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Single-Trial EEG Classification of Artifacts in Videos
MARYAM MUSTAFA, STEFAN GUTHE, and MARCUS MAGNOR, TU Braunschweig

In this article we use an ElectroEncephaloGraph (EEG) to explore the perception of artifacts that typically appear during
rendering and determine the perceptual quality of a sequence of images. Although there is an emerging interest in using an
EEG for image quality assessment, one of the main impediments to the use of an EEG is the very low Signal-to-Noise Ratio (SNR)
which makes it exceedingly difficult to distinguish neural responses from noise. Traditionally, event-related potentials have been
used for analysis of EEG data. However, they rely on averaging and so require a large number of participants and trials to get
meaningful data. Also, due the the low SNR ERP’s are not suited for single-trial classification.

We propose a novel wavelet-based approach for evaluating EEG signals which allows us to predict the perceived image quality
from only a single trial. Our wavelet-based algorithm is able to filter the EEG data and remove noise, eliminating the need for
many participants or many trials. With this approach it is possible to use data from only 10 electrode channels for single-trial
classification and predict the presence of an artifact with an accuracy of 85%. We also show that it is possible to differentiate
and classify a trial based on the exact type of artifact viewed. Our work is particularly useful for understanding how the human
visual system responds to different types of degradations in images and videos. An understanding of the perception of typical
image-based rendering artifacts forms the basis for the optimization of rendering and masking algorithms.
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1. INTRODUCTION

The exponential growth of user expectations for visually believable movies, games, and simulated en-
vironments is putting an increasing pressure on computing hardware and software to create highly
complex but visually appealing and plausible imagery. However, this is becoming progressively diffi-
cult due to the evident limitations of computing hardware. Given the importance of visual fidelity in
today’s environment it is essential to understand and analyze how the Human Visual System (HVS)
perceives rendering flows of complex, photo-realistic image sequences [Bartz et al. 2008]. This under-
standing will allow computer graphics practitioners to take advantage of the flexibility and robustness
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associated with human vision. An image or video that is perceptually accurate is not necessarily also
statistically accurate [McNamara et al. 2010]. The human eye tends to overlook many different types
of artifacts and distortions within a visual stimulus. An understanding of the visual system’s response
to these distortions will allow an optimization of rendering systems and decrease the gap between
hardware performance and required performance [O’Sullivan et al. 2004].

Despite a substantial amount of research in applying perception to graphics and IBR [Vangorp et al.
2011; Ferwerda et al. 1996; Anderson et al. 2011], only recently has there been a growing interest in
using an EEG to analyze visual processing [Mustafa et al. 2012; Lindemann and Magnor 2011; Rossion
and Caharel 2011; Agam and Sekuler 2007]. Also, the use of an EEG in computer graphics research is
now much easier with the advent of systems like the Emotiv EPOC neuroheadset [Emotiv 2012]. Apart
from being in expensive ($299) it requires little prior or specialized knowledge to use. This makes an
EEG an excellent tool for the analysis of the perception of images and videos. However, because of the
very low Signal-to-Noise Ratio (SNR) of EEG data the application of the EEG has been limited. Most
of the related work in EEG use Event-Related Potential’s (ERP’s) [Agam and Sekuler 2007; Moulson
et al. 2011] which, because they rely on averaging, require a large number of participants and a large
number of trials per participant to get meaningful data. In contrast Lindemann et al. [2011] used
Principal Component Analysis (PCA) to classify EEG data. However, this only partly solves the issues
with the signal-to-noise ratio and is mainly used to speed up the classification by reducing the amount
of data rather than improving the final classification result. We use a wavelet-based approach along
with a standard support vector machine to achieve creditable single-trial classification results.

Our work focuses on the classification of artifacts that usually occur in IBR. According to
Vangorp et al. [2011] the most common artifacts that occur are ghosting, blurring, and popping. In
our test scenes we present videos containing these typical IBR artifacts to participants and then use
the recorded EEG to determine the perceived quality. Usually the quality of a video or rendered output
is determined either by user studies or the use of quality assessment algorithms. Typically the use of
psychophysical experiments and user studies is limited because of the large number of participants
required. Also, user studies can at best only measure the explicit output of the visual cognitive pro-
cess [Korsar et al. 2003]. Quality ratings acquired through user studies are always filtered by some
decision process which, in turn, may be influenced by the task and/or rating scale the participants are
given [Ponomarenko et al. 2009]. Similarly the judgment of a user regarding a visual stimulus is often
biased by external factors such as mood, expectation, or past experience. In contrast, our approach
allows for the objective prediction of the perceptual quality of an image sequence from a single trial
with a few participants and a few trials per participant.

