
Interactive Isosurfaces with QuadraticC1 Splines on Truncated
Octahedral Partitions

Alexander Marinc1, Thomas Kalbe2, Markus Rhein3 and Michael Goesele2

1Fraunhofer IGD Darmstadt 2GRIS TU Darmstadt 3Universität Mannheim

ABSTRACT

The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualiza-
tion of 3D volumetric data sets. We use a local approximationmethod for quadraticC1 splines on uniform tetrahedral
partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric
domain, where each truncated octahedron is further split into a fixed number of disjunct tetrahedra. The Bernstein-Bézier
coefficients of the piecewise polynomials are directly determined by appropriate combinations of the data values in a lo-
cal neighborhood. As previously shown, the splines providean approximation order two for smooth functions as well as
their derivatives. We present the first visualizations using these splines and show that they are well-suited for GPU-based,
interactive high-quality visualization of isosurfaces from discrete data.

Keywords: piecewise quadratic polynomials, volume data, GPU ray casting, isosurfaces

1. INTRODUCTION

One of the main challenges for the visualization of isosurfaces from discrete data sets is to find a continuous function which
is defined on the whole domain and which approximates or interpolates the discrete values given at the grid points. Several
techniques to create appropriate visualizations have beendeveloped, with different advantages and disadvantages with
respect to the quality of the reconstructed surfaces, visualization performance, or memory requirements. The most popular
surface reconstruction method from volume data is the Marching Cubes algorithm.1 Although GPU implementations of
Marching Cubes exist,2 memory requirements for the triangle meshes are high which makes it difficult to reconstruct
isosurfaces from large volume data sets. Furthermore, the resulting meshes and accordingly the surface approximations
suffer from several aliasing artifacts, such as stair-casing.

Another well-known method is the usage of tensor product splines. With tensor product splines of degree two or three,
the construction of smooth surfaces is possible but requires the computation of polynomial pieces with total degree sixor
nine, respectively. For high-quality shading with interactive frame rates the desired polynomial degree should, however, be
as low as possible, while still yielding an overall smooth surface model.

(a) (b) (c)
Figure 1: Renderings performed with our new quadraticC1 spline. (a) Isosurfaces reconstructed from a signed distance
function on a 2563 grid (about 50 000 up to 300 000 visible tetrahedra). (b) Isosurface of biological data (1003 voxels, 1.2
mio. visible tetrahedra). (c) Isosurfaces of medical data (1283 voxels, 800 000, and 2.2 mio. visible tetrahedra).



Alternatively, trivariate splines, i.e., splines defined on tetrahedral partitions of the domain, have been proposed for
isosurface reconstruction and visualization. Roessl et al.3 used quadratic polynomials of total degree two in Bernstein-
Bézier form (B-form) to derive a continuous function approximating the volume data. The coefficients of the piecewise
polynomials are hereby directly available from the volume data by appropriate averages of local data values. The low degree
of the polynomial pieces allows for an efficient ray-surfaceintersection for high-quality visualization by ray casting. One
of the drawbacks of this approach is that the spline isC1 smooth only in certain points. CubicC1 splines on tetrahedral
partitions have been proposed by Sorokina and Zeilfelder,4 and a GPU visualization algorithm for isosurface ray casting
based on cubicC1 and quadratic super splines has been given.5,6 Both splines are defined on the so-calledtype-6tetrahedral
partition where each data cube is split into 24 congruent tetrahedra. Another closely related approach is given by Kloetzli
et al.,7 where cubicC0 splines are constructed on arbitrary tetrahedral partitions by a Moving Least Squares approximation
of the volume data. Note that in this method, the coefficientscannot be computed directly from the volume data by simple
averaging. Thus, memory demands for storing the precomputed polynomials is high, rendering a real-time approach for
reconstruction and visualization difficult.

