Mallat [22, Ch. 7.7]. We embed the
surface in a multi-resolution analysis, written ac-
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Figure 2: Multi-resolution analysis of a 1D surface.
The detail level j increases from top to bottom and
local surface details become visible.

cording to the notation of Stollnitz et al. [29, Ch.
7] as
VoC V| CV,...CL*R) (1

where V can be thought of containing very smooth
surfaces and with increasing index j in V; more de-
tail can be added (see Fig. 2). Eventually all possi-
ble surfaces f € L*(R) are included. The comple-
ments of V; in V; are denoted by W such that

Viiri=V;j+W; j>0. )

The V; are spanned by shifted and dilated versions

0j1 = 0(2/x — 1) of the father wavelet (or scaling
function) ¢ and the W by shifted and dilated ver-
sions y;; of the mother wavelet y, respectively.
With that the surface f can be represented by its
wavelet decomposition

o
Fx) =Y coidos(x)+ Y. Y djwii(x) (3
/ j=0"1

where the ¢(; denote the scaling function and the
d; | the wavelet coefficients. One can think of mod-
eling the rough shape through the cp; and then
adding more and more details with increasing j by
activating the d; ;. Typically, the (effective) support
of the y;; decreases with increasing j so that sur-
face details can be modeled locally. Since V; =
Vo+Wo+...+W;_ one could also start with
scaling functions of higher level. Also, in practice
one has to cut off somewhere resulting in the more
general representation:

Jmax

FE) =Y e+ Y, Ydiw(x). @
7

J=Jo 1



Without loss of generality we will in the following
assume jy = 0 and for convenience we will use the
equal sign although we refer to the approximation.

3.2 Surface recovery from samples

Given ideal point samples (x;,y;)i—1, ..y from the
surface with y; = f(x;) we have a linear system of
equations

Jmax

yi = ZCOJQ)()J(X,') + Z Zdj,le,l(xi) (&)
l J=01

and the coefficients cp;,d;j;,0 < j < jmax as un-

known variables. We can rewrite Eq. (5) in ma-
trix form using a short vector notation as per y; =

ERTSYR L
0p(x1) Wy (x1) vl () flg i
T (ov) Wl ) v |, v

Jmax
(6)
For multi-scale samples, i.e., sample points from
the gradually smoothed surface, we assume that
for each sample (x;,y;) the convolution kernel g; is
known such that

vi = (&i* f)(xi). (7

This is a very general setup since we do not commit
ourselves to a particular smoothing kernel. In stan-
dard scale-space, with a Gaussian convolution, it is
just the standard deviation G; that varies among the
samples but here we allow for other kernels (e.g.,
Laplacians, splines, or box filters) as well. Note that
ideal point samples are also covered by simply us-
ing the Dirac delta function g;(¢) = 8(¢ — x;). With
Eq. (7) the linear system changes to

yi = (&i* f)(xi) (8)

jmax
= <8* (Zco,z%,z +) Zdj,lllfj,l)> (i)
] =01

Jmax

=Y cosgix00)(xi)+ Y, Y dji(gixwig)(x).
7 7

)

Jj=0

Again, we can write Eq. (9) in matrix form similar
to Eq. (6) replacing the basis functions in the matrix
with the respective convolutions. In the following

we will denote the resulting matrix by ¥ resulting
in the linear system

Yd =y. (10)

with d covering scaling function and wavelet coef-
ficients.

By definition wavelets fulfill [;; = 0 and with
increasing scale j the y;; become narrower. As a
consequence, the convolution with the smoothing
kernel (g * ;) will diminish towards zero as j in-
creases. In other words, a sample point’s signifi-
cance on the wavelet coefficients d;; decreases. At
the same time, a coarse scale sample point has less
influence on coefficient d;; than a fine scale sample
point at the same position because the convolution
kernel g is broader. In this way, we respect all given
samples but prevent coarse scale samples from in-
terfering with fine scale surface structures.

4 Surface reconstruction

Samples given in a real application are disturbed by
noise and regions are irregularly sampled regarding
density and scale. The consequence is that the linear
system (10) cannot be solved exactly and we have to
formulate an optimization problem. We introduce
and discuss a regularization to avoid over-fitting and
formulate the entire problem as a quadratic pro-
gram. Thereafter we discuss how the smoothing
kernel g; can be estimated or even influenced in the
context of multi-view stereo sample points and ex-
amine whether an optimal kernel exists. At the end
of this section we review a particular wavelet family
which we use in our experiments.