In physically-based rendering, the quality can be defined as the difference of the output of a proposed
algorithm against a ground-truth reference. However, as far as the perceived quality goes, things are
not as straightforward. The two most important things are plausibility and absence of objectionable
artifacts. In our earlier work [Mustafa et al. 2012] we looked into how the HVS reacts to artifacts
in an image sequence but our analysis was limited only to ERP’s which meant looking at averaged
data only without attempting to classify single trials based on artifact presence. In this article, we use
a wavelet-based algorithm for the classification of EEG signals for different artifacts versus ground-
truth sequences and analyze the overall emotional response to the video. Our main contribution is a
method for processing the EEG data using wavelets as proposed by Olkkonen et al. [2006] and then an
SVM to classify a single trial based on the type of distortion. We show that for typical IBR artifacts in
an image sequence it is possible to differentiate a single trial based on the type of the artifact viewed
and determine the perceived quality of the video. We also show that it is possible to classify the trials
based on the exact type of artifact viewed. Furthermore, we present evidence of a clear emotional
response linked with each artifact.
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2. RELATED WORK

IBR is a vast area and we will only be focusing on the relevant perceptually-based algorithms and
related work in perceptual IBR. There has been recent interest in studying visual processing for image
rendering and analysis techniques [Ferwerda et al. 1996; Vangorp et al. 2011]. However, most of the re-
search is geared towards using perception-based algorithms to create rendered sequences or perceptual
algorithms to determine the quality of the rendered output [Seshadrinathan and Bovik 2010]. Most of
the current work with EEG has been in the area of Human Computer Interaction (HCI). Shenoy and
Tan [2008] present the idea of Human-Aided Computing which uses an EEG to label images implicitly.
They use brain processes to show that users can implicitly categorize pictures based on content. Their
work, however, required users to memorize the images and to be attentive to the content viewed. The
most relevant work is of Vangorp et al. [2011] who conduct psychophysical experiments to understand
the perception of artifacts in rendering of facades. They looked at the user feedback from rendered
sequences that moved over facades of buildings. We use their work to decide the kind of artifacts to
look into. However, our work is focused on using an EEG to measure the actual perception of these
artifacts in the primary visual cortex and to then use these measurements along with wavelets and an
SVM to classify the videos based on the type of artifacts present.

2.1 Perception-Based Rendering Algorithms

In 2001, McNamara [2001] already looked into the idea of including a perceptual model into a ren-
dering pipeline. That author employed a model based on aspects of the human visual system as this
portion of the process of perception is well understood. However, the author mentions that perception
overall is a much more complex process that requires more research in the future.

In the same year, Luebcke and Hallen [2001] used an approximation to an empirical perceptual
model for real-time rendering. They used a point-based rendering system called QSplat [Rusinkiewicz
and Levoy 2000] that constructed a point-cloud hierarchy over a given model. The point cloud was then
used during rendering as a multiresolution approximation of the underlying geometry. The perceptual
model was combined with gaze tracking to produce a detailed map that defined the required rendering
precision.

As a conservative estimation of the perceptual quality, Farrugia and Péroche [2004] use information
from the human visual system, to define when an approximated image is indistinguishable from its
original. Even though their approximated images are perceptually of the same quality, they miss out
on further optimizations due to the remaining perceptual processing.

As part of a 2010 Siggraph Course by Křivánek et al. [2010] on ray tracing solutions for film pro-
duction rendering, Fajardo gave a very nice example of a case where all prior metrics would fail to
some extent. In order to reduce the noise in indirect illumination, all specular lobes are widened in
secondary bounces. This leads to a convincing looking image without any visual artifacts that accu-
rately conveys the overall lighting situation. However, it is very well distinguishable compared against
a ground-truth reference.