We use ray casting on the GPU based on a new trivariate spline which for the first time solves the problem of finding
a local approximation method by quadratic polynomials and is globallyC1 continuous.8 This spline is based on a more
complex tetrahedral partition using a truncated octahedral partition of the volumetric domain, see Section 3, and provides
a better numerical approximation of the original data compared to the cubic splines on type-6 tetrahedral partitions.

We give a short overview of trivariate splines in B-form and associated tetrahedral partitions in the next section. Then,
we introduce the new spline in Section 3, i.e., describe the underlying tetrahedral partition and give formulas definingthe
coefficients of the polynomial pieces. In Section 4 we brieflydescribe the visualization algorithm which is adapted from
our earlier work5,6 to the new partition. Finally, we compare the visual qualityobtained from our method with standard
trilinear interpolation as well as cubicC1 splines on type-6 tetrahedral partitions, and analyze its performance.

2. TRIVARIATE BERNSTEIN-BÉZIER-SPLINES

We use smooth trivariate splines of degree two in piecewise Bernstein-Bézier form to obtain a continuous approximation
of the discrete data. The B-form bears several advantages, including stable evaluation of the spline and its derivatives. For
smoothness between neighboring polynomials only local rules based on geometrical conditions have to be considered.

For a non-degenerated tetrahedronT with verticesv0,v1,v2,v3, each polynomial is given by

s|T ≡ ∑
i+ j+k+l=2

bi jkl B
2
i jkl , (1)

wherebi jkl ∈R are the ten Bernstein-Bézier coefficients, andB2
i jkl are the Bernstein polynomials of degree two, defined by

B2
i jkl ≡

2!
i! j!k!l !

φi
0φ j

1φk
2φl

3. (2)

Here, φµ with µ = 0,1,2,3, are the barycentric coordinate functions with respect toT. These are linear polynomials
uniquely defined by the property

φµ(vν) = δµ,ν, µ,ν = 0,1,2,3,

whereδµ,ν is Kronecker’s symbol. The relation between a pointx in R
3 and associated barycentric coordinates is thus

given by
(
x 1

)T
= AT ·

(
φ0 φ1 φ2 φ3

)T
, whereAT ∈ R

4×4 is defined as

AT =

(
v0 v1 v2 v3

1 1 1 1

)
. (3)

Each polynomial is uniquely determined by the ten coefficients bi jkl , i + j + k+ l = 2, which are associated with the
domain points1/2(i v0+ j v1+ k v2+ l v3) on T. Values and derivatives of the polynomials can be efficiently evaluated
with the algorithm of de Casteljau. Usingblossoming,9 a generalization of the de Casteljau algorithm where the arguments
may vary on each level, we can reduce the trivariate polynomial to a univariate quadratic polynomial along an arbitrary
ray intersecting the tetrahedronT. Now it is easy to find the root of this univariate polynomial by solving simple quadratic
equations, which is a strong benefit for the later visualization, see Section 4.2.



(a) (b)
Figure 2: (a)Left: Each TO is split into 144 tetrahedra.Right: The domain points on each tetrahedron are shown in red
and blue. The front-most tetrahedra are removed for clarityof the illustration. (b)Left: the arrangement of the TOs within
the volume.Right: the 88 data values determining the coefficients of one single TO.

2.1 Smoothness Between Neighboring Polynomials

Another important advantage of the B-form is the simple description of the smoothness conditions between neighboring
polynomials. Consider two neighboring, non-degenerated tetrahedraT = [v0,v1,v2,v3] andT̃ = [v0,v1,v2, ṽ3], that share
the common triangleT ∩ T̃ = [v0,v1,v2]. Let bi jkl and b̃i jkl , i + j + k+ l = 2, be the polynomial coefficients in B-form

of T and T̃. The polynomials are continuously connected over[v0,v1,v2] if bi jk0 = b̃i jk0 holds true fori + j + k = 2.
Furthermore, the patches are alsoC1 continuous over[v0,v1,v2] if additionally the condition

bi jk1 = b̃i+1, j ,k,0φ0(ṽ3)+ b̃i, j+1,k,0φ1(ṽ3)+ b̃i, j ,k+1,0φ2(ṽ3)+ b̃i, j ,k,1φ3(ṽ3) (4)

holds true fori+ j+k= 1. C1 smoothness between two neighboring polynomials can therefore be described by three simple
conditions. If these conditions are fulfilled for all neighboring polynomials in the volume, then the spline is globallyC1

smooth on the whole underlying domain. The challenge is to determine the coefficients from the data values while fulfilling
all necessary conditions for a globally smooth spline and simultaneously allowing a good approximation of the data.