4.1 Optimization

The main problem we face when fitting a function
to sample points is to reconstruct a smooth surface
while still modeling the details. Besides the pres-
ence of noise and sparse sampling our model has a
more inherent problem of over-fitting. When trying
to recover fine scale details that are not sufficiently
supported by the data, the entries of an entire row
of the matrix W vanish, and there is almost no con-
trol on the corresponding wavelet coefficients d; ;.
One way to counteract this is to decrease the max-
imum scale jmax but this effect might just be lo-
cal and we do not want to decrease the overall de-
tail level according to the worst represented region.



Consequently, a regularization is necessary that pre-
vents all kinds of over-fitting. We add a penalty
on the second order derivatives similar to Calakli
and Taubin [4] and solve the following optimization
problem

minimize (1% —y|*+2 [ 17| dx
an

where f denotes the final surface represented as in
Eq. 4. Hf(x) is the Hessian containing the second-
order partial derivatives of f and ||Hf(x)|| is the
Frobenius norm of the matrix H f(x). Note that the
smoothing term automatically affects regions with
low-scale samples more than regions where high-
scale samples are present because the correspond-
ing coefficients are less restricted. We can reformu-
late the problem into a quadratic program

. 1T 2 T
A —¥Tw 0% ld - SyTwd (12
mlmdmlze [ N +A10°] Ny (12)

where the matrix Q° is the contribution of the sec-
ond order derivative term. It consists of
Q?Xﬁ = / < Hya(x),Hxpg(x) > dx. (13)
where we used the indices o and B to consecu-
tively number the basis functions ¥ which are ei-
ther scaling functions or wavelets. The matrix Q =
]%,‘PT‘P + AQ’ is symmetric and positive definite,
so problem (12) can be solved using a large-scale
quadratic program or linear system solver.

4.2 Scale estimation

Until now we assumed that the convolution ker-
nels g; are known. However, it is not clear how
to determine the kernel for given sample points in
a real world application. All we can do is look for
a good approximation of g;. Klowsky et al. [18]
give an approximation of the smoothing kernel for
patch-based depth reconstruction. They show that
the window based photo-consistency optimization
between images leads to sample points that lie on
a box filtered version of the original surface. The
width of the box filter can be computed from the
pixels footprint, i.e., the projected size of the pixel
spacing in world space, multiplied with the window
size in pixels. In a follow up paper [19] they apply a
weighted photo-consistency optimization for depth
reconstruction and show that the convolution kernel

is equal to the applied weighting function (accord-
ingly scaled to match the world-coordinate system).
This not only allows us to estimate the convolution
kernel g; for the samples but to actively influence it
during creation of the sample points. We will ex-
ploit this in our experiments in Sec. 5.

4.3 Optimal smoothing kernel

Before presenting the results of our method we want
to spend some extra thought on choosing the opti-
mal smoothing kernel. Ideally, the way the samples
are generated matches the multi-resolution analysis
used for the surface representation. In other words
the significance of a sample point vanishes com-
pletely for all wavelet coefficients d;; with j larger
than the sample’s scale. How can this be modeled?

In the case of (semi-)orthogonal wavelets we have
< 0ok, V¥j; >=0, forall j > 0. (14)

If we further assume symmetric scaling functions
we can establish the following relationship between
the inner product and the convolution

<Qox,Yj1>= /¢(l —k)y;(t)dt (15)

= (0xyj)(k) =0.

That is, if we had g;(zr) = 0(¢) as the convolution
kernel and samples at the integer positions x; € Z
we would get

yi=(0xf)(x) =Y cos(0x0)(xi+1). (A7)
g

(16)

Having this kind of sample points we could solely
solve for the scaling function coefficients ¢ ;. Fol-
lowing this path, with g;(¢) = ¢(2/r) and sampling
positions x; € {277k, k € Z} one could obtain the
wavelet coefficients up to d; ;. Note that in
such a scenario the inherent over-fitting discussed
in Sec. 4.1 is removed to a large extent.

Unfortunately, due to obvious reasons this is not
achievable in practice: Firstly, we are very likely to
not exactly hit the desired sampling positions and
secondly we are incapable to (exactly) control the
dilation of the smoothing kernel. In addition, we
lose the possibility to exploit redundancy by sam-
pling more positions than actually required. There-
fore it remains a thought experiment and in practice
we prefer to choose a smoothing kernel that behaves
well and simplifies computations.