2.2 Perception and EEG

There is a growing interest in using EEG for the analysis of Human Visual Perception. Recently
Moulson et al. [2011] analyzed the perception of faces using an EEG. They looked at the N170 compo-
nent of an ERP using a traditional component analysis and single-trial classification. The authors use
statistical classifiers to decide if the temporally distributed pattern of activity in reaction to faces was
different from that elicited by non-faces on trial by trial bases and if these patterns of activity differed
among non-faces that varied in how face-like they were. The results showed that both analysis showed
strict preference for veridical face stimuli within the N170 time window.
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Similarly, Rossion et al. [2011] used an EEG to look into how fast visual stimuli are classified as
faces by the brain. They used ERP’s to show a dissociation between the ERP component P1, which
reflects low-level visual cues, as opposed to component N170, which is in response to the perception of
a face regardless of low-level visual cues like color.

Recently Lindemann and Magnor [2011] and Lindemann et al. [2011] have been using an EEG to
assess the quality of compressed images and video artifacts. They reported that when shown different
images of decreasing quality the participants’ EEG results showed corresponding changes in image
quality. Their work showed that the brain response varied with the image compression value. However
Lindemann looked into static images [Lindemann and Magnor 2011] and later [Lindemann et al. 2011]
static images they zoomed into. We wanted to look into ways of predicting video quality of complicated
realistic image sequences with motion and natural scenes.

The most relevant research has been done by Mustafa et al. [2012] who looked at artifacts in videos
and the corresponding EEG results. They showed the obvious brain response to artifacts in videos
in the form of Event-Related Potentials (ERP’s). Our work is in part based on this paper, however,
we concentrate on using this EEG to classify a single-trial EEG into different categories based on the
level of distortion. There is little related research into using an EEG to determine quality of a rendered
output and to categorize the visual stimulus based on the exact artifact present.

2.3 Wavelet-Based Classification

In recent years, wavelet-based, and especially shift-invariant, otherwise known as complex wavelet-
based analysis, has become more popular in the context of EEG or brain wave data. However, most
of the publications in this area are either focusing strong abnormalities [Subasi et al. 2005] or more
invasive brain wave recording than EEG [Olkkonen et al. 2006].

Olkkonen et al. [2006] were the first to apply a complex wavelet transform for filtering EEG data.
They used a separate Hilbert transform in Fourier space, therefore guaranteeing true shift-invariance.
In order to avoid the required Fourier transformations the authors also proposed to use a discrete
version of the Hilbert transform as defined by Oppenheim et al. [1999].

With the advent of lifting steps to create second-generation wavelets [Sweldens and Schroder 2000],
a different construction of the complex wavelet transform became possible. Barria et al. [2012] show
that the resulting dual-tree wavelet transformation almost forms a Hilbert pair. Since we would like
to achieve the highest classification accuracy rather than optimal running time, we chose to stay with
the separate Hilbert transform and the lifting algorithm for final transform only.

All final classifications require some kind of either Support Vector Machine (SVM) or neural network.
As SVMs are very well established in this field, we chose a multiclass support vector machine (C-SVM)
with Radial Basis Functions (RBF) as kernel function. The SVM we use throughout this article is freely
available from the authors [Chang and Lin 2011].

3. ARTIFACT CLASSIFICATION

The most straightforward way to classify single-trial EEG data is using it in its raw form. While this
is useful for ERP’s where a large number of trials are averaged, that is, at least 10 participants with
multiple trials each, the low signal-to-noise ratio and the overall amount of noise makes this approach
less than ideal for the single-trial setting.

Traditionally, the variants of the discrete Fourier transform have been used as the brain activity is
limited to certain frequency ranges and most of the frequencies outside of these ranges can be regarded
as noise. However, since the Fourier transform loses all temporal information outside a single phase
shift per frequency, it cannot be used directly. Instead, the windowed Fourier transform is used to
ACM Transactions on Applied Perception, Vol. 9, No. 3, Article 12, Publication date: July 2012.



Single-Trial EEG Classification of Artifacts in Videos • 12:5

regain some of the temporal resolution. Still, a high-frequency and low temporal resolution causes
issues if a captured brain wave rapidly changes its frequency even by small amounts.

