Higher Quality Volume Rendering on PC Graphics
Hardware
Michael Meil3ner, Stefan Guthe, Wolfgang Straler

WSI-2001-12
April 2001

Graphisch-Interaktive Systeme
Wilhelm-Schickard-Institut
Universitdt Tubingen

D-72076 Tibingen, Germany
e-mail: {nei ssner, guthe, strasser}@ris. uni-tuebingen.de
WWW: http://wwmv. gris. uni-tuebi ngen. de

© WSI 2001
ISSN 0946-3852

Abstract

Shading and classification are among the most powerful and important techniques used
in volume rendering. Unfortunately, for hardware accelerated volume rendering based
on OpenGL, direct classification is only supported on SGI platforms and shading could
previously only be approximated inaccurately, resulting in shading artifacts mostly vis-
ible in darkening artifacts. So far, the combination of classification and shading either
required multi-pass rendering or two volumetric textures.

This paper presents a novel approach for accurate phong shading using multi-texturing,
dependent textures, cube maps, and texture combiners. Furthermore, another novel ap-
proach is presented, enabling the interactive change of sample properties such as color,
opacity, shading parameters, and gradient magnitude without the need of recomputing
the texture every time the classification parameters change requiring no second volu-
metric texture. Finally, in combination with texture compression, even relatively large
volumes can be rendered at interactive frame updates.

CR Categories. 1.0.3 [Computer Graphics]: General; 1.3.1 [Computer Graphics]: Pic-
ture and Image Generation—Graphics processors; 1.3.3 [Computer Graphics]: Picture
and Image Generation—Viewing algorithms;

Keywords: Volume Rendering, Texture Mapping Hardware, Multi-Texturing, Depen-
dent Textures, Phong Shading, Classification.

Figure 1: Real-time volume rendered images enabling classification and phong shading in single pass rendering on GeForce3. From left to
right: Gradient magnitude modulation, zoomed view of aneurism, and differently colored light sources.

1 INTRODUCTION

Due to the large amount of data, computations, and tremendous
bandwidth requirements, software approaches are usually limited
and far from interactive frame updates. One well known exception
might be the ShearWarp algorithm [7], which can achieve interac-
tivity taking advantage of optimizations such as run length encoding
(pre-processing). However, each time classification changes a new
run length encoding needs to be calculated, and hence, for a fully
occupied dataset with semi-transparent classification, no interactiv-
ity can be achieved on a desktop machine.

To overcome the inherent large amount of computation and
the extreme bandwidth, texture mapping hardware has evolved to
become the best known practical volume rendering method for
rectilinear grid datasets. Despite of the wide availability, tex-
ture mapping based volume rendering has some severe limita-
tions: Classification is a key technique in volume rendering in-
terpreting the volume data as color, opacity, and others. To en-
able classification in texture mapping based volume rendering, a
lookup is needed right after the texture mapping stage. Unfortu-
nately, such a lookup is currently only available on SGI platforms
(GL_TEXTURE_COLOR_TABLE_SGI) and it only enables the as-
signment of color and opacity but no further material properties can
be integrated. Shading is yet another key technique to add further
visual cues to the rendered images and enables a better interpreta-
tion of the images. In contrast to polygon rendering where a normal
is a vertex property, a gradient is a voxel property. When using tex-
ture mapping for rendering volume data, no gradient estimation is
supported in hardware. To circumvent this limitation, one can store
the pre-calculated gradient together with the volume data as first
proposed by Westermann et al. [13]. Despite of the fact that many
improved techniques have been proposed based on this approach,
the subsequent shading operations of all of them [13, 8, 10] are
based on not normalized interpolated gradients, resulting in shad-
ing artifacts and requiring that pre-normalized gradients are stored
in the texture which prevents the integration of gradient magnitude
modulation.

In this paper, a new approach for integrating accurate and arti-
fact free shading into texture mapping based volume rendering on
PC graphics hardware is presented. Furthermore, a new technique
accomplishing the integration of classification without the need of
re-generating the entire texture nor requiring a second volumetric
texture is described. Finally, the combination of classification and
shading in a single rendering pass is presented.