4.4 Spline wavelets on the interval

We now further specify the surface representation.
Because the observed surface will always be of fi-
nite extent we can only identify corresponding co-
efficients. Consequently, there is no point in de-
scribing the surface using wavelets on the entire R?
(or R) which would lead to border handling prob-
lems. Therefore we employ wavelets on bounded
intervals, w.l.0.g. on [0, 1].

For our implementation we decided to use spline
wavelets. From a variety of good reasons to do
so (see Unser et al. [30]) we out point two: First,
closed form solutions exist, not only for the basis
functions but also for the convolution with, e.g., a
Gaussian. Second, the basis functions are smooth
allowing us to easily represent smooth surfaces.
In the following we will shortly review the semi-
orthogonal spline wavelets on L ([0, 1]) which were
initially introduced by Chui and Quak [6] (see also
Stollnitz et al. [29]). They are a natural extension of
the semi-orthogonal spline wavelets on L?(R) de-
veloped by Chui and Wang [7].

A basis for V; is given by the B-splines B ;
with i = —m+1,...,2/ — 1 which are defined as
follows:

Bipmj= () =t D D g — !

i oeolipm +
(18)
. 0, k=-m+1,...,0
(D =g k=120 -1 (19)
1, k=22 +m—1

where m denotes the spline order and the term
[-,..., ] refers to the m-th divided difference of
(r —x)"~! with respect to . The inner scaling
functions B, j, for i = 0,...,2j — m, are equal
to the scaling functions for L?(R) which are just
dilations and translations of the cardinal B-spline
Nin(x) =m[0,1,...,m];(r —x)"

,2j —m.

(20)

The inner wavelets are equal to the Chui—Wang
wavelets of order m:

0;i(%) = Bim. j(x) = Nu(2/x—i), i=0,...

1 2m—2
\l’j,i(x)=22m—_l Y (=D Ny (k+1)

k=0

B(M) (j+1) (x).

it+k,2m.t; @1
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Figure 3: The seven scaling functions (/eft) and four
wavelets (right) on the interval for j = 2 spanning
Vs.

We refer to Chui and Quak [6] on how to construct
the border wavelets in the general case. For cubic
splines (m = 4) the coefficients of the refinement
equation are given in [29, App. B]). Figure 3 shows
the scaling functions and wavelets for j = 2. For the
results presented in next section we use the tensor
product wavelets on [0, 1]°.

5 Results

To apply our technique in practice, all we have to do
is set up the matrices in Equation (12) and solve the
quadratic program in order to determine the coeffi-
cient vector d for the wavelets. In all experiments
we assume that the final surface can be described
as a height field z = f(x,y) with (x,y) € [0,1]%.
This is realized using a rigid transformation plus
an additional scaling, thus easily invertible after re-
construction. Instead of comparing our method to
some arbitrary other method we decided to use our
framework and neglect scale setting the convolution
kernel g to be the Dirac delta function. This corre-
sponds to the commonly used assumption of other
methods that sample points lie on the true surface
(plus zero-mean noise).

5.1 Synthetic data

We start with a synthetic data set where we know
both the ground truth surface (see Fig. 4 (left)) and



Figure 4: Left: Ground truth surface from which we generate low- and high-scale samples. Middle: Our
reconstruction taking scale into account. Right: Treating all samples as real point samples neglecting the
scale.

true surface
point samples|
scale-aware
T T

Figure 5: A segment of the central horizontal scan-
line through the geometry in Fig. 4 showing that
our scale-aware reconstruction accurately follows
the ground truth.

its wavelet decomposition. The input to our method
are sample points from the convolved version of this
surface using a Gaussian with known standard de-
viation 6. We generate 20,000 sample points from
which % are uniformly sampled over [0,1]> with

6 = 0.01 (low-scale), and % are uniformly sampled
on a centered circle with radius 0.25 with ¢ = 0.002
(high-scale). For the reconstruction we use jj = 4
and jmax = 6, i.e., using scaling functions ¢4 . and
wavelets Wy ., Y5 ., Wg .. The smoothness weight is
A = 1072, The result of our method can be seen
in Fig. 4 (middle) compared to neglecting scale in
Fig. 4 (right). The benefit of taking the scale into
account, even in the areas with only low-scale sam-
ple points, is clearly visible. Fig. 5 shows a seg-
ment from the center horizontal scanline that con-
firms this impression.