In contrast to the discrete Fourier transform, the Discrete Wavelet Transform (DWT) has a much
lower-frequency resolution but the temporal resolution adapts to the frequency, that is, the temporal
resolution is directly proportional to the frequency. Since each frequency range we’re interested in
roughly covers one frequency band of the wavelet transform, it seems to be the ideal choice for us.
However, a regular wavelet transform is not shift-invariant and will therefore have issues with phase
shifts. A Complex Discrete Wavelet Transform (CDWT), on the other hand, can easily be made shift-
invariant as we will see shortly.

When analyzing EEG data from face and object recognition, Rousselet et al. [2007] found that
the 5Hz to 15Hz range produced the best results in their setting. However, we found that using
the range from 2.5Hz to 20Hz increases the classification accuracy compared to 5Hz to 20Hz (we
can’t use 5Hz to 15Hz as we are limited to multiples of 2 because of the wavelet transform). This
can be explained by the slightly less than perfect frequency cut-off of the wavelet filter functions
(see Figure 2) and the fact that a lower-frequency phase shift shows up in higher-frequency
bands.

3.1 Wavelet Transformation

Given a discrete input signal f (t) and the wavelet filter pair consisting of a low-pass filter g (t) and a
high-pass filter h (t), the general discrete wavelet transform is defined as follows.

s0 (t) = f (t)

sn+1 (t) =
∞∑

k=−∞
sn (k) g (2t − k)

dn+1 (t) =
∞∑

k=−∞
sn (k) h (2t − k)

In case of the Haar wavelet [Haar 1910], functions g and h form a orthonormal basis and are defined
as follows.

g (t) =
{

1 0 ≤ t ≤ 2
0 otherwise

h (t) =

⎧⎪⎨
⎪⎩

1 0 ≤ t ≤ 1
−1 1 ≤ t ≤ 2
0 otherwise

In turn, this leads to the very simple definition of the Haar transform.

s0 (t) = f (t)
dn+1 (t) = sn (2t + 1) − sn (2t)

sn+1 (t) = 1
2

sn (2t) + 1
2

sn (2t + 1)

As can easily be seen, sn is simply the average of two consecutive samples and dn is the delta be-
tween these two. In order to easily construct higher-order wavelets, we use an approach called lift-
ing [Sweldens and Schroder 2000] where the calculation of sn+1 is based on dn+1 as well. The Haar
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Fig. 1. Frequency response of Haar wavelet and scaling function compared against optimal frequency cut-off.
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Fig. 2. Frequency response of cubic B-spline wavelet and scaling function compared against optimal frequency cut-off.

wavelet transform can then be written as follows.

dn+1 (t) = sn (2t + 1) − sn (2t)

sn+1 (t) = sn (2t) + 1
2

dn+1 (t)

Since we are interested in frequency ranges, however, we need to take a closer look at the frequency
response of the Haar wavelet filter pair. As seen in Figure 1, for the Haar wavelet there is both a large
frequency overlap between the wavelet and the scaling function. Furthermore, there are a significant
amount of frequencies outside of the optimal ranges that will show up in the frequency bands.

In order to get both a better frequency cut-off and less overlap between wavelet and scaling function,
higher-order wavelets, such as cubic B-spline wavelets (see Figure 2) can be used. Note that the cut-
off frequencies can be different for each wavelets but they always follow the rule that the frequency
doubles from one band to the next.
ACM Transactions on Applied Perception, Vol. 9, No. 3, Article 12, Publication date: July 2012.
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The lifting steps for the cubic B-spline wavelet transform are as follows.

dn+1 (t) = sn (2t + 1)

− 9
16

sn (2t + 2) + 1
16

sn (2t + 4)

− 9
16

sn (2t) + 1
16

sn (2t − 2)

sn+1 (t) = sn (2t)

+ 9
32

dn+1 (t) − 1
32

dn+1 (t + 1)

+ 9
32

dn+1 (t − 1) − 1
32

dn+1 (t − 2)

Unfortunately, the wavelet transform is not shift-invariant due to its down-sampling property, that
is, the fact the each set of samples dn+1 contains only half the number of samples as dn. However,
the family of B-spline wavelets, as any discrete, symmetric filter, is linear in the phase of incoming
frequencies which means that the filter has no phase distortion or constant group delay.