3. SPLINES ON TRUNCATED OCTAHEDRAL PARTITIONS

A complete description of the partition and the computationof the appropriate coefficients is given in Rhein and Kalbe.8

Here we summarize the main ideas and the necessary basics needed to understand our visualization pipeline.

3.1 The Tetrahedral Partition

In the following we characterize a truncated octahedron (TO) and show how it is further subdivided into 144 tetrahedra.
Each TO consists of six square and eight hexagonal faces thatare connected at 24 vertices, see Fig. 2a. Assuming that the
center of a TO with heighth lies in the origin of a three-dimensional coordinate system, the vertices are all permutations
of the triple(0,±h/2,h). All tetrahedra of a TO share one point in the barycenter of the TO which we denote asv0 in
every tetrahedronT = [v0,v1,v2,v3]. Furthermore, there is another vertex of each tetrahedron lying in the barycenter of
a face of the TO, sayv1, one vertex at the midpoint of an edge of the TO, sayv2, and one vertex, sayv3, coincides with
a vertex of the TO itself. Therefore, each tetrahedron has three faces inside the TO and one face on the boundary of the
TO. This results in two differently shaped tetrahedra, depending on the shape of the face of the TO the boundary face is
lying on. In the following we denote all tetrahedra byTS if the boundary face is within a squared face of a TO andTH

otherwise. The faces of a tetrahedron are denoted byFS andFH accordingly, whether they are a face of a tetrahedronTS

or not. Considering a TO partition of the volumetric domain and a uniform tetrahedral partition of the TOs as described
above, theC1 smoothness of a spline in B-form can be described completelyby three conditions, see Section 2.1, for all
interior triangular faces. Since the construction of the tetrahedral partition results in eight possible geometrically distinct
connections between neighboring polynomials, theC1 continuity is described by 24 formulas. We show a typical condition
for a triangular faceFH

2 = [v0,v1,v3] in Fig. 3: Due to the symmetry of the subdivision scheme, all occurring weights
are simple fractions or even zero, which results in a furthersimplification of the formula involving only four or three
coefficients. The full set of equations can be found in Rhein and Kalbe.8



b1010=
1
2b1100− b̃1010+

3
2b1001

b0110=
1
2b0200− b̃0110+

3
2b0101

b0011=
1
2b0101− b̃0011+

3
2b0002

Figure 3: TheC1 conditions for the facesFH
2 .

3.2 The Truncated Octahedral Partition and the Data Mesh

Before we give an overview on how to compute the coefficients of a TO, it is necessary to understand how the TOs are
connected in a space-filling partition and how they are positioned in a regular volumetric grid. In Fig. 2b, left, we give an
example of a small 43 data grid including the embedded TO. As shown, each grid point lies at the barycenter of a hexagonal
face. We directly associate these eight grid points with theappropriate TO. Each data point is hereby associated with two
TOs. Therefore, to cover the whole domain we need one fourth as many TOs as there are data points in the volumetric grid.
The spline approximation scheme8 is described through a linear operator which maps the set of discrete data values into the
space of quadraticC1 splines regarding the uniform tetrahedral partition described in the previous section. This operator is
given explicitly by concrete formulas for the computation of the spline coefficients in B-form as simple linear combinations
of some local data values. On each TO, the spline is uniquely determined by 96 coefficients: the 24 coefficients associated
with the vertices of the TO, together with the 60 coefficientsassociated with the domain points on the edges of the TO.
The remaining coefficients follow from theC1 conditions. For computing the 96 determining coefficients we need the 88
neighboring values as shown in Fig. 2b, right. Alternatively, we can compute the coefficients on each tetrahedron directly
from the volume data, where we need 28 neighboring values.