1.1 Related Work

3D texture mapping hardware has been recognized as a very effi-
cient acceleration technique for volume rendering, right after the
first SGI RealityEngine [1] has been shipped. Cabral et al. [2]
rendered datasets of 256° voxels at interactive frame-rates on a
four Raster Manager SGI RealityEngine Onyx with a single 150
MHz CPU. Similar results have been presented by Cullip and Neu-
mann [3]. The major drawback of the general texture mapping
approach is the absence of shading functionality for volume data.
To circumvent this, Van Gelder et al. [6] proposed a 3-4 parame-
ter lookup which is used to classify and shade the data. Unfortu-
nately, no direct hardware support for such a lookup is available.
Therefore, each time the viewing or classification changes, an en-
tire new 3D texture needs to be generated. This applies as well
for approaches storing a pre-shaded and pre-classified volume into
texture memory. Problematic for all these approaches is the indi-
vidual interpolation of color and opacity which can lead to severe
artifacts [14], named color bleeding. This could be circumvented

either by pre-multiplying color and opacity® — which is necessary
whenever the classification changes — or by interpolating data in-
stead of color.

Westermann et al. [13] store density values and corresponding
pre-computed and pre-normalized gradients in texture memory
and extensively exploit OpenGL and extensions for unshaded
volume rendering and shaded iso-surface rendering. Meifner et
al. [8] extended this approach combining classification and diffuse
shading for semi-transparent rendering of volume data. While
both approaches use a matrix multiplication to obtain the diffuse
shading intensity, Rezk-Salama et al. [10] use register combiners
as available on the nVIDIA GeForce2. Despite of the impressive
visual results, all these approaches [13, 8, 10] are based on not
normalized interpolated gradients which result in shading artifacts,
as explained later in this paper. Similarly to Westermann [13],
Dachille proposed to use the available hardware for efficient
sample computation and possibly for blending [4]. Shading is
performed on the host to ensure high quality rendering, thus
avoiding the problem of non normalized gradients. However, inter-
activity is sacrificed for reasonably sized datasets (> 2M Vozxels)
and viewports (> 2562), where rendering is in the order of seconds.

The remainder of this paper is organized as follows: Section 2
briefly summarizes the state-of-the-art in texture mapping based
volume rendering. An brief introduction to current hardware ca-
pabilities is given in Section 3. Our new shading approach, en-
abling accurate and shading artifact free phong illumination of vol-
ume data is presented in Section 4. Thereafter, we describe its
combination with simple transfer functions for classification (Sec-
tion 5). Arbitrary transfer functions in combination with previously
reported shading approaches are presented in Section 7. Our results
of those techniques in combination with and without texture com-
pression as well as a set of minor but very helpful future extensions
for the hardware are presented in Section 9. Finally, we conclude
our paper and outline future work.

2 TEXTURE MAPPING REVISITED

The shipment of the first SGI RealityEngine made 3D texture map-
ping hardware an available interactive feature. With respect to vol-
ume rendering, slicing planes parallel to the viewing plane are put
through the volume in back to front order, see Figure 3(a). When

@ (b)

Figure 3: While in 3D texture mapping (a) arbitrary planes can be
positioned in the volume, 2D texture mapping (b) requires a texture
stack for each major viewing direction and the one most perpendic-
ular to the actual viewing is selected.

using perspective projection, this becomes more complicated since

Ipre-multiplying color and opacity requires high precision datapaths to
account for low color and opacity values but current graphics hardware data-
paths are fairly low in precision making this a so far impractical approach
for semi-transparent rendering.

toLight
\

@

Scalar product of light and gradient

Cosine

1-

(b)

Figure 2: Error made in shading a binary cube using not normalized interpolated gradient vectors: (a) Indicates the binary volumetric cube
(green) used and the plane of interest (red). (b) shows the error made using not interpolated gradients.

one needs to account for the correct blending. However, opacity
values represent the volumetric absorption along a unit length and
hence, one would need to use spherical shells or additional textures
to correct this?. Thus, parallel projection is applied in most cases or
artifacts are accepted.

One of the problems involved with 3D texture mapping is its lim-
ited availability. It is currently supported in hardware on most mid-
and high-end SGI platforms, on HP fx class machines, and on the
ATI Radeon. On some other platforms it is available but not sup-
ported in hardware, e.g. on the nVIDIA GeForce3. Therefore, an
alternative method — derived from the ShearWarp agorithm — has
become popular. Here, three stacks of 2D textures are used, one for
each major axis (see Figure 3(b)). Depending on the viewing vec-
tor, the stack most perpendicular to the viewing direction is used.
To account for accurate volumetric absorption, opacity values need
to be corrected depending on the viewing angle.

