Hierarchical surface reconstruction from
multi-resolution point samples

Ronny Klowsky, Patrick Miicke, and Michael Goesele

TU Darmstadt

Abstract. Robust surface reconstruction from sample points is a chal-
lenging problem, especially for real-world input data. We present a new
hierarchical surface reconstruction based on volumetric graph-cuts that
incorporates significant improvements over existing methods. One key
aspect of our method is, that we exploit the footprint information which
is inherent to each sample point and describes the underlying surface
region represented by that sample. We interpret each sample as a vote
for a region in space where the size of the region depends on the foot-
print size. In our method, sample points with large footprints do not
destroy the fine detail captured by sample points with small footprints.
The footprints also steer the inhomogeneous volumetric resolution used
locally in order to capture fine detail even in large-scale scenes. Simi-
lar to other methods our algorithm initially creates a crust around the
unknown surface. We propose a crust computation capable of handling
data from objects that were only partially sampled, a common case for
data generated by multi-view stereo algorithms. Finally, we show the ef-
fectiveness of our method on challenging outdoor data sets with samples
spanning orders of magnitude in scale.

1 Introduction

Reconstructing a surface mesh from sample points is a problem that occurs in
many applications, including surface reconstruction from images as well as scene
capture with triangulation or time-of-flight scanners. Our work is motivated by
the growing capabilities of multi-view stereo (MVS) techniques [20, 8,9, 7] that
achieve remarkable results on various data sets.

Traditionally, surface reconstruction techniques are designed for fairly high-
quality input data. Measured sample points, in particular samples generated
by MVS algorithms, are, however, noisy and contain outliers. Figure 1 shows an
example reconstructed depth map that we use as input data in our method. Fur-
thermore, sample points are often non-uniformly distributed over the surface and
entire regions might not be represented at all. Recently, Hornung and Kobbelt
presented a robust method well suited for noisy data [12]. This method generates
optimal low-genus watertight surfaces within a crust around the object using a
volumetric graph cut. Still, their algorithm has some major limitations regarding
crust generation, sample footprint, and missing multi-resolution reconstruction
which we address in this paper.



Fig. 1. Left: An input image to Multi-View Stereo reconstruction. Middle: The re-
constructed depth map visualized in gray values (white: far, black: near). Right: The
triangulated depth map rendered from a slightly different view point.

Fig. 2. Visualization of the footprint of a sample point: A certain pixel in the left image
covers a significantly larger area than a corresponding pixel in the right image.

Hornung and Kobbelt create a surface confidence function based on unsigned
distance values extracted from the sample points. The final surface S is obtained
by optimizing for maximum confidence and minimal surface area. As in many
surface reconstruction algorithms, the footprint of a sample point is completely
ignored when computing the confidence. Every sample point, regardless of how
it was obtained, inherently has a footprint, the underlying surface area taken
into account during the measurement (see Figure 2). The size of the footprint
indicates the sample point’s capability to capture surface details. A method
that outputs sample points with different footprints was proposed by Habbecke
and Kobbelt [9]. They represent the surface with surfels (surface elements) of
varying size depending on the image texture. Furukawa et al. [7] consider foot-
prints to estimate reconstruction accuracy and Fuhrmann and Goesele [6] build
a hierarchical signed distance field where they insert samples on different scales
depending on their footprint. However, both methods effectively discard samples
with large footprints prior to final surface extraction. In this paper, we propose
a different way to model the sample footprint during the reconstruction process.



In particular, we create a modified confidence map where samples contribute
differently depending on their footprints.

The confidence map is only evaluated inside a crust, a volumetric region
around the sample points. In [12], the crust computation implicitly segments
the boundary of the crust into interior and exterior. The final surface separates
interior from exterior. This crust computation basically works only for com-
pletely sampled objects. Even with their proposed workaround (estimating the
medial axis), the resulting crust is still not applicable to many data sets. Such
a case is illustrated in Figure 3, where no proper interior component can be
computed. This severely restricts the applicability of the entire algorithm. We
propose a different crust computation that separates the crust generation from
the crust segmentation process, extending the applicability to a very general
class of input data.

Finally, as Vu et al. [24] pointed out, volumetric methods such as [12] rely-
ing on regular volume decomposition are not able to handle large-scale scenes.
To overcome this problem our algorithm reconstructs on a locally adaptive vol-
umetric resolution and finally extracts a watertight surface. This allows us to
reconstruct fine details even in large-scale scenes such as the Citywall data set
(see Figure 11).