4. GPU KERNELS FOR INTERACTIVE ISOSURFACE VISUALIZATION

In this section, we describe our pipeline for interactive isosurface visualization using quadraticC1 splines on truncated
octahedral partitions. We first describe our preprocessingstep adapted from Kalbe et al.,6 followed by an overview of the
GPU ray casting approach for visualization.

4.1 GPU Preprocessing

Since the spline coefficients on each TO are given by averagesof local portions of the data, we can process each TO
independently. This is the basis for a massively parallel computation of the spline coefficients. As shown in the next
subsection, tetrahedra are processed in the graphics pipeline for visualization. In order to improve rendering performance,
we thus determine in a preprocess the tetrahedra contributing to the final surface. To do this, we can simply exploit the
convex hull propertyof the B-form: if all bi jkl of a tetrahedronT are either below or above the isolevelρiso, we can

TO0

0
TO1

0
TO2

0
TO3

0
TO4

0
TO5

0
TO6

0
TO7

0

TO0

0
TO1

1
TO2

0
TO3

1
TO4

1
TO5

0
TO6

1
TO7

0

TO0

0
TO1

0
TO2

1
TO3

1
TO4

2
TO5

3
TO6

3
TO7

3

1 3 4 6
0 1 2 3

TOAll

TOAct

TOPre

TOComp

active voxels - 1

= size of TOComp - 1

Figure 4: Illustration of parallel prefix sums used in our approach (see Sect. 4.1).



(a) (b)
Figure 5: (a) An enlarged surface patch within one tetrahedron of the smooth quadratic spline. (b)Left: Overlapping
surfaces lead to errors when the fragments’z-values are not adjusted.Right: The same surfaces with adjustedz-values.

discardT from further processing. Since, in most cases, only a portion of the tetrahedra contribute to the surface, we get
a significant speedup for visualization. We denote the set ofcontributing tetrahedra as theactive partition. We further
use 144 distinct lists to encode the active partition, sincethen we can useinstancingfor fast rendering of each tetrahedron
type in the TO partition, see Section 4.2. To obtain the active partition for each type of tetrahedron, we useparallel
prefix sums10,11 from the CUDA data parallel primitives library (CUDPP), seeFig. 4 for an illustration. All tetrahedra are
classified by a CUDA kernel as eitheractiveor not activeby using the convex hull property of the B-form. The results are
written into the arraysTOAll . Next, we compute the exclusive prefix sums ofTOAll and find the result in the arrayTOPre.
The arrayTOPre is finally compressed into an arrayTOComp, which size equals the number of active tetrahedra and where
each entry corresponds to a unique index defining the position of the tetrahedron in the volume. Note that the preprocess
has to be done for each change of isolevelρiso.

4.2 Visualization by GPU Ray Casting

Visualization of the active tetrahedra is performed in the OpenGL graphics pipeline in a hybrid cell projection / ray casting
approach. We render the active tetrahedra and perform ray-surface intersections during fragment processing. Since all
tetrahedra of one particular type have the same shape, but different positions within the grid, we use geometry instancing to
render all tetrahedra of one type at once. Each of the 144 different shapes is represented as a triangle strip with six vertices.
The instance ID is used to index into the previously computedlists TOComp. The vertex shader reads the value ofTOComp

from the appropriate texture at the position defined by the current instance ID and translates the index into the 3D world
space coordinates of the current tetrahedron.