2.1 Classification

Classification can be realized very easily, but is usu-
ally not available on all platforms. Using SGI’s
GL_TEXTURE_COLOR_TABLE_SGI, a texture can be stored as
pure density volume interpreting the interpolated density values as
a lookup into an at least 256 entries large lookup table. However,
this OpenGL extension is only available on mid- and high-end
SGI platforms. Using multi-pass rendering, classification can
also be accomplished using pixel textures, as presented in [8].
Unfortunately, pixel textures are again limited to mid- and high-
end SGI platforms and inherent to the multi-pass approach, the
performance is reduced significantly. Finally, using two volumetric
textures and multi-texturing hardware, classification can also be
accomplished in a single pass [10]. However, this approach re-
quires two volumetric textures significantly increasing the memory
requirements even if paletted textures are used. Furthermore, the
approach cannot be combined with trilinear interpolation based on
two bilinear interpolations and register combiners, as presented
in [10]. In summary, classification of interpolated density values
is still an unsolved problem for texture mapping hardware based

250 far, no approach is known that solves this to an acceptable degree
without artifacts.

volume rendering®.

2.2 Shading

As mentioned in the introduction, there has been a number of pub-
lications presenting shading of interpolated sample values within
the context of texture mapping based volume rendering [13, 8, 10].
All these approaches pre-compute the voxel gradient which is nor-
malized, scaled, and biased in order to obtain gradient values of
range [0, 1]. The gradient components are then stored in the RGB
values of an RGBA texture and the density value goes into the A
channel. Using traditional texture mapping hardware, the gradi-
ent components and density value are interpolated. However, these
approaches directly use the interpolated but not normalized gradi-
ents to compute the scalar product, subsequently used for diffuse
shading. Thus, these approaches result in severe shading artifacts,
mostly noticeable as darkening of the images.

A side by side comparison of software and hardware generated
images reveals significant differences. Two causes need to be con-
sidered: first the wrong scalar product and second the frequent dis-
retization in the hardware. Figure 2(a) illustrates a binary dataset
consisting of a cube as well as the direction to a light source. Fig-
ure 2(b) shows the actual error made when using not normalized
gradients (error is given by difference of the results of normalized
gradients and not normalized gradients). Obviously, the shading
artifacts can be quite severe and it needs to be mentioned that this
does also occur in non binary datasets because the gradients at grid
position need to be pre-normalized which again can introduce big
differences of the gradient values of neighboring voxels ((1, 0, 0)
and (1, 1, 0) results in a 45 degree difference).

2.3 Further improvements

One further useful improvement of texture mapping based volume
rendering is the efficient trilinear interpolation of samples using 2D
texture mapping hardware and register combiners [10]. Due to the
separability of the linear interpolation kernel, trilinear interpolation
can be split into two bilinear interpolation and a final linear interpo-
lation. Using multi-textures of two subsequent 2D texture slices and
register combiners to interpolate the two resulting values (vectors of

30n PC class machines or in combination with shading.

RGBA), correct trilinear interpolation is accomplished. However,
this cannot be combined with classification and the presented shad-
ing approach suffers from the artifacts described in Section 2.2.

3 TEXTURE SHADING AND BLENDING

Texture shading and texture blending are relatively new concepts
of graphics hardware. The processing of each fragment is split
into a texture shading and a texture blending step. While the lat-
ter has been around for some time, e.g. register combiners, texture
shading is a new and very powerful concept, first introduced on the
GeForce3. In the following these concepts are briefly summarized*
because they are essential for the presented volume rendering ap-
proaches.

