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Abstract

Object class models trained on hundreds or thousands of
images have shown to enable robust detection. Transferring
knowledge from such models to new object classes trained
from a few or even as little as one training instance however
is still in its infancy. This paper designs a shape-based mo-
del that allows to easily and explicitly transfer knowledge
on three different levels: transfer of individual parts’ shape
and appearance information, transfer of local symmetry be-
tween parts, and transfer of part topology. Due to the fac-
torized form of the model, knowledge can either be trans-
ferred for the complete model or just partial knowledge cor-
responding to certain aspects of the model. The experiments
clearly demonstrate that the proposed model is competitive
with the state-of-the-art and enables both full and partial
knowledge transfer.

1. Introduction
Object class detection has made impressive progress in

recent years. Most models rely on robust local features and
powerful learning approaches such as SVMs requiring sub-
stantial amounts of training data per object class. In order
to scale to larger numbers of object classes than it is possi-
ble today it is widely believed that information from one or
a set of object classes should be transferred to the learning
of new object classes. This would reduce the required train-
ing data for new object classes and might even facilitate 1-
shot learning of novel classes. This idea of transfer learning
has long been argued for both from a psychological point
of view [1, 25] as well as from a computer vision point of
view [4, 9, 10, 14, 22, 24, 38]. While these approaches have
shown to enable object class learning from small numbers
of training instances none of these models—as of today—
has reached wide-spread use.

The starting point and main contribution of this paper
is therefore to take a fresh look at the problem and to ex-
plicitly design a novel object model that directly lends itself
to transfer learning. We start with the observation that there
are at least three different types of knowledge that should be

Figure 1. Animal detections using 1-shot models.

transferable between object models. First, the appearance
or shape of an object part should be transferable (e.g., the
shape of a leg or wheel). Second, local symmetries between
parts are often shared by different object classes (e.g., the
symmetry between front- and back-legs for quadrupeds).
And third, the layout of the different parts is often at least
partially shared among different object classes (e.g., the lay-
out of head, torso and body for quadrupeds and birds, see
also Sec. 5.2). In the following, we devise a part based mo-
del with a separate factor for each of these properties that
allows, e.g., to transfer the layout of an object model either
fully or only partially, constrained to an appropriate subset
of object parts. The main contributions of our paper are:

• We propose a novel shape-based object model for know-
ledge transfer that can be factored into per-part compo-
nents and enables transfer of full or partial knowledge.

• We demonstrate the importance of symmetries, a primi-
tive rarely used for object detection, for both, object mo-
del learning as well as knowledge transfer.

• We experimentally show state-of-the-art performance of
our object model on the ETHZ Shape Classes data set.

• We demonstrate that our model enables transfer of infor-
mation on a quadrupeds database where we transfer the
full layout and symmetry information. In addition, we
also show successful partial information transfer in two
interesting and quite different cases.

1



The remainder of this paper is organized as follows: Af-
ter a review of related work we first introduce our mo-
del (Sect. 2) and validate its performance (Sect. 3). We
then describe the knowledge transfer approach (Sect. 4) and
demonstrate results for full and partial model transfer (Sect.
5). We conclude with an outlook on future work (Sect. 6).

1.1. Related Work
Transferring knowledge such as appearance, shape or

symmetries between object classes is an important topic due
to its potential to enable efficient learning of object models
from a small number of training examples. It provides the
basis for scalability to large numbers of classes. Broadly
speaking, related work in knowledge transfer falls into three
different categories: distance metric learning, joint learning
of multiple object classes, and use of prior information.

The main idea of distance metric learning is to learn a
representation for a set of a priori known classes in the form
of a distance metric among them [14, 32]. This metric can
then be used directly to classify instances of an unknown
class. [3] replaces features from known classes with ones
from a new class, implicitly re-using the learned distance
metric. These approaches have shown to improve 1-shot
learning mainly for simple objects and handwritten chars.