3.2 Shift-Invariant Transform

In order to create a shift-invariant wavelet transform, we either have to make our input signal or the
actual transform shift-invariant in some sense. However, the easiest way to create a shift-invariant
transform is making the input shift-invariant using an analytic function.

3.2.1 Analytic Function. The analytic function is defined as a complex function where the imagi-
nary part is the same as the real, except that all frequencies have been shifted by 90 degree. Since the
90 degree shift is also linear in phase, the transformation from real to imaginary has constant group
delay. The analytic function is defined using the Hilbert transform H as follows.

fa (t) = f (t) + jH ( f ) (t)

If we assume that f ∗ consists of a single frequency, we get.

f ∗ (t) = a sin (ωt + x)
f ∗
a (t) = a (sin (ωt + x) + j cos (ωt + x))

which leads us to the following for the absolute value of the analytic function of a single frequency.

∥∥ f ∗
a (t)

∥∥ = ‖a‖
√

sin2 (ωt + x) + cos2 (ωt + x)
= ‖a‖

Since the wavelet transform has a linear phase, transforming the function f ∗ will only change its
amplitude a, the frequency ω, and the phase x to a′, ω′ and x′. Furthermore, applying the wavelet
transform on top of the Hilbert transform will produce the exact same result for a′, ω′ and x′. As the
absolute value of the transformed function is now a′ regardless of the initial phase, the whole transform
is shift-invariant.

ACM Transactions on Applied Perception, Vol. 9, No. 3, Article 12, Publication date: July 2012.
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3.2.2 Hilbert Transformation. So far, we have treated the Hilbert transform as some kind of black
box that causes a phase delay of 90 degrees. There are several ways to write down the Hilbert transform
but one of it’s continuous closed forms is as follows.

H (u) (t) = − 1
π

lim
ε↓0

∫ ∞

ε

u (t + τ ) − u (t − τ )
τ

dτ

In frequency space, the Hilbert transform is a phase shift by 90 (or π
2 ) degree. However, we seek to

use a discrete Hilbert transform that does not require a Fourier transform of the EEG data. As the con-
volution is defined for continuous signals only, we first have to either reconstruct a continuous function
from the EEG sample points or calculate discrete filter coefficients using some kind of weighted nu-
meric integration. Since reconstructing a continous EEG signal might introduce unwanted frequencies,
we use the discrete Hilbert transformation defined as follows.

Hdiscrete (u) (t) = − 1
2π

∑
τ

u (t + τ )
τ − 1

2

+ u (t + τ )
τ + 1

2

Calculating a discrete Fourier transform on the preceding kernel shows that this is indeed the exact
transform we require.

3.2.3 Complex Wavelet Transformation. Computing a separate Hilbert transformation prior to the
actual wavelet transformation as in Olkkonen et al. [2006] allows us to use the same filter coeffi-
cients for both the real and the imaginary filters. At the same time, this approach fits our analysis
framework best as it guarantees true shift-invariance (within the limits of the accuracy of the Hilbert
transform).

In order to achieve a better frequency cut-off than Olkkonen et al. [2006], we use cubic interpolating
spline wavelets with lifting [Sweldens and Schroder 2000] for both the real and imaginary portion of
our analytic function as this produces the overall highest classification accuracy.

Assuming all input and output coefficients si, di to be complex numbers, the filter coefficients for the
complex wavelet transform are equivalent to the filter coefficients of the regular wavelet transform.
Thus, the lifting steps are the same as well.

3.3 Support Vector Machine Classification

Before applying the SVM, we remove any data outside the 2.5Hz–5Hz, 5Hz–10Hz, and 10Hz–20Hz
frequency bands as additional frequency bands either contain noise only or mostly noise which leads
the SVM astray.

We are using a standard support vector machine [Chang and Lin 2011] for all classification tasks.
For the statistics, we performed a standard 5-fold cross-correlation test.

The data is split randomly into 5 groups of 288 trials. Using a C-SVM with a Radial Basis Function
e−g|xi−xj |2 (RBF) classifier and a set of fixed parameters, the support vector machine is trained with data
from 4 groups (976 trials) and tested against the trials in the remaining group (288 trials). This process
is repeated until all trials have been classified. As proposed by Chang and Lin [2011], the process is
repeated until the best set of parameters has been found.