Texture Shader: The GeForce3 contains four texture units that
calculate their texture address for fetching the corresponding tex-
ture value. In contrast to the standard OpenGL approach of cal-
culating texture addresses, the GeForce3 is capable of using tex-
ture results of previous texture units to calculate new texture ad-
dresses and access another texture, so-called dependent texturing.
The texture address calculation can be influenced by defining a tex-
ture shader operation. Generally, these operations can be divided
in four groups: the conventional (non-dependent) texture fetches,
special case texture fetches, dependent texture fetches and dot pro-
duct dependent texture fetches. The special case texture fetches do
not depend on previous texture units but allow for the removal of
fragments from the pipeline (culling). While the dependent texture
fetches can easily be used for classification of volume data, the dot
product dependent texture fetches are more complex to handle and
can put some restrictions on the use of the other texture units. E.g.
using a single dot product dependent texture reduces the number of
available texture fetches to three because the shader operation of the
previous texture unit is used for calculating the second texture co-
ordinate for a 2D texture®. Using cube maps, two texture units are
needed for calculating the texture coordinates and therefore only
two available texture fetches are left. In addition to computing a
dot product and accessing a cube map, the texture shader is also
capable of addressing a second cube map treating the texture coor-
dinate as a vector and reflecting it using a given normal (used for
environment bump mapping). This normal can either be supplied
by the fourth component of the texture coordinates or by a user de-
fined constant within the texture shader.

Register Combiner: The resulting RGBA values of each tex-
ture unit is passed on to the register combiners which can perform
further operations on these fragments. However, once entering the
register combiner stage, no further texture mapping functionality or
lookup is available. A total of eight register combiners and one final
combiner is available®. Despite the large set of registers available
to each register combiner, only some of them are used within this
paper: colO: the primary color, coll: the secondary color, spare0,
sparel: scratch register, texO-tex3: texture values of texture unit 0-
3 and congtO, constl: constant values (unique for each combiner).
Generally, each register combiner (general combiner) is split into
an RGB and an Alpha portion where each portion has four unique
input (A, B, C and D) and three output registers. While the RGB
combiner is capable of four calculations: A- Band C-D; A- B
and CD; AB,CD and AB+CD; AB, CD and mux(AB, CD),
where mux returns either AB or C'D depending on the alpha value
of the spare0 register. Since the Alpha combiner only uses al-
pha or blue values for it’s calculations, one ends up with only two
possible calculations: AB, CD and AB + CD; AB, CD and

4For more details, see www.nvidia.com/developer

51D textures cannot be used for dependent texturing.

60nly two register combiners and one final combiner is available in hard-
ware, the others are “emulated” with the same resource.

mux(AB,CD). In addition any unused result can be discarded.
While the final alpha combiner can only choose a single alpha
or blue value for output, the final RGB combiner is much more
powerful. First of all it always calculates the sum color1+spare0
and the product EF. EF can be inserted into the final equation
AB+ (1 — A)C + D for A, B, C or D. The sum of colorl and
spare0 will be clamped to either [0, 1] or [0, 2] and can used as B,
C or D. Any other register may also be used as A, B, C or D.

In summary, texture shading and blending offers a sheer amount
of combinatorial possibilities which can be used for numerous ap-
plications due to its high flexibility [5]. However, programming
these features can be quite tedious and sometimes feels like pro-
gramming microcode.

4 ACCURATE PHONG SHADING

To obtain correct Phong illumination using the interpolated gradi-
ent vectors, one would need to normalize the gradient but there is
neither a vector normalization unit available in the current OpenGL
pipeline nor can a vector be normalized using extensions. Fortu-
nately, there are other approaches to obtain correct shading results
without the need of normalizing the gradient. Cube or environment
maps consist of six textures, one for each face of the cube. By pro-
jecting the diffuse intensity of all surrounding light sources onto the
cube faces, these luminance textures can be used for a diffuse cube
map, as shown in Figure 4(a). Similarly, this can be performed to

@) (b)

Figure 4: Cube maps for one light source: (a) Diffuse cube map.
(b) Specular cube map using a phong exponent of 50.

generate textures for a specular cube map. Thus, the six textures
contain the reflected specular light intensities, as illustrated in Fig-
ure 4(b). Instead of using the gradient as index into the cube map,
the reflected vector is used [12, 11]. Colored light sources can also
be realized using RGB textures for the cube map instead of lumi-
nance textures.