This paper builds strongly on a recent publication by Miicke et al. [18] but
contains the following substantial improvements.

— The sampling of the global confidence map is parallelized.

— We now employ a graph embedding modeling the 26-neighborhood which
better approximates the Euclidean distance.

— Surface extraction is deferred to the end of the algorithm by using a com-
bination of marching cubes and marching tetrahedra on a multi-resolution
grid. This supersedes the need of the error-prone mesh clipping used before.

In addition, we show the effectiveness of our algorithm on a new challenging
data set with high surface genus.

The remainder of the paper is organized as follows: First, we review previous
work (Section 2) and give an overview of our reconstruction pipeline (Section 3).
Details of the individual steps are explained in Sections 4-7. Finally, we present
results of our method on standard benchmark data as well as challenging outdoor
scenes (Section 8) and wrap up with a conclusion and an outlook on future work
(Section 9).

2 Related work

Surface reconstruction from (unorganized) points

Surface reconstruction from unorganized points is a large and active research
area. One of the earliest methods was proposed by Hoppe et al. [10]. Given a set
of sample points, they estimate local tangent planes and create a signed distance
field. The zero-level set of this signed distance field, which is guaranteed to be a
manifold, is extracted using a variant of the marching cubes algorithm [15].



If the sample points originate from multiple range scans, additional informa-
tion is available. VRIP [5] uses the connectivity between neighboring samples as
well as the direction to the sensor when creating the signed distance field. Ad-
ditionally, it employs a cumulative weighted signed distance function allowing
it to incrementally add more data. The final surface is again the zero-level set
of the signed distance field. A general problem of signed distance fields is that
local inconsistencies of the data lead to surfaces with undesirably high genus
and topological artifacts. Zach et al. [25] mitigate this effect. They first create a
signed distance field for each range image and then compute a regularized field
u approximating all input fields while minimizing the total variation of u. The
final surface is the zero-level set of u. Their results are of good quality, but the
resolution of both, the volume and the input images, is very limited. In their very
recent paper, Fuhrmann and Goesele [6] introduce a depth map fusion algorithm
that takes sample footprints into account. They merge triangulated depth maps
into a hierarchical signed distance field similar to VRIP. After a regularization
step, basically pruning low-resolution data where reliable higher-resolution data
is available, the final surface is extracted using marching tetrahedra. Our method
does not rely on triangulated depth maps and tries to merge all data samples
while never discarding information from low-resolution samples. Another recent
work taking unorganized points as input is called cone carving and is presented
by Shalom et al. [21]. They associate each point with a cone around the es-
timated normal to carve free space and obtain a better approximation of the
signed distance field. This method is in a way characteristic for many surface
reconstruction algorithms in the sense that it is designed to work on raw scans
from a commercial 3D laser scanner with rather good quality. Such methods are
often not able to deal with the lower quality data generated by MVS methods
from outdoor scenes containing a significant amount of noise and outliers.

Kazhdan et al. [13] reformulate the surface reconstruction problem as a stan-
dard Poisson problem. They reconstruct an indicator function marking regions
inside and outside the object. Oriented points are interpreted as samples of the
gradient of the indicator function, requiring accurate normals at each sample
point’s position which are usually not present in MVS data. The divergence of
the smoothed vector field, represented by these oriented points, equals the Lapla-
cian of the indicator function. The final surface is extracted as an iso-surface of
the indicator function using a variant of the marching cubes algorithm. Along
these lines, Alliez et al. [1] use the normals to derive a tensor field and compute
an implicit function whose gradients best approximate that tensor field. Addi-
tionally, they present a technique, called Voronoi-PCA, to estimate unoriented
normals using the Voronoi diagram of the point set.

Graph cut based surface reconstruction

Boykov and Kolmogorov [2] introduced the idea of reconstructing surfaces by
computing a cut on a graph embedded in continuous space. They also show
how to build a graph and set the edge weights such that the resulting surface
is minimal for any anisotropic Riemannian metric. Hornung and Kobbelt [11]



use the volumetric graph cut to reconstruct a surface given a photo-consistency
measure defined at each point of a predefined volume space. They propose to
embed an octahedral graph structure into the volume and show how to extract
a mesh from the set of cut edges. In a follow-up paper [12], they present a way
to compute confidence values from a non-uniformly sampled point cloud and
improve the mesh extraction procedure.