For later calculation of the ray-surface intersections in the fragment shader, as well as clipping of intersections to the
tetrahedron geometry, the vertex shader further prepares two barycentric coordinatesφi , φ̃i , i =0,1,2,3, for each tetrahedron
vertexvµ, µ= 0,1,2,3. Theφi = φi(vµ) are given byδi,µ. Theφ̃i correspond to the unit length extension of the viewing ray
and are calculated by using the inverse of the matricesAT from Eq. 3. The 144 different matricesA−1

T are precomputed
once and stored on the GPU in constant memory. The barycentrics are then interpolated across the front-facing triangles
of T in the rasterizer.

The fragment shader first calculates thebi jkl of the current patch from the volume texture by using the appropriate
weightings of the local neighborhood, see Section 3. Note that thebi jkl could also be computed in the vertex shader, but we
observed that for large volumes, the number of tetrahedron vertices approaches the number of fragments and computing the
bi jkl in the fragment shader gives us a performance gain. Next, we perform blossoming to obtain a univariate representation
of the surface patch along the viewing ray: A de Casteljau step on the first level is performed withφ to obtain the four

coefficientsb[1]i jkl (φ), i + j + k+ l = 1, as well as for̃φ resulting inb[1]i jkl (φ̃), i + j + k+ l = 1.

We proceed with three more steps on the second level of the de Casteljau algorithm. Note that each de Casteljau step on

the second level corresponds to a dot product of two vectors in R
4. We thus obtain the three coefficientsb20 = b[1]i jkl (φ) ·φ,

b11 = b[1]i jkl (φ) · φ̃, andb02 = b[1]i jkl (φ̃) · φ̃, which are the coefficients of a functional quadratic Béziercurve restricted along
the viewing ray. The intersection is found by plugging the ray into that curve and solving for the rootst0,1 of the resulting
quadratic polynomial in one variable. In order to restrict the intersections to the tetrahedron geometry, we calculatethe



Figure 6: Left: TO spline isosurface of the engine data set (2562× 128 voxels, 4 mio. visible tetrahedra).Middle: TO
spline isosurface of a subsampled version of the original data set (1282×64 voxels, 1.4 mio. visible tetrahedra).Right:
Isosurfaces with approximated transparency.

barycentric coordinatesφ(t0) andφ(t1) by linear interpolation ofφ andφ̃ usingt0 andt1, respectively, as parameters. We
take the smallestt with φi(t)≥ 0, i = 0,1,2,3, if such at exists, and discard the fragment otherwise.

We get the directional derivative w.r.t. the ray at the intersection point,b[1]i jkl (φ(t)), i + j + k+ l = 1, by a linear

interpolation ofb[1]i jkl (φ) andb[1]i jkl (φ̃) with t. The gradient at the intersection point is finally obtained by three additional

scalar products inR4, using the first three rows ofA−1
T and the directional derivativeb[1]i jkl (φ(t)).

An example of the resulting spline surface within its bounding truncated octahedra, as well as one enlarged polynomial
patch and its bounding tetrahedron, is given in Fig. 5a. Currently, the fragment’sz value corresponds to a front facing
triangle ofT, and not the actual surface point. This is usually not a problem if only a single surface is visualized. For
proper clipping of several surfaces, we normalize the distance from the eye-plane to the intersection into thez-buffer and
achieve the result shown in Fig. 5b, right. We further applied an approximation of order independent transparency by using
weighted sums for each pixel.12 An example is shown in Fig. 6, right.

5. RESULTS

In this section, we discuss some of the results of our rendering scheme for the new quadraticC1 spline on TO partitions (S1
2).

We further compareS1
2 with trilinear interpolation and the closely related cubicC1 splines on type-6 partitions (S1

3).

5.1 Numerical Approximation

As shown in4,8 the newS1
2 spline, as well as theS1

3 spline, both approximate smooth functions with order two, i.e.,
the error goes down by a factor of four if the grid spacing is halved, but the constants are slightly better for the new
S1

2 spline. We further visually compare the approximation error of the new spline with theS1
3 spline in Figure 7b, showing

the reconstruction of the highly oscillating Marschner-Lobb function,13 sampled from a sparse 643 grid. Here, the colors
indicate the error varying from blue (low error) to red (higher error), showing that the new quadratic spline reconstructs
the function with lower error. The errors for the Marschner-Lobb function are also summarized in the graph in Fig. 7a.