In the context of texture shaders, a diffuse and a specular cube
map can be realized configuring the texture shaders as illustrated
in Figure 5. While texture shader 0 performs the original texture
mapping, texture shader 1, 2, and 3 are used to “move” the gradient
to texture shader 2 (texture fetch) and to compute the reflected vec-
tor in texture shader 37. Depending on the results of texture shader
0, two cube maps are finally accessed by texture shader 2 and 3.
Resulting from those texture shader operations, the sample density
is available in Ay, the diffuse intensity in R2G2 B>, and the spec-
ular intensity in R3G3Bs. In a final step, those values need to be
combined performing the calculation of the shading model:

I:ka*Ia+kd*Id+ks*Is (1)

“Texture shaders are not equal in functionality. E.g. the computation
of the reflected vector R is hardwired in texture shader 3 and cannot be
performed by any of the other texture shaders.

Texture Texture Shader Texture Texture Output
Shader # Coordinates Operation Fetch Format Color
0 (ST None L 2DRGBA R(G(ByA,
{l (1001, Ex) Ux=1[1,0,0]-[Ry,Gy.By] None None 0000
2 ([0,1,0], Ey) Uy=10,1,0]:[Ry.Gy.Bg] U =(Ry,Gy.By) Cubemap R,G,B,A,
3 ([0,0,1], E,) U,=1[0,0,1][Ry.Gy.Byg] R = (RX,Ry,RZ) Cubemap R;G;B;A,
R = 2U (U-E)_ E
CEY)

Figure 5: Implementation of phong shading using the four texture shaders available on the GeForce3. Texture shader 1,2, and 3 “move” the
Gradient from RoGo By to U using the texture coordinates (1, 0,0, E,), (0,1, 0, Ey), and (0,0, 1, E.). Furthermore, the reflected vector R
is computed in texture shader 3. While U is used to access a diffuse cube map, the reflected vector is used to access a specular cube map.

which can be performed very easily requiring one register combiner
(kaq = Iz and ks = I;) and the final combiner, as denoted in pseudo
combiner code®:

/1 comnbiner 0

rgb { coll = tex2*col 0; /1 diffuse
spare0 = tex3*const1;} // specul ar

al pha {}

/! finale conbiner

sum = col 1 + spare0; /1 diff+spec
out.rgb = sumtconst 0; /] sum
out.a = texoO; /1 opacity

where texi denotes the output of texture shader ¢ and rgb and alpha
denote the operations performed on the RGB values and A values
respectively. colO is set to the diffuse material property k4, constO
is setto k, * I,,, constl is set to be the specular material property ks,
sum is a temporary result of an ADD of the final combiner, and out
denotes the final RGBA values entering the per fragment pipeline.

In summary, with the availability of hardware supported cube
maps, it is possible for the first time to accomplish true phong
shaded volume rendered images based on texture mapping hard-
ware.

5 SIMPLE TRANSFER FUNCTIONS

When using the four available texture shaders as described in Sec-
tion 4, no further dependent texture can be accessed to perform
the actual classification dependent on the interpolated density value
stored in Aq (see Figure 5). Basically texture shader 1 is not per-
forming any texture operation in this configuration but when using
two cube maps, texture shader 1 cannot be used for any texture op-
eration at all.

Alternatively, one can use register combiners to perform classi-
fication. In this case, only simple stairs with up to four intervals
or a linear ramp can be realized, as illustrated in Figure 1. The ba-
sic concept is to multiplex constants depending on given interval
boundaries. E.g. assuming that all voxels of values < z should be
fully transparent and all others should be semi-transparent white,
this can be accomplished multiplexing the opacity values 0 and 0.5

8There is an extension which translates combiner code into OpenGL
commands but for illustration purposes, this combiner language has been
simplified.

Bl B2 B3 Bl B2
2= 255

255 0 25¢
(b)

Table 1: Simple transfer functions that can be realized using up to
three interval boundaries (B1, B2, B3) and register combiners: (a)
Intervals with const RGBA for each interval. (b) Three intervals
with two intervals of const RGBA and the middle interval as linear
ramp.

by comparing the sample value (Ao) with the interval border z.
The corresponding configuration of three register combiners and
the final combiner are (including the shading computations of the
previous section):

/'l conbiner 0
rgb { coll = tex2*col 0;}
alhpa { // 0.5+0.5(A0-x);
spare0 = texO0*hal f_bi as_negat e(0);
+ unsi gned_i nvert (const0)
*hal f _bi as_negat e(0);

/'l diffuse

/1 conbiner 1 /1 (AO<=x ? constO0: const1l)
/1 sparseQ triggers nux
mux(const0, constl) }

mux(const0, constl) }

rgb { texl
al pha { tex1

/! conbiner 2

rgb { spare0O tex3*const1; // specul ar

O

=3

(I
I

texl*col 1;} // diff*ld
al pha {}
pr oduct t ex1*const 0; /1 RGBA(AO0)

sum coll + spareO; // diff+spec

out.rgb sumtpr oduct ;

= /1 shadi ng
out.a = texl;

/1 A(AO)

where const0 contains the color and opacity used if the sample
value is < x and constl contains the color for voxel values larger
than x.