An example of using graph cuts in multi-view stereo is the work of Sinha et
al. [22]. They build an adaptive multi-resolution tetrahedral mesh where an esti-
mated photo-consistency guides the subdivision. The final graph cut is performed
on the dual of the tetrahedral mesh followed by a photo-consistency driven mesh
refinement. Labatut et al. [14] build a tetrahedral mesh around points merged
from multiple range images. They introduce a surface quality term and a sur-
face visibility term that takes the direction to the sensor into account. From
an optimal cut, which minimizes the sum of the two terms, a labeling of each
tetrahedra as inside or outside can be inferred. The final mesh consists of the
set of triangles separating the tetrahedra according to their labels. Vu et al. [24]
replace the point cloud obtained from multiple range images with a set of 3D fea-
tures extracted from the images. The mesh obtained from the tetrahedral graph
cut is refined mixing photo-consistency in the images and a regularization force.
However, none of the existing graph cut based surface reconstruction algorithms
properly incorporates the footprint of a sample.

3 Overview

The input of our algorithm is a set of surface samples representing the scene
(Figure 3a). Each surface sample consists of its position, footprint size, a scene
surface normal approximation, and an optional confidence value. A cubic bound-
ing box is computed from the input points or given by the user.

First, we determine the crust, a subset of the bounding volume containing
the unknown surface. All subsequent computations will be performed inside this
crust only. Furthermore, the boundary of the crust is partitioned into interior
and exterior, defining interior and exterior of the scene (Figure 3b). Inside the
crust we compute a global confidence map, such that points with high confidence
values are likely to lie on the unknown surface. Each sample point adds confidence
to a certain region of the volume. The size of the region and the confidence peak
depend on the sample point’s footprint size. Effectively, every sample point adds
the same total amount of confidence to the volume but spread out differently. A
volumetric graph is embedded inside the crust where graph nodes correspond to
voxels and graph edges map the 26-neighborhood. A minimal cut on this graph
separates the voxels into interior and exterior representing the optimal surface
at this voxel resolution (Figure 3c). The edge weights of the graph are chosen
such that the final surface minimizes surface area while maximizing confidence.

We then identify surface regions with sampled details too fine to be ad-
equately represented on the current resolution. Only these regions are subdi-
vided, the global confidence map is resampled, and the graph cut is computed



d) e) /)

Fig. 3. Overview of our reconstruction pipeline. a) We compute a crust around the
input samples of different footprints and varying sampling density. b)) We segment the
crust into interior (red) and exterior (green) and compute the global confidence map
(GCM) to which each input sample contributes. ¢) A minimal cut on the embedded
graph segments the voxel corners representing the surface with maximum confidence
while minimizing surface area. We mark the areas with high-resolution samples (dashed
black box) and iteratively increase resolution therein. d+e) In the increased resolution
area we re-evaluate the GCM and perform the graph cut optimization. f) Finally, an
adaptive triangle mesh is extracted from the multi-resolution voxel corner labeling.



on a higher resolution (Figure 3d-+e). We repeat this process iteratively until
eventually all fine details were captured. Finally, we extract the surface in the
irregular voxel grid using a combination of marching cubes and marching tetra-
hedra. This results in a multi-resolution surface representation of the scene, the
output of our algorithm (Figure 3f).

4 Crust computation

We subdivide the cubic bounding box into a regular voxel grid. For memory
efficiency and to easily increase the voxel resolution, this voxel grid is represented
by an octree data structure. Our algorithm iteratively treats increasing octree
levels (finer resolution) starting with a user-defined low octree level £y, i.e., with
a coarse resolution.

The crust V,,..st C V is a subset of voxels that contains the unknown surface.
The crust computation is an important step in the algorithm for several reasons:
The shape of the crust constrains the shape of the reconstructed surface. Fur-
thermore, the crust has to be sufficiently large to contain the optimal surface
and on the other hand as narrow as possible to reduce computation time and
memory cost. We split the crust computation into two parts. First, the crust is
generated, then the boundary of this crust is segmented to define interior and
exterior of the scene (see Figure 4 for an overview).

Crust generation We initialize the crust on level £y with the set of voxels on the
parent octree level ¢y — 1 containing surface samples. We dilate this sparse set of
voxels several times over the 6-neighborhood of voxels, followed by a morpholog-
ical closing operation (Figure 4a). The number of dilation steps is currently set
by the user, but the resulting crust shape can be immediately inspected, as the
crust generation is fast on the low initial resolution. Subsequently, these voxels
v e Vil are once regularly subdivided to obtain the initial crust V%2 ., for
further computations on level ¢.