4. EXPERIMENT

4.1 Participants

This experiment is based on our earlier work [Mustafa et al. 2012] and follows the same experimental
setup. Eight (3 male, 5 female) healthy participants with an average age of 25 and with normal or
ACM Transactions on Applied Perception, Vol. 9, No. 3, Article 12, Publication date: July 2012.
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Fig. 3. Example of two artifacts shown in the videos, left: blurring on person, right: ghosting.

corrected-to-normal vision took part in the experiment. All participants had average experience with
digital footage and no involvement in professional image/video rendering or editing.

4.2 Stimuli

The basic stimulus for the experiment was a 5.6 second video (resolution: 1440x1024, 30 fps) of a
person walking along a park trail from left to right. The occurrence of the artifact was delayed by
+/− 4 frames (+/− 132ms) to avoid locking the participants’ attention to a fixed time. Five different
kinds of artifacts were incorporated into the scene. These artifacts included both temporal and spatial
aspects. The following 6 test cases were shown (Figure 3).

—Popping on Person (popP): a small rectangular area containing the walking person freezes for one
frame.

—Popping: A static rectangular area of the image freezes for one frame.

—Blurring on person: a small rectangular area containing the walking person (left part of Figure 3) is
blurred with a Gaussian kernel with a size of 15 pixels in 10 successive frames. The blurring area
moves along with the motion of the person.

—Blurring: A static rectangular area in the center of the scene is blurred with a Gaussian kernel with
a size of 15 pixels in 10 successive frames.

—Ghosting on Person: A partly transparent silhouette of the person stays behind for 10 frames, fading
to invisibility in the last 5 frames (right part of Figure 3).

—Ground Truth (GT): No artifacts.

4.3 Procedure

One trial consisted of a ready screen followed by the video with artifacts which was instantly followed
by the quality assessment screen. Participants were instructed to follow the moving person with their
gaze and rate the quality of every test case on an integer 1 (worst) to 5 (best) Mean Opinion Score
(MOS) scale [International Telecommunication Union 2006]. The participants were not informed about
the presence of artifacts in the videos.

They were instructed orally and received a training in which each of the 6 videos was shown 3 times.
This prepared them for the procedure and showed the whole range of available video qualities. During
the main experiment all videos were shown 30 times resulting in 180 trials per participant. The videos
were played in a blockwise randomized order and the same video was not shown twice in a row.

ACM Transactions on Applied Perception, Vol. 9, No. 3, Article 12, Publication date: July 2012.
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Fig. 4. EEG 32-electrode layout.

An EEG was recorded with the BioSemi Active Two system from 32 electrodes attached according to
the international 10–20 system (Figure 4). Additionally a 4-channel EOG and mastoids were recorded
which were used as a reference to remove data with accidental eye movements. The recorded data
were referenced to the mastoids and filtered with a high-pass filter with a cutoff frequency of 0.1 Hz
to remove DC-offset and drifts. Trials of a length of 1.2 seconds time locked to the appearance of
the artifact occurrence were extracted from the continuous data. All trials with blinks, severe eye
movements, and too many alpha waves were manually removed.

We assumed that the eye movements from watching the videos were the same for all participants
given that there was only one moving object in the video which the participants were asked to follow.

5. RESULTS

Figure 5 shows the relative power increase over time for all artifacts averaged over all participants
over all trials and over electrodes PO4, PO3,Oz, O1 and O2 (Figure 4) and as compared with ground
truth (gt) with time 0 corresponding to the appearance of the artifact. We averaged over these elec-
trodes as they correspond to the primary visual cortex in the brain and the areas that deal with motion.
The EEG signal responding to the visual stimuli is strongest here.

Firstly, as can be seen clearly all artifacts were detected by the brain. The artifact which evoked the
greatest response was “Popping on Person” (popP) which has the highest relative power and the least
latency of response. This is followed closely by popping. Popping is a more obviously perceived artifact
and evokes a quicker response and stronger response in comparison to popping not linked to motion.
Ghosting as can be seen has the least response in terms of latency and relative power. It requires the
brain to process the perceived distortion before a response occurs. This latency due to processing of
the perceived stimuli is also seen with blurring, which is also a less obvious artifact. However, it is
interesting to note that blurring linked to motion has a longer latency but a much higher response in
terms of relative power increase. From the figures the difference in perception of artifacts related to
motion as opposed to those independent of motion is clear. Both popping and blurring linked with the
motion of the person produce a much larger response than popping and blurring not linked with the
ACM Transactions on Applied Perception, Vol. 9, No. 3, Article 12, Publication date: July 2012.
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Fig. 5. Power increase for all artifacts in the 10Hz–20Hz range compared against ground truth(gt). The maximum neural
response is for the artifacts popping and popping on person.
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Fig. 6. Emotional response to artifacts in the 10Hz–20Hz range. F3/F7(averaged) are left frontal cotex and F4/F8(averaged)
are right.