The concept of multiplexing values for one interval boundary
enabling two different classification states can be extended to up to
four intervals. Any further interval requires one more multiplex-
ing stage and thus two more register combiners. The corresponding
pseudo combiner code for the involved combiners is basically cas-
cading the above described concept. Alternatively to up to four
stair intervals, three intervals can be used where in the middle in-
terval a linear ramp is realized. This is e.g. very useful in visual-
izing CTA aneurysms. Most volumes can either be classified using
one of these two simple classification schemes: while most datasets
synthetic datasets require a classification of the first kind, medical
datasets usually require the latter type of classification using a ramp
since the boundaries between different kinds of tissue are somewhat
fuzzy.

In summary, Figure 8 (d-f) show images of the engine block
dataset were three different voxel value intervals are classified. The
lower 25% is mapped to full transparency, the upper 25% to red and
full opacity, and the range in between is classified semi-transparent
white.

6 GRADIENT MAGNITUDE MODULATION

Using the gradient magnitude to suppress data which resides within
homogeneous areas of a dataset is a very powerful feature for en-
hancing boundaries. Generally, when applying gradient magni-
tude modulation, the quality of the boundary enhancement depends
mainly on the quality of the used gradient filter. While the interme-
diate and central difference gradient filters are prone to artifacts —
since they result in non symmetric gradients —, the Sobel operator
is the gradient operator of choice and used throughout this paper.

Figure 8(e) and (f) show images using gradient magnitude mod-
ulation compared to not using the gradient magnitude (Figure 8(d)).
Generally, gradient magnitude modulation modifies the opacity of
a sample based on the magnitude of the sample’s gradient. For this
purpose, either a gradient magnitude transfer function can be used
or any power of the gradient length can be computed. While the
first offers more flexibility but requires an additional lookup, the
latter can be computed on the fly without lookup.

When performing accurate shading based on cube maps, there
is no spare dependent texture lookup. Thus, gradient magnitude
modulation modifying the sample « by:

a = a * pow(length(gradient), n))

is implemented using register combiners. It allows to chose n to be
either 2, 4, or eight and can freely be combined with the classifi-
cation technique described in the previous section. Figure 8(e) was
generated using n = 2 and n = 4 was used for Figure 8(d).

7 COMPLEX TRANSFER FUNCTIONS

Depending on the volumetric data to be visualized, there are cases
where simple classification as presented in Section 5 does not suf-
fice, e.g. one needs to use per sample color and/or material prop-
erties. In this case, simple dependent texturing can be used to pro-
vide this data. For simple RGBA transfer functions, a single de-
pendent texture can be used. For further material properties (kq,
ka,ks), a second texture can be used, as illustrated in Figure 6.
Even though there are no 1D textures possible in dependent tex-
turing, these 2D textures can be of size 2 x 256. The drawback of

Tex Shader Texture Texture Output
Coord Op Fetch Format Color
texture
0 (ST) None mapping 2D RGBA R,G,ByA,
1 ignored None (Ag,Rg 2DRGBA R;G;B;A;
2 ignored None (Ag,Rg 2DRGBA R,G,B,A,
3 ignored None None None 0000

Figure 6: Implementation of complex classification using texture
shader. While texture unit 1 is used as a lookup table for the color
and opacity of each interpolated voxel, texture unit 2 is used to store
further material properties (ks, kq, and k).

such a per sample classification is that it cannot be combined with
accurate Phong shading due to the limited resources (four texture
shaders). Thus, in cases where arbitrary per sample classification
in combination with shading is mandatory, one could combine this
classification approach with a less accurate shading technique, as
presented in [10]. However, the image quality would be signifi-
cantly lower than with the presented accurate Phong shading. For
most cases, simple transfer functions are sufficient as all images in
Figure 1 and Figure 8 were generated using them.