In Fig. 6 we demonstrate the effect of the smooth-

ness weight. We reconstruct effectively on the same
scale, that is in V7, but using scaling functions ¢ .
and wavelets Yg .. Now, the smoothing kernel is
roughly as big as the basis function and there is only
very small or no data force on the basis function
coefficients leading to “ripple” artifacts. The same
effect can be caused by under-sampling. Then the
smoothness weight A has to be chosen accordingly
to prevent introducing high-frequency artifacts.

5.2 Real-world data

To test our algorithm on real-world data we took
174 images of a relief on a stone wall (see Fig. 7).
We registered the images using structure-from-
motion [28] and reconstructed depth maps per view
using a multi-view stereo implementation similar
to Goesele et al. [11]. In contrast to them we use
a weighted photo-consistency optimization. More
precisely we use a patch of size 21 x 21 pixels
in image space and apply a Gaussian with ¢ = 4.
We use such a big patch to get less noise in the
reconstruction and to achieve a reasonably sized
smoothing kernel to better visualize the effect of
our method. The input images have a resolution of
about 1000 x 666 pixels. According to Klowsky et
al. [19] we can then estimate the smoothing kernel
g to be a Gaussian as well with a scaled standard
deviation depending on the internal camera param-
eters and the estimated depth. In order to meet the
height field assumption we fit a plane to the feature
points obtained by structure-from-motion and com-
pute a transformation that maps it on the x, y—plane.
As input to our method we merge the reconstructed
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Figure 6: The starting scale jy = 6 is chosen higher than in Fig. 4 resulting in less supported coefficients
of the scaling function. (a) A small smoothness weight (A = 10_12) can lead to artifacts. (b) Choosing
a larger weight (A = 10719) fixes this problem. (c¢)+(d) Using the same smoothness weights (A = 10-12
and L =10"19, respectively) but assuming all samples are real point samples. This variant is naturally less

sensitive to the smoothness weight but also preserves less detail.

Figure 7: Example input images of the Relief data
set.

points from 6 depth maps covering a range of about
factor 3 in scale, i.e., Omax = 30y, This yields a
total of about 1.6 million points.

We reconstruct a surface using jo = 5 and jmax =
6, i.e., using 352 = 1,225 scaling functions ¢s .
spanning Vs, 3,264 wavelets 5. spanning Ws,
and 12,672 wavelets g . spanning Ws. In total
we optimize for 17,161 basis function coefficients.
Fig. 8 shows the comparison between our scale-
aware (left) reconstruction and using the same setup
but ignoring scale (center), i.e., treating all samples
as real point samples with zero-mean noise. De-
tail in the middle and lower part of the rendering is
emphasized while some artifacts from multi-view
stereo become more visible.

-0.01

point samples|
scale-aware
)

-0.02

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 9: A profile of the Relief reconstruction (see
Fig. 8) showing that our scale-aware reconstruction
preserves more detail than treating all samples as
real point samples.

6 Conclusion and future work

We present a general surface reconstruction frame-
work that incorporates the (multi-)scale property of
the samples points. To our knowledge we are the
first to dissolve the paradigm of point samples that
lie on the true surface but still incorporate all data
in the reconstruction process. Using the concept of
multi-resolution analysis we can merge the sample
points in frequency space while still maintaining lo-
cality due to the wavelet basis. On synthetic data
we demonstrate clearly that our method correctly
integrates the multi-scale input data. The real-world
example indicates the improvement of our method
as well, however, we have to struggle with regis-
tration errors and multi-view stereo artifacts. As
pointed out by Klowsky et al. [19] the modeling
of the multi-view stereo reconstruction is imperfect
and thus the estimated smoothing kernel is not accu-
rate. Experience from the image domain (e.g. Levin
etal. [21]) suggests that a better kernel estimate will
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Figure 8: Reconstruction using jo = 5 and jmax = 6. (a) Taking scale into account preserves more detail
compared to treating all samples as real point samples in (b). The colored mesh (c) has vertex positions
identical to (b) and the vertex colors encode the differences in height compared to (a). Changes mainly

affect the edges since we amplify high frequencies.

likely improve reconstruction quality. The biggest
limitation of our method is probably the current re-
striction to height fields. Using an implicit sur-
face representation, e.g., the signed distance field,
it would be possible to extend the method to a more
general class of surfaces. We do, however, face the
problem that it is still unclear how reconstruction
techniques affect the signed distance field.
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