motion of the person. It is also clear that ghosting is the least perceived artifact evoking the smallest
response.

5.1 Emotional Response

As can be seen from Figure 6 apart from a visual response there is a distinct emotional response to
the artifacts as well. Previous data from EEG studies and emotion has provided evidence of lateral-
ization of emotion in the frontal cortex [Korsar et al. 2003]. This theory predicts right hemisphere
dominance for negative emotions. Figure 6 shows the response from electrodes F3/F7(averaged), Fz
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Table I. Single-Trial Classification Accuracy
Using Visual Processing and Emotional Data

for Ground Truth with Correct
Classifications on the Diagonal

Trial Classified as
Artifact Ground Truth Any Artifact

Ground Truth 75% 25%
Any Artifact 15% 85%

and F4/F8(averaged). As can be seen from Figure 4 these electrodes are located in the front of the head
corresponding to the frontal cortex. F3/F7 are in the left frontal cortex and F4/F8 in the right. Fz is in
the mid-line region. The results as can be seen from Figure 6 show an increased output in the right
frontal cortex for test cases with more severe artifacts where the maximum output was for popping
on person and blurring on person. This supports our conclusion that artifacts linked with motion not
only evoke a larger visual response but are also emotionally more disturbing. This can theoretically
be explained by the negative emotions elicited by bad video quality. It is also interesting to note as
with the power response from the visual cortex ghosting is associated with a much smaller emotional
response. Ground truth where there were no artifacts seems to evoke a positive emotional response as
opposed to the negative responses from the videos with artifacts.

5.2 Wavelet-Based Classification

Given the statistical significance between ground truth and a given artifact in the EEG data [Mustafa
et al. 2012], we were able to look at a total of three different classification tasks. The three classification
categories we look at are as follows.

—First, we classify trials into one of two categories, trials with artifacts versus trials without artifacts.
—Second, we classify trials based on the severity of the artifact and look to only detect severe artifact,

that is, popping and popping on person.
—Finally, we classify each trial based on the specific type of artifact. What artifact does a given trial

contain?

We start by looking into only the response from the visual cortex and classifying trials based on that.
However, it is interesting to note that as soon as we add the channels used for the emotional analysis,
the accuracy of classification improves quite a bit.

5.2.1 Ground-Truth Classification. Just classifying the trials based on if there is an artifact present
at all gives us an accuracy of 63% for just using the raw data. Using the wavelet transformed visual
data increases the accuracy to 71%. Additionally using the emotional wavelet transformed data further
increases the accuracy to 85% (see Table I). So for any given single trial from any given participant
we can now determine whether an artifact was perceived or not. This allows us to determine the exact
perceived quality of a visual stimulus. It is important to note that we train an SVM with just these
two classes rather than using the same as for the per-artifact detection. As we use a differently trained
SVM, we actually achieve a better accuracy for classifying ground-truth trials at the cost of classifying
artifact trials.

5.2.2 Severe Artifact Detection. Instead of trying to classify for ground truth, we can also choose
to find the most severe or objectionable artifacts. Starting with the raw data, we get an accuracy of
already 75%. However, just using the wavelet transformed visual data increases the accuracy to 83%.
Again, adding the wavelet transformed emotional data, we get a final accuracy of 94% (see Table II),
leading us to the conclusion that severe artifacts can be reliably detected the easiest. Therefore with
ACM Transactions on Applied Perception, Vol. 9, No. 3, Article 12, Publication date: July 2012.
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Table II. Single-Trial Classification Accuracy
Using Visual Processing and Emotional Data for
Severe Artifacts with Correct Classifications on

the Diagonal
Trial Classified as

Artifact Ground Truth Severe Artifact
Ground Truth 95% 5%
Severe Artifact 7% 93%

Table III. Single-Trial Classification Accuracy Using Visual Processing Data Only on a Per
Artifact Basis with Correct Classifications on the Diagonal

Trial Classified as
Artifact Ground Truth Blurring Blurring on P. Ghosting Popping Popping on P.