Crust segmentation In this step our goal is to assign labels interior and exterior
to all boundary voxel corners on level £, to define the interior and exterior of the
scene. In the following, we define 9V, ., to be the set of boundary voxels on level
£. We start by determining labels for voxel corners v that lie on the midpoints of
boundary faces of parent crust voxels v € 81/;[7‘{5%. The labels are determined by
comparing a surface normal estimate n5""/ for parent voxel v with the normals
of the boundary faces n<"“st. The surface normal is computed for each crust
voxel by averaging the normals of all sample points inside the crust voxel. Crust
voxels that do not contain surface samples obtain their normal estimate through
propagation during crust dilatation (Figure 4b). We determine the initial labels
on the crust boundary by

exterior, if nfj’;"“ sl > 1

label(vy) = < interior, if nﬁ?"“”t . ni“rf < -7 (1)

unknown, otherwise



i

d)

Fig. 4. Initial crust computation for lowest resolution: a) We initialize the crust with
voxels containing sample points and dilate several times. b) Surface normals are com-
puted for each voxel. ¢) The comparison of surface normals with the face normals of
the crust voxels defines an initial labeling into interior (red), exterior (green), and
unknown (blue). d) An optimization yields a homogenous crust surface segmentation.



initialization denoised segmentation

Fig. 5. Visualization of the crust surface for the Temple (cut off perpendicular to the
viewing direction). The color is similar to Figure 4. Light shaded surfaces are seen from
the front, dark shaded ones are seen from the back.

with 7 € (0,1) (Figure 4c). We used 7 = 0.75 in all experiments.

By now we have just labeled a subset of all voxel corners on level ¢y (Fig-
ure 4c¢). Furthermore, since surface normal information of the samples may only
be a crude approximation, this initial labeling is noisy and has to be regularized.
We cast the problem of obtaining a homogenous labeling of the crust surface
into a 2D binary image denoising problem solved using graph cut optimization
as described by Boykov and Veksler [4]. We build a graph with a node per voxel
corner in GVC[ﬁust and a graph edge connecting two nodes if the corresponding
voxel corners share a voxel edge. Additionally, ‘diagonal’ edges are inserted that
connect the initially labeled corners in the middle of parent voxel faces with
the four parent voxel corners. We also add two terminal nodes source and sink
together with further graph edges connecting each node to these terminals. Note
that this graph is used for the segmentation of the crust on the lowest resolu-
tion level £y only and should not be confused with the graphs used for surface
reconstruction on the different resolutions.

All edges connecting two non-terminal nodes receive the same edge weight w.
Edges connecting a node n with a terminal node receive a weight depending on
the labeling of the corresponding voxel corner v., where unlabeled voxel corners
are treated as unknown:

7 if v, is labeled interior

source

w; =<¢1—p if v, is labeled exterior (2)

% if v, is unknown

U)Zink —1— wiou'rce (3)

for a constant p € (0, %) With these edge weights the exterior is associated

with source, interior with sink. A cut on this graph assigns each node either



10

to the source or to the sink component and therefore yields a homogeneous
segmentation of the boundary voxel corners of 9V, ., (Figure 4d and Figure 5
right). We used w = 0.5 and p = 0.25 in all experiments.

If two neighboring crust voxel corners obtained different labels, the recon-
structed surface is forced to pass between them, as it has to separate interior
from exterior. The denoising minimizes the number of such occurrences and
therefore prevents unwanted surfaces from being formed. In the case of entirely
sampled surfaces and a correctly computed crust, two neighboring voxel corners
never have different labels. However, if the scene surface is not sampled entirely,
such segment borders occur even for correct segmentations (see Figure 4d). This
forces the surface to pass through the two involved voxel corners which, unlike
the rest of the surface reconstruction, does not depend on the confidence values.
This fixation does not affect the surface in sampled regions, though. We exploit
this constraint on the reconstructed surface in our refinement step where we
reconstruct particular areas on higher resolution (see Section 7).