In the context of joint learning of multiple object classes,
machine learning has developed the notion of multiple task
learning. This allows learners to benefit from the similar-
ity of multiple, different learning tasks [5]. A second line
of research is based on joint training of multiple classifiers,
which draw from a common pool of features [2, 33], thereby
enabling feature sharing. While these approaches clearly re-
duce the amount of necessary training data per object class,
knowledge transfer happens rather implicitly. Explicit and
controlled transfer of knowledge is not supported.

The use of prior information is most related to this work,
and comes in multiple flavors. Levi et al. [22] use models
of unrelated object classes to prime feature selection of an
unknown class. Bart et al. [4] directly use similarities to
known classes to represent new classes. Zweig and Wein-
shall [38] propagate knowledge along a hierarchy, by lear-
ning and combining classifiers for individual levels of the
hierarchy to yield a more effective classifier for specific leaf
classes. Fei-Fei et al. [9] transfer information via a Bayesian
prior on object class models, using knowledge from known
classes as a generic regularizer for newly learned models.

While this paper clearly falls into the last category, we
stress the following key differences from related work: most
importantly, our approach is designed to allow an explicit,
controlled transfer of prior knowledge. In particular, it faci-
litates knowledge transfer at both the level of a full model,
and selected aspects of a model. Being based on an assem-
bly of parts, their spatial layout and symmetry relations pro-
vides a rich source of independently transferable properties,

ranging from fairly general (overall spatial layout of parts)
to very specific (local part shape). We strongly believe that
both the explicit as well as the partial transferability of prior
information are key ingredients to make knowledge transfer
a common tool for object class modeling and learning.

Concerning object recognition, our work is most related
to part-based methods such as the Constellation Model [11]
or the Implicit Shape Model [20]. While the non-parametric
scene-object-part model of [31] requires less supervision
than ours, its appearance-based, visual word part represen-
tation is limited compared to our flexible combination of
local shape and semi-local symmetry relations. [36] gives a
fundamental treatment of probabilistic shape modeling and
Gestalt principles, including symmetry. [27] evaluates the
accuracy of several symmetry detection algorithms. In con-
trast to early attempts [7, 26], our paper shows the success-
ful application of a particular kind of symmetry relations
[6, 29] to object class detection in real images.

2. The Model
Our model is inspired by the Constellation Model [11],

but goes beyond this model in several ways. First, it relies
entirely on shape information. Second, we propose a Data-
Driven Markov Chain Monte Carlo (DDMCMC) [37] tech-
nique for efficient inference, which increases the number of
features the system can handle by several orders of mag-
nitude. Third, we enrich the original formulation compris-
ing object parts, their relative scales, and spatial layout, by
pair-wise symmetry relations between parts. Pair-wise rela-
tions even between simplistic line features have proven to
be powerful cues for recognition [21], which we confirm
in our experiments. Fourth, we demonstrate that knowledge
can be effectively transferred between different model in-
stances, on two different levels.

2.1. Local Shape Features
We introduce a novel flavor of local shape features,

which constitute a discrete, over-complete representation of
image contours. The shape features are based on the Con-
tour Segment Network (CSN) [13], and its associated local
companions, k-Adjacent Segments (k-AS) [12]. We suggest
important additions to these techniques, as detailed below.

Starting from an edge probability map of the Berke-
ley natural boundary detector [23], a collection of discrete,
roughly straight contour segments is formed, and subsumed
in a network topology (the CSN), based on spatial proxim-
ity and edge continuity constraints. Since, by design, the
CSN can be assumed to provide an over-segmentation of
image edges, meaning that object parts are likely to be frag-
mented into several segments, we simultaneously include k-
AS with k ∈ {1, . . . ,K} into our representation, to increase
the chance of having a shape feature available that matches
one-to-one to an object part. In practice, we use K = 5.
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Figure 2. From left to right: Original image, local shape features,
color-coded part likelihoods, detection hypothesis, selected sym-
metry lines and axes.

Further, we unify the representation of k-AS for varying
k by fitting a parametric B-spline curve to all constituent
edgel chains, using the exact same parameterization, inde-
pendent of k. This offers the additional benefit of retaining
the original curvature information and increasing the dis-
criminative power of the features compared to the original
k-AS represented by straight line approximations.