8 TEXTURE COMPRESSION

One of the main drawbacks when using texture mapping hardware
for volume rendering is the need for storing an RGBA texture in
order to provide the gradients. This is necessary because there is no
support for extracting gradients directly from the density volume,
as done in VolumePro [9]. Thus, a significant amount of texture
memory is required to store the additional gradient information. For
8 bit voxel values and a 256 volume, the memory requirements are
increased from 16 MBytes to 64 MBytes. Thus for a graphics card
with 64 MBytes of memory (texture and framebuffer memory), and
a volume that is much larger than the available texture memory,
the volume needs to be partitioned into bricks which are transfered
from main memory to the graphics card when needed. However,
even with an AGP bus, this significantly reduces the the overall
performance and real-time frame-rate are not anymore feasible.

Recently, the ARB® of OpenGL released an extension for tex-
ture compressions, ARB_texture_compression which is supported
on many PC graphics cards (Voodo5, Radeon, GeForce family).
The compression is based on the st3c algorithm and accomplishes
a constant compression rate of four by packing 4 x 4 texels into a
compact bitstream. Thus, datasets which are much larger than the
available texture memory of the graphics card can still be rendered
at real-time or interactive frame-rates. However, image quality is
potentially sacrifized due to the lossy compression algorithm. Fig-
ure 7 illustrates the difference in image quality for a full (a,b) and
a close-up view (c,d) of the engine dataset. While the global in-
formation and structure is still available, fine detail is lost. Thus,
one might want to implement a hybrid renderer, bricking the vol-
ume into subcubes (e.g. 32%) which allow view frustum culling.
The subcubes close to the observer or within the ROI'®, uncom-
pressed textures could be used while the others are rendered using
compressed textures.

9Architecture Review Board.
10Region of interest.

Figure 7: Texture compression applied to the engine dataset: (a,c)
Without compression. (b,d) With compression.

9 RESULTS

With the described techniques, high quality images using accurate
phong shading, gradient magnitude modulation, and classification
can be accomplished. The results with respect to image quality
are summarized in Figure 8, depicting a set of images generated
on the GeForce3. Besides the image quality, the overall perfor-
mance is usually of interest. Since the presented techniques do not
use multi-pass rendering, interactive to real-time performance is ac-
complished for all presented datasets and classifications, using a
viewport of 500 x 500 pixels™.

The necessary resolution of the textures of the specular cube map
depends on the chosen phong exponent. Phong exponents of up to
128 can be represented in textures of 642 texels, without noticeable
degradation of the image quality. The resolution of the diffuse cube
map textures can be chosen much lower (162).

As mentioned earlier, sharing resources occurs when using more
than two register combiners. Generally, one can use up to eight gen-
eral register combiners but resources for only two are available in
hardware. Nevertheless, no performance reduction could be mea-
sured for any of our techniques.

10 CONCLUSIONS

In this paper, we presented a novel approach for accomplishing true
phong shaded volume rendered images using cube maps, dependent
textures, and multi-stage rasterization. Additionally, the combina-
tion of this approach with gradient magnitude modulation and on
the fly classification of volume data using simple transfer functions
such as stairs or linear ramps was described. There over, in combi-

1|deal performance could not yet be reached due to the pre-production
board and the pre-release status of the OpenGL drivers. Nevertheless, for
datasets of 2563 voxels interactive to real-time frame-rates were accom-
plished.

nation with a less sophisticated shading approach, the integration of
arbitrary transfer functions enabling RGBA and material properties
as a per sample property was presented. Thus, unprecedented high
quality volume rendered images based on texture mapping hard-
ware were accomplished.

The presented results were generated on a nVIDIA GeForce3
using OpenGL. Besides its high throughput, the GeForce3 offers
highest possible flexibility within the texturing and the rasterization
stage. As demonstrated, this flexibility can be efficiently exploited
to enable and combine the most important and most valuable tech-
niques of volume rendering at interactive frame rates.

In the future, we hope to see a continuous increase in the flexi-
bility and programmability of upcoming graphics hardware. With
respect to volume rendering, the urgent issue is hardware support
of 3D texture mapping in combination with functionality as texture
shaders, dependent textures, and register combiners.