Ground Truth 50% 15% 15% 12% 4% 4%
Blurring 10% 54% 15% 13% 3% 5%
Blurring on Person 8% 12% 49% 17% 5% 9%
Ghosting 17% 17% 18% 35% 6% 7%
Popping 7% 6% 4% 5% 59% 19%
Popping on Person 5% 5% 8% 4% 16% 62%

Table IV. Single-Trial Classification Accuracy Using Visual Processing and Emotional Data on a
Per Artifact Basis with Correct Classifications on the Diagonal

Trial Classified as
Artifact Ground Truth Blurring Blurring on P. Ghosting Popping Popping on P.

Ground Truth 63% 10% 13% 11% 2% 1%
Blurring 11% 68% 13% 7% 0% 1%
Blurring on Person 9% 13% 66% 8% 1% 3%
Ghosting 17% 12% 18% 49% 2% 2%
Popping 3% 2% 3% 5% 70% 17%
Popping on Person 3% 2% 4% 2% 19% 70%

any single trial from any participant we can with an accuracy of 94% determine whether there was a
severely perceived distortion in the rendered output. Note that this result was also gained by using
an SVM that was trained for specifically recognizing severe artifacts rather than trying to distinguish
between artifacts.

5.2.3 Specific Artifact Classification. We also looked into classifying trials based on the exact type
of artifact appearing in the videos. Picking a random class for each trial would result in an expected
accuracy of 16% so any resulting accuracy needs to be substantially better than this in order to claim
a successful classification. Feeding all of the raw EEG curves into the SVM results in a classification
accuracy of 39%. Using the wavelet transformed visual data only, we get a classification accuracy of
51% (see Table III). As can be seen from Table III, “Popping on Person” is the easiest artifact to classify
and “Ghosting” the hardest. This is in keeping with the way these artifacts are percieved by the HVS
as can also be seen from Figure 5.

Finally, using the wavelet transformed emotional data as well, we have a classification accuracy of
64% (see Table IV). As can be seen from Table IV we can now determine exactly which kind of arti-
fact appeared in any given visual stimulus. So for any given single trial from any one participant we
can determine the exact kind of artifact that was perceived by the viewer. As expected, classifying the
ghosting artifacts is the worst scenario (still almost three times as good as random) whereas classi-
fying the “Popping on Person” is the best one (with about 70% accuracy). This allows us to not only
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determine the perceived quality of a rendered output but also determine the problems with the how it
was perceived.

6. LIMITATIONS

While our current experimental setup provides new and relevant information it has some limitations.
The main issue we see is the absence of eye movement information for more complicated test scenes.
For our current video we could assume all participants were following the moving person since there
was only one type of movement in the video. However, this becomes a problem with more complicated
test scenes and for that we need to use an eye tracker. This would allow us to incorporate information
regarding the exact viewing pattern of the participants during stimuli presentation. A more complete
picture of participants’ eye gaze pattern during stimuli presentation is essential for advances in real-
istic image and video synthesis. Also using sensors to capture physiological data would provide more
concrete information regarding the participants’ emotional state during trials.

7. CONCLUSION

Our work introduces a new method for the single-trial classification of typical IBR artifacts. We show
that wavelets are an effective way to deal with the problem of low signal-to-noise ratios inherent in
EEG signals. We also show that it is possible with a certain degree of accuracy to distinguish between
different types of artifacts appearing in video stimuli. Our work analyzes the way the brain responds
very differently to not only different types of artifacts but also to artifacts specifically linked with
motion. Artifacts linked with motion evoke a much larger response in the brain. We also analyzed the
effect that emotions play in the perception of distorted visual stimuli. Results of our work open up the
possibility of shortening rendering times by eliminating computations that calculate image features
which do not evoke a strong reaction in the brain as opposed to those which do. The brains response to
artifacts is also essential for the modeling of masking algorithms for rendered image sequences.
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