5 Global confidence map

The global confidence map (GCM) is a mapping I' : R® — R that assigns a
confidence value to each point in the volume. Our intuition is that each sample
point spreads its confidence over a region in space whose extent depends on the
sample footprint. Thus, sample points with a small footprint create a focused
spot whereas sample points with a large footprint create a blurry blob (see
Figure 3b). We model the spatial uncertainty of a sample point as a Gaussian
~s centered at the sample point’s position with standard deviation equal to half
the footprint size. If the sample points are associated with confidence values we
scale the Gaussian accordingly. The local confidence map (LCM) 74 determines
the amount of confidence added by a particular sample point s. Consequently,
the GCM is the sum over all LCMs:

I(z) =) (). (4)

Implementation Let £ be the octree level at which we want to compute the graph
cut. In all crust voxels {z,},cye  we evluate the GCM I" at 27 positions: at
the 8 corners of the voxel, at the middle of each face and edge, and at the
center of the voxel. When adding up the LCMs of each sample point s we clamp
the value of 75 to zero for points for which the distance to s is larger than
three times the footprint size of sample point s. Also, we sample each 7, only
at a fixed number of positions (=~ 53) within its spatial support and exploit the
octree data structure by accumulating each v, to nodes at the appropriate octree
level depending on the footprint size. After all samples have been processed, the
accumulated values in the octree are propagated to the nodes at level £ by adding
the values at a node to the children’s nodes using linear interpolation for in-
between positions. The support of LCMs of sample points with small footprints
might be too narrow to be adequately sampled on octree level ¢. For those



11

Fig. 6. Visualization of an intermediate state of the binning approach used for the
parallelization of the GCM computation. Starting with two bins (left), the right bin
is subdivided into eight new bins (middle). One of the new bins is subdivided again
(right) resulting in a total number of 16 bins.

samples we temporarily increase the footprint for the computation of the LCM
s and mark the corresponding voxel for later processing at higher resolution.

5.1 Parallelization

In order to speed-up the sample insertion into the octree which is costly since
each input point creates ~ 125 samples, we parallelize the insertion at each octree
level £ < ¢ using a binning approach. In our implementation, bins correspond to
voxels. In each bin we sort the samples into eight lists representing the eight child
voxels in a predefined order. We process the first list of all bins in parallel, then
the second list, and so on. For this purpose samples in list x of two different bins
should not interfere with each other, i.e., affect the same nodes in the octree. We
start with the bounding cube as root bin containing all samples to be processed
on level ¢. We subdivide a bin if the following two criteria are satisfied:

1. the bin contains more than n,,,, samples, and
2. subdividing the bin maintains the property that samples out of the same list
but different bins do not interfere with each other given their footprint.

When subdividing a bin the lists are effectively turned into bins and the samples
are partitioned into eight smaller lists according to the same predefined order
as before. The subdivision stops if a maximum number of bins has been reached
or no more bins can be subdivided. Figure 6 shows the main principle of the
subdivision process where the color coded voxels represent the individual lists.
Note that two voxels with the same color never touch so that the LCM of samples
do not interfere with each other.

6 Graph cut

As done by Hornung and Kobbelt [12] we apply a graph cut to find the optimal
surface. The layout of the graph cut is however more similar to Boykov and
Kolmogorov [2] since we define a graph node per voxel and edges representing
the 26-neighborhood (inside the set of crust voxels Vi.,st). Note that at this



12

unbalanced balanced

Fig. 7. The GCM values can be arbitrarily large leading to near-constant edge weights
in large regions of the volume (left). Our local GCM balancing compensates for that
allowing the final graph cut to find the correct surface (right).

stage we compute the graph cut on a certain resolution only and do not extract
the surface explicitly. The edge weights w; in the graph are derived from the
GCM values I'(x;) in the center of the voxel, edge, or face, respectively. Since
the optimal surface should maximize the global confidence I" we want to set small
edge weights for regions with high confidence and vice versa. A straightforward
way to implement this would be

wizl—m—i—a with ey = max I'(z) (5)

max z€R3

such that all edge weights lie in [a, 1 + a], where a controls the surface tension.
Note, that scaling all edge weights with a constant factor does not change the
resulting set of cut edges. As the global maximum [,,,, can be arbitrarily large,
local fluctuation of the GCM might be vanishingly small in relation to I, (see
Figure 7 left). Since the graph cut also minimizes the surface area while maxi-
mizing for confidence, the edge weights need to have sufficient local variation to
avoid that the graph cut only minimizes the number of cut edges and thus the
surface area (shrinking bias). In order to cope with that, we apply a technique
similar to an adaptive histogram equalization which we call local GCM balanc-
ing. Instead of using the global maximum in Equation 5 we replace it with the
weighted local maximum (LM) of the GCM at point x. We compute Iy () by