In our implementation, we first transform all constituent
edgel chains of a given k-AS into a translation and scale in-
variant space, using Procrustes analysis [8]. We use the re-
sulting spline parameters as a low-dimensional local shape
description. In all experiments, we use pairs of quadratic B-
splines, resulting in an 8-dimensional descriptor. We prune
the set of features based on the goodness of fit of the splines.
Fig. 2 shows all 1640 local shape features of an image.

2.2. Semi-Local Symmetry Relations
As shown in the literature [13, 30], local shape features

based on contour segments tend to be more generic in na-
ture than local texture features, and hence provide relatively
weak discrimination among object parts and background
clutter, if used in isolation. We therefore include another
powerful perceptual cue into our model, which relates pairs
of local shape features by identifying and describing sym-
metries between them. In particular, we use a B-spline-
based implementation [29] of Smoothed Local Symmetry
(SLS). SLS were originally proposed by [6] in the context
of planar shape analysis.

SLS relate two parametric shapes by deter-
mining pairs of points that fulfill a local symme-
try constraint: A point p1 on shape s1 is locally

p1

p2

s1

s2

α

α

symmetric to a point p2 on s2, if the
respective angels between the con-
necting line between p1 and p2, and
the normal vectors at p1 and p2, are
equal. The set of all locally symmet-
ric point pairs and their associated connecting lines (the
symmetry lines) then define the symmetry axis between the
shapes: it consists of the mid-points of the symmetry lines.
Fig. 2 (right) depicts several selected symmetry lines and
axes between local shape features of a mug (blue: symme-
tries between side-wall features, green: between rim fea-
tures, red: between handle features).

Starting from the spline-based representation of SLS, we

now devise a semi-local symmetry descriptor, which cap-
tures both the shape of the symmetry axis and the lengths
of the symmetry lines, in order to characterize the symme-
try. The first is achieved by representing the axis as a local
shape feature, exactly as described in Sect. 2.1. We compute
a fixed number of symmetry lines (usually 10) and record a
profile of their respective lengths, as we traverse the symme-
try axis from end to end. We then reduce the dimensionality
of the resulting length profile vector by PCA (usually to 3).
Fig. 7 (b) depicts length profiles as bar plots corresponding
to the symmetry axes denoted by gray lines in Fig. 7 (a).

2.3. Probabilistic Model
We now describe the probabilistic model that subsumes

individual part shapes S, binary symmetry relations B, rel-
ative part scales R, and their overall spatial layout X . We
borrow from the notation of [11] where appropriate.

During detection, our goal is to find an assignment of all
P model parts to local shape features, which we denote the
detection hypothesis H = (h1, . . . , hP ). That is, hp con-
tains a local shape feature identifier assigned to part p. We
formulate the detection problem as a maximum a posteriori
hypothesis search over the distribution p(X, R, S,B,H|θ),
which is the joint posterior distribution of H and image ev-
idence, given a learned model θ. It factors as follows:
p(X, R, S,B,H|θ) =

p(S|H, θ)︸ ︷︷ ︸
Local Shape

p(B|H, θ)︸ ︷︷ ︸
Symm. Rel.

p(X|H, θ)︸ ︷︷ ︸
Layout

p(R|H, θ)︸ ︷︷ ︸
Rel. Scale

p(H|θ)︸ ︷︷ ︸
Prior

(1)

In all experiments, we assume a uniform prior p(H|θ).
Local Part Shape. Local part shape S(hp) is modeled by a
Gaussian density on spline parameters (see Sect. 2.1).

p(S|H, θ) =
P∏

p=1

N (S(hp)|θ). (2)

Binary Symmetry Relations. We instantiate the binary re-
lation component of our model with a joint density over SLS
descriptors, as described in Sect. 2.2. It comprises all pairs
of parts, excluding self- and duplicate pairings. For each
pair, it factors into two Gaussian densities, where one gov-
erns the SLS axis spline parameters Ba(hi, hj), and one the
PCA-projection of the corresponding symmetry line length
profile Bl(hi, hj).