5.2 Visualization Performance

We analyzed the quadratic spline with a series of tests. First, we note that for typical isosurfaces, about 1% to 5% of all
tetrahedra within the volumetric domainΩ are active, see also Fig. 1a-c and Fig. 6 for examples. Each TOcovers four data
points ofΩ, which, on average, results in 36 tetrahedra per data point.In contrast to this, in the type-6 partition each data
cube is covered by 24 tetrahedra. In fact, we have about one half more tetrahedra for the same isolevel as for theS1

3 splines
on type-6 partitions, see Table 1. Further, for on-the-fly computation of coefficients in the visualization, we need 28 (S1

2),
and 23 texture accesses (S1

3), respectively.



10-4

10-3

10-2

10-1

23 24 25 26 27

1/h

er
ro
r

b

b

b

b

b

b

b

b

b errmean(S
1
3 )

r errmean(S
1
2 )

(a) (b)
Figure 7: (a) Comparison of the reconstruction errors for the Marschner-Lobb (ML) function with increasing sample rates
on a log-log scale. Blue curve: mean error of the cubicC1 spline on type-6 partitions (S1

3). Dashed red curve: mean error
of the new quadraticC1 spline (S1

2). (b) Reconstructed ML function sampled on a 643 grid. Left: S1
3 spline. Right: S1

2
spline. Red denotes higher error, blue low error.

grid cubic type-6 spline (S1
3) quadratic TO spline (S1

2)
size #tets reconst. FPS #tets reconst. FPS

643 13 398 16 [ms] 125 19 224 19 [ms] 59
1283 711 000 107 [ms] 25 1 061 000 131 [ms] 26
1283 2 316 000 123 [ms] 8 3 388 000 180 [ms] 9
2563 4 153 000 95 [ms] 4 5 716 000 192 [ms] 5
2563 5 371 000 88 [ms] 3 8 066 000 210 [ms] 3

Table 1: Reconstruction times (computation of the active partition) and FPS for selected isosurfaces with increasing number
of active tetrahedra.Left: cubicC1 splines on type-6 partitions.Right: quadraticC1 splines on TO partitions. All timings
were done with a NVIDIA GTX 480 GPU with 480 shader cores and ona 1000×1000 view port.

Table 1 also shows the reconstruction times for the computation of the active partition, see Section 4.1, as well as the
frames per second on a 1000×1000 view port. Note that reconstruction times are in the range of a few milliseconds. For
both splines, the frames per second are directly connected to the number of tetrahedra in the active partition. Note thatthe
higher number of tetrahedra of theS1

2 splines is in most cases compensated for by the significantlyless complex shaders,
becauseS1

3 requires to evaluate and solve cubic equations for ray-surface intersections instead of quadratics.

5.3 Visualization Results

We demonstrate the new quadratic spline with visualizations of real-world data from engineering (Fig. 6), biological
(Fig. 1b), and medical applications (Fig. 1c). Isosurfacesreconstructed from synthetic data are shown in Fig. 1a, where we
used a signed distance function generated from a triangle mesh. Fig. 8a shows a reconstruction ofBarth’s sexticfunction
sampled on a uniform grid. In Fig. 8b we give a comparison of isosurfaces obtained by Marching Cubes, simple ray casting
with trilinear interpolation, cubicC1 splines, and quadraticC1 splines, respectively. The zoom up into one of the spikes of
Barth’s sextic from Fig. 8a demonstrates the improved quality of smooth splines, in particular for the new quadratic spline.