Foarte) =max | w (L5520 ) - 1] (6)

y€ER3 2-¢. Bedge

where Begge is the edge length of the bounding cube. We employ a weighting
function W to define the scope in which the maximum is computed. We define

W as .
1-(+) ifd<ip
W(d) = (ED) B0 (7)
0 ifd> 3D



13

where D is the filter diameter in voxels. We used D = 11 and ¢ = 4 in all our
experiments. W is continuous in order to ensure continuity of the GCM. See
Figure 7 (right) to see the effect of local GCM balancing.

After the graph cut, each voxel corner on octree level ¢ is either labeled
interior or exterior which we can think of as binary signed distance values. In
particular, since the subdivision from level ¢ — 1 is regular we have labels for all
voxel corners, the voxel center, the center of each face and edge. This will be
exploited during final surface extraction in the next Section.

7 Multi-resolution surface reconstruction

Due to memory limitations, it is often impossible to reconstruct the whole scene
on a resolution high enough to capture all sampled details. An adaptive multi-
resolution approach which reconstructs different scene regions on adaptive res-
olutions depending on the sample footprints is therefore desirable. During the
GCM sampling on octree level ¢ we marked voxels that need to be processed on
higher resolution. After the graph cut we dilate this set of voxels several times
and regularly subdivide the resulting voxel set to obtain a new crust Vﬁf{ét The
crust segmentation can be obtained from the graph cut on level ¢, as this cut
effectively assigns each voxel corner a label interior or exterior. For boundary
voxel corners in V5L, that coincide with voxel corners on level £ we simply trans-
fer the label. This ensures a continuous reconstruction across level boundaries.
For voxel corners that lie on a parent voxel edge or face, i.e., between two or four
voxel corners on level ¢, we obtain the conform label of the surrounding voxel
corners or we leave it unknown. The new crust V.11 is now ready for graph cut
optimization on level £ + 1 (see Figure 3d+e). For voxel corners that coincide
with voxel corners on the lower resolution the resulting labeling on level £ + 1
overwrites the labeling obtained before.

The recursive refinement stops if the maximum level £,,,, is reached or no
voxels are marked for further processing. Due to our refinement scheme the last
subdivision in the octree is always regular, i.e., all eight octants are present. The

graph cuts define the voxel corners of the finest voxels as interior or exterior.

7.1 Final surface extraction

To extract the final surface we apply a combination of marching cubes and
marching tetrahedra. The decision is made voxel-by-voxel one level above the
finest level. Note that the last subdivision step is always regular. If the voxel is
single-resolution containing 27 labeled voxel corners, we apply classical march-
ing cubes to all eight child voxels. We interpret the voxel corner labels as binary
signed distance values. If the voxel is multi-resolution, i.e., there is a change in
resolution present affecting at least one of the cube edges or faces, we apply
the tetrahedralization scheme by Manson and Schaefer [16] (see Figure 8). We
hereby place dual vertices at voxel corners and at the centers of edges, faces, and
voxels. These positions coincide with voxel corners of the finest levels providing



14

¢)

Fig. 8. Tetrahedralization of the multi-resolution grid. We connect a vertex (a) with
the dual vertex of an edge (b), add a face vertex (c), and form a tetrahedron by adding
the dual vertex of a cell (d). Adaptive triangulation of the multi-resolution grid (e).
Tetrahedralization scheme and figures similar to Manson and Schaefer [16].

the binary signed distance values needed for the subsequent marching tetrahe-
dra. Now, we only need to take care of voxel faces where triangles produced
by marching cubes and triangles produced by marching tetrahedra meet. It is
possible that T-vertices were created here but this can be easily fixed using an
edge flip or vertex collapse. The final multi-resolution surface mesh is water-
tight and has different sized triangles depending on the details present in the
corresponding areas.

8 Results

We will now present results of our method on different data sets (see Table 1).
The source code is publicly available on the project page [19]. Our experiments
were performed on a 2.7 GHz AMD Opteron with eight quad-core processors and
256GB RAM. All input data was generated from images using a robust structure-
from-motion system [23] and an implementation of a recent MVS algorithm [8]
applied to down-scaled images. We used all reconstructed points from all depth
maps as input samples for our method. The footprint size of a sample is computed
as the diameter of a sphere around the sample’s 3D position whose projected
diameter in the image equals the pixel spacing. For all graph cuts involved we
used the publicly available library by Boykov and Kolmogorov [3].