11 ACKNOWLEDGEMENTS

The authors would like to thank David Kirk, Matthew Papakipos,
and John Spitzer from nVIDIA for providing a GeForce3 and early
OpenGL drivers. This work has been funded by the SFB grant 382
of the German Research Council (DFG).

References

[1] K. Akeley. RealityEngine Graphics. In Computer Graphics,
Proc. of ACM SIGGRAPH, pages 109-116, August 1993.

[2] B.Cabral, N. Cam, and J. Foran. Accelerated Volume Render-
ing and Tomographic Reconstruction Using Texture Mapping
Hardware. In Wobrkshop on Volume Misualization, pages 91—
98, Washington, DC, USA, October 1994.

[3] T.J. Cullip and U. Neumann. Accelerating Volume Recon-
struction with 3D Texture Mapping Hardware. Technical Re-
port TR93-027, Department of Computer Science at the Uni-
versity of North Carolina, Chapel Hill, 1993.

[4] F. Dachille, K. Kreeger, B. Chen, I. Bitter, and A. Kauf-
man. High-Quality Volume Rendering Using Texture Map-
ping Hardware. In Proc. of Eurographics/SI GGRAPH Work-
shop on Graphics Hardware, pages 69-76, Lisboa, Portugal,
August 1998.

[5] S.Dominéand J. Spitzer. OpenGL Texture Shaders. Technical
document, available from http: //mww.nvidia.conv, 2001.

[6] A. Van Gelder and K. Kim. Direct Volume Rendering With
Shading via Three-Dimensional Textures. In Symposium on
\olume Visualization, pages 23-30, San Francisco, CA, USA,
October 1996.

[7] P. Lacroute and M. Levoy. Fast Volume Rendering Using a
Shear-Warp factorization of the Viewing Transform. In Com-
puter Graphics, Proc. of ACM SIGGRAPH, pages 451-457,
July 1994,

[8] M. MeiRner, U. Hoffmann, and W. StraRer. Enabling Classi-
fication and Shading for 3D Texture Mapping based Volume
Rendering using OpenGL and Extensions. In Proc. of IEEE
Visualization, pages 207-214, San Franisco, CA, USA, Octo-
ber 1999. IEEE Computer Society Press.

[9] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The volumepro real-time ray-casting system. In Computer
Graphics, Proc. of ACM SIGGRAPH, pages 251-260, Los
Angeles, CA, USA, 1999.

[10]

[11]

[12]

[13]

[14]

C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl.
Interactive volume rendering on standard pc graphics hard-
ware using multi-texturing and multi-stage rasterization. In
Proc. of Eurographics/SSIGGRAPH Workshop on Graphics
Hardware, pages 109-118, Interlaken, Switzerland, August
2000.

J. Terwisscha van Scheltinga, J. Smit, and M. Bosma. De-
sign of an on Chip Reflectance Map. In Proc. of the 10th EG
Workshop on Graphics Hardware, pages 51-55, Maastricht,
The Netherlands, August 1995.

D. Voorhies and J. Foran. State of the art in data visualiza-
tion. In Computer Graphics, Proc. of ACM SIGGRAPH,
pages 163-166, July 1994.

R. Westermann and T. Ertl. Efficiently Using Graphics Hard-
ware in Volume Rendering Applications. In Computer Graph-
ics, Proc. of ACM SIGGRAPH, pages 169-177, Orlando, FL,
USA, August 1998.

C. M. Wittenbrink, T. Malzbender, and M. E. Goss. Opacity-
Weighted Color Interpolation For Volume Sampling. In Sym-
posium on Volume Visualization, pages 135-142, Research
Triangle Park, NC, USA, October 1998.

(b)

(d) (e) ®

()

-

() (k)

Figure 8: Color plates: Engine dataset 256> x 110, fuel injection 642, aneurism 256°, neghip 128, and lobster 324 x 301 x 57. (a)
No illumination. (b) Wrong illumination using not normalized interpolated gradients [13, 8, 10]. (c) Accurate Phong illumination. (d)
Illumination and classification. (e) as (d) using linear gradient magnitude modulation. (f) as (d) using squared gradient magnitude modulation.
(9) Hlumination and classification. (h) lHlumination and classification using a linear ramp. (i) lllumination and classification. (j) Illumination

and classification. (k) as (j) using squared gradient magnitude modulation.