6. CONCLUSIONS

We have shown that smooth splines on uniform tetrahedral partitions can be used for interactive and high-quality visual-
izations of isosurfaces from measured data. In particular,we have shown the first visualizations of a new spline, which is a
local method to obtain a globalC1 approximation of volume data by quadratic polynomials. We compared the performance
of our method with the closely related quasi-interpolatingcubicC1 splines on type-6 tetrahedral partitions. Our quadratic
C1 spline leads to significantly lower shader complexity whichin most cases compensates for the higher tetrahedron count
of the TO partitions. Frame rates are therefore competitive, and in many cases even better than with the cubicC1 spline.
We further visually compared the new spline to standard methods for isosurface visualization, such as Marching Cubes and
trilinear interpolation, showing the improved quality of asmooth reconstruction.



(a) (b)
Figure 8: (a) Reconstruction of Barth’s sextic sampled froma 1283 grid. (b) Zoom ups into one of the spikes of Barth’s
sextic.From left to right: Marching Cubes, trilinear ray casting,S1

3 spline, the newS1
2 spline.

The splines we used are direct methods, where the polynomialcoefficients are directly available from the volume data
by simple averages of the data values in a local neighborhood. The polynomials can thus be computed on-the-fly directly
on the GPU without the need to inflate the data for storing pre-computed coefficients. We have shown the limits of a cell
projection approach for ray casting a large number of tetrahedra in B-form. First tests with a direct andgeometry free
approach for volume ray casting of type-6 splines, where we do not project single tetrahedra, have shown that speedups of
more than one order of magnitude can be achieved using the same hardware.

Acknowledgments.This research was supported in part by the DFG project GZ ZE 443/7-1, AOBJ: 526229 and the DFG
Emmy Noether fellowship GO 1752/3-1. Data sets in Fig. 1b,c are courtesy of C. Bajaj, University of Texas. Data set in
Fig. 6 is courtesy of General Electric.

REFERENCES

[1] Lorensen, W. E. and Cline, H. E., “Marching cubes: A high resolution 3D surface construction algorithm,”SIG-
GRAPH Comput. Graph.21(4), 163–169 (1987).

[2] NVIDIA Corporation, “CUDA software development kit: Version 2.1.”http://www.nvidia.com/object/
cuda_get.html (2009).

[3] Rössl, C., Zeilfelder, F., Nürnberger, G., and Seidel, H.-P., “Visualization of volume data with quadratic super
splines,” in [Proceedings VIS], 393–400 (2003).

[4] Sorokina, T. and Zeilfelder, F., “Local quasi-interpolation by cubicC1 splines on type-6 tetrahedral partitions,”IMJ
Numerical Analysis27, 74–101 (2007).

[5] Kalbe, T. and Zeilfelder, F., “Hardware-accelerated, high-quality rendering based on trivariate splines approximating
volume data,”Computer Graphics Forum27(2), 331–340 (2008).

[6] Kalbe, T., Koch, T., and Goesele, M., “High-quality rendering of varying isosurfaces with cubic trivariateC1-
continuous splines,”Proc. of 5th International Symposium on Visual Computing, 596–607 (2009).

[7] Kloetzli, J., Olano, M., and Rheingans, P., “Interactive volume isosurface rendering using bt volumes,” in [Proc.
Symp. on Interactive 3D graphics and games], 45–52 (2008).

[8] Rhein, M. and Kalbe, T., “Quasi-interpolation by quadratic C1-splines on truncated octahedral partitions,”Computer
Aided Geometric Design26(8), 825–841 (2009).

[9] Seidel, H.-P., “An introduction to polar forms,”IEEE Computer Graphics & Applications13(1), 38–46 (1993).
[10] Blelloch, G. E., “Prefix sums and their applications,” tech. rep., Carnegie Mellon University (1990).
[11] Harris, M., Sengupta, S., and J.D.Owens, “Parallel prefix sum (scan) with CUDA,” in [GPU Gems III], Nguyen, H.,

ed., 851–876, Addison-Wesley (2008).
[12] Meshkin, H., “Sort-independent alpha blending,” tech. rep., Perpetual Entertainment (2007).
[13] Marschner, S. R. and Lobb, R. J., “An evaluation of reconstruction filters for volume rendering,” in [Proceedings

VIS], 100–107 (1994).