The Temple is a widely used standard data set provided by the Middlebury
Multi-View Stereo Evaluation Project [20, 17] and consists of 312 images showing
a temple figurine. This data set can be considered to be single-resolution since
all input images have the same resolution and distance to the object, resulting in
the complete temple surface to be reconstructed on the same octree level in our
algorithm. The reconstruction quality (Figure 9) is comparable to other state-
of-the-art methods. We submitted reconstructed models created for a previous
submission [18] for the TempleFull and the TempleRing variant (using only a



15

sample vertices octree comp. rel. variation
data set . . . .
points level time in footprint
Temple 22M  0.5M 9 1h 1.5
Kopernikus| 32M 3.3M 10-12 1.5h 38
Stone 43M  43M 814 4.5h 75
Citywall | 80M 8.6M 11-16 6h 209

Table 1. The data sets we used and the number of sample points, the number of
vertices in the resulting meshes, octree levels used for surface extraction, computation
time and relative variation in footprint size.

Fig.9. An input image of the Temple data set (left) and a rendered view of our
reconstructed model (right).

subset of 47 images as input to the pipeline) to the evaluation. For TempleFull we
achieved the best accuracy (0.36 mm, 99.7 % completeness), for the TempleRing
we achieved 0.46 mm at 99.1 % completeness.

The stone data set consists of 117 views showing a region around a portal
where one characteristic stone in the wall is photographed from a close distance
leading to high-resolution sample points in this region. Overall we have a factor
of 75 of variation in footprint sizes. In Figure 10 we compare our reconstruction
with Poisson surface reconstruction [13]. In the overall view our reconstruction
looks significantly better, especially on the ground where our method results in
less noise. In the close-up view also Poisson surface reconstruction shows the
fine details. Due to the fact that the sampling density is much higher around



16

Our results Poisson surface reconstruction

Fig.10. Top: Example input images of the stone data set. Middle + Bottom: Com-
parison of our reconstruction (left) with Poisson surface reconstruction [13] (right).
Although Poisson surface reconstruction does not take footprints into account the re-
construction shows fine details due to the higher sampling density. However, our surface
shows significantly less noise and clutter.



17

the particular stone Poisson surface reconstruction used smaller triangles for the
reconstruction.

The Citywall data set consists of 487 images showing a large area around a
city wall. The wall is sampled with medium resolution, two regions though are
sampled with very high resolution: the fountain in the middle and a small sculp-
ture of a city to the left (Figure 11 top). Our multi-resolution method is able
to reconstruct even fine details in the large scene where sample footprints differ
up to a factor of 209. In consequence, the reconstruction spans six octree levels
and detailed regions are triangulated about 32 times finer than low-resolution
regions. The middle image of Figure 11 shows the entire mesh whereas the bot-
tom images show close-ups of the highly detailed surface regions. One can even
recognize some windows of the small buildings in the reconstructed geometry.

The Kopernikus data set (Figure 12) consists of 334 images showing a statue
with a man and a women. The underlying surface geometry is particularly chal-
lenging due to its high genus. The data set is also multi-resolution in the sense
that we took close-up views of the area around the hands. We compare our recon-
struction against VRIP [5] and the depth map fusion by Fuhrmann and Goesele
[6] (Figure 13). It is clearly visible that our model contains significantly less noise
and shows no clutter around the real surface. Also, the complex topology of the
object is captured very well in comparison to the other methods. However, in
regions with low-resolution geometry staircase artifacts are visible due to the
surface extraction from a binary signed distance field. This is also visible in the
wireframe rendering in Figure 12 (bottom right) showing the dense triangulation
of the women’s face versus the coarse triangulation of the men’s upper body.

9 Conclusion and future work

We presented a robust surface reconstruction algorithm that works on general
input data. To our knowledge, except for the concurrent work of Fuhrmann
and Goesele [6], we are the first to take the footprint of a sample point into
account during reconstruction. Together with a robust crust computation and
an adaptive multi-resolution reconstruction approach we are able to reconstruct
fine detail in large-scale scenes. We presented results comparable to state-of-the-
art techniques on a benchmark data set and proved our superiority on challenging
large-scale outdoor data sets and objects with complex topology. The triangle
meshes are manifold and watertight and show an adaptive triangulation with
smaller triangles in regions where higher details were captured.

In future work, we plan to explore other ways to distribute a sample point’s
confidence over the volume, e.g., taking the direction to the sensor into account.
This would allow us to better model the generally anisotropic error present in
reconstructed depth maps.

Acknowledgements This work was supported in part by the DFG Emmy Noether
fellowship GO 1752/3-1.



18

| o SRR SR ST e TN
-

;
1

B . e
———
i

Fig. 11. Top: Two input images of the Citywall data set. Middle: Entire model (color
indicates the octree level, red is highest). Bottom: Close-ups of the two detailed regions.



19

Fig.12. Two input images of the Kopernikus data set, the complete reconstructed
model from two perspectives and a close-up of the wireframe showing the adaptively
triangulated mesh.

References

1.

Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational
reconstruction of unoriented point sets. In: Proc. of Eurographics Symposium on
Geometry Processing (2007)

Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph
cuts. In: Proc. of IEEE International Conference on Computer Vision (2003)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2004)

Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: Theories and applica-
tions. In: Handbook of Mathematical Models in Computer Vision (2006)

. Curless, B., Levoy, M.: A volumetric method for building complex models from

range images. In: Proc. of ACM SIGGRAPH (1996)



20

S 3
Our results Depth map fusion VRIP

Fig. 13. Comparison of our reconstruction (left) with depth map fusion (middle) [6]
and VRIP (right) [5].

6. Fuhrmann, S., Goesele, M.: Fusion of depth maps with multiple scales. In: Proc.
of ACM SIGGRAPH Asia (2011)

7. Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-
view stereo. In: Proc. of IEEE Conference on Computer Vision and Pattern Recog-
nition (2010)

8. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo
for community photo collections. In: Proc. of IEEE International Conference on
Computer Vision (2007)

9. Habbecke, M., Kobbelt, L.: A surface-growing approach to multi-view stereo recon-
struction. In: Proc. of IEEE Conference on Computer Vision and Pattern Recog-
nition (2007)

10. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface recon-
struction from unorganized points. In: Proc. of ACM SIGGRAPH (1992)

11. Hornung, A., Kobbelt, L.: Hierarchical volumetric multi-view stereo reconstruction
of manifold surfaces based on dual graph embedding. In: Proc. of IEEE Conference
on Computer Vision and Pattern Recognition (2006)

12. Hornung, A., Kobbelt, L.: Robust reconstruction of watertight 3D models from
non-uniformly sampled point clouds without normal information. In: Proc. of Eu-
rographics Symposium on Geometry Processing (2006)

13. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. of
Eurographics Symposium on Geometry Processing (2006)

14. Labatut, P., Pons, J.P., Keriven, R.: Robust and efficient surface reconstruction
from range data. Computer Graphics Forum (2009)

15. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface con-
struction algorithm. In: Proc. of ACM SIGGRAPH (1987)

16. Manson, J., Schaefer, S.: Isosurfaces over simplicial partitions of multiresolution
grids. In: Proc. of Eurographics (2010)



17.
18.

19.
20.

21.

22.

23.

24.

25.

21

Middlebury multi-view stereo evaluation, http://vision.middlebury.edu/mview/
Miicke, P., Klowsky, R., Goesele, M.: Surface reconstruction from multi-resolution
sample points. In: Proc. of Vision, Modeling and Visualization (2011)

Project page, http://www.gris.tu-darmstadt.de/projects /multires-surface-recon/
Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and
evaluation of multi-view stereo reconstruction algorithms. In: Proc. of IEEE Con-
ference on Computer Vision and Pattern Recognition (2006)

Shalom, S., Shamir, A., Zhang, H., Cohen-Or, D.: Cone carving for surface recon-
struction. In: Proc. of ACM SIGGRAPH Asia (2010)

Sinha, S.N., Mordohai, P., Pollefeys, M.: Multi-view stereo via graph cuts on the
dual of an adaptive tetrahedral mesh. In: Proc. of IEEE International Conference
on Computer Vision (2007)

Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from mo-
tion. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition
(2008)

Vu, H.H., Keriven, R., Labatut, P., Pons, J.P.: Towards high-resolution large-scale
multi-view stereo. In: Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (2009)

Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1
range image integration. In: Proc. of IEEE International Conference on Computer
Vision (2007)