p(B|H, θ) =
P−1∏
i=1

P∏
j=i+1

p(B(hi, hj)|θ)

p(B(hi, hj)|θ) = N (Ba(hi, hj)|θ)N (Bl(hi, hj)|θ)(3)

Spatial Layout and Relative Scales. We model the spatial
layout of constituent model parts as a joint Gaussian dis-
tribution over their coordinates X(H) in a translation- and
scale-invariant space (the constellation), again using Pro-
crustes analysis [8]. The model allocates independent Gaus-
sians for the relative scale R(hp) of each part, i.e., the ratio



between part and constellation scale.

p(X|H, θ) p(R|H, θ)=N (X(H)|θ)
P∏

p=1

N (R(hp)|θ) (4)

2.4. Learning and Inference
Learning. We learn maximum likelihood model parameters
θ for all model components using supervised training. Su-
pervision is provided by labeling contour segments in train-
ing images (see Sect. 2.1), which in practice amounts to a
few mouse clicks per object instance.
Inference. During detection, we search for
HMAP = arg maxH p(H|X, R, S,B, θ), the maxi-
mum a posteriori hypothesis. This is equivalent to
arg maxH p(X, R, S,B,H|θ). We approximate HMAP
by drawing samples from p(X, R, S,B,H|θ) using the
Metropolis-Hastings (MH) algorithm [17]. We use the
Single Component update variant of MH, since it allows
to separately update individual components of the target
density, conditioned on the remaining portion of the current
state of the Markov chain. This opens the possibility
to guide the sampling towards high density regions by
data-driven, bottom-up proposals [34, 37]. Similar to
[19], we define P independent proposal distributions
of the form qp(S(hp)|θ) = N (S(hp)|θ), based on the
likelihoods of the local shape part model. Fig. 2 depicts a
joint, color-coded visualization of all part proposals for a
mug model consisting of 7 parts (two side-walls, two rim
parts, one bottom part, two handle parts), together with
an example detection based on exactly these proposals.
Notably, the combined part likelihood is much sparser than
the corresponding visualization of all local shape features
to the left of Fig. 2.

We obtain the following acceptance ratio for changing
the current hypothesis H = (H−p, hp) to H ′ = (H−p, h

′
p),

where H deviates from H ′ only in component hp, and H−p

denotes the other components that are kept.

α = min
{

1,
p(X, R, S,B, h′p|H−p, θ) qp(S(hp)|θ)
p(X, R, S,B, hp|H−p, θ) qp(S(h′p)|θ)

}
(5)

Note that most of the terms in this ratio actually cancel
due to the factorization of our model (namely the ones not
involving the part under consideration p). This implies in
particular that the number of pair-wise relations that have
to be computed per iteration grows only linearly, and not
quadratically, with increasing number of parts P . Further,
since the sampling process is guided by data-driven pro-
posals, the number of pair-wise relations considered is or-
ders of magnitudes smaller than the number of all possible
pairings. We exploit this fact by computing SLS in a lazy
fashion, and subsequently caching them, which greatly im-
proves runtime behavior. For a typical image with several
thousands of features, our model typically (re-) considers at
most a few tens of thousands of pairs, not tens of millions.

Detection. We detect object instances by running m in-
dependent Markov chains, and memorizing the per-chain
highest-scoring hypotheses. In all experiments, we run m =
50 chains, for a maximum number of 1000 iterations, yield-
ing runtimes of under a second per Markov chain. We use
the greedy non-maximum suppression described in [16] to
prune overlapping hypotheses.

3. Shape Classes Experiments
We evaluate the performance of our model on a stan-

dard shape benchmark [13] and report detection results on
4 of the 5 classes of the ETHZ Shape Classes data set (see
Fig. 3 and 4). We use the test protocol of [12]: experi-
ments are conducted in 5-fold cross-validation. For each
class, we learn 5 different models by sampling 5 subsets
of half of the class images at random. The test set for a mo-
del then consists of all other images in the data set (taken
from all 5 classes). Performance is measured as the average
detection rate at 0.4 false positives per image (FPPI). We
compare the results with two state-of-the-art methods, one
shape-based [12], and one based on topic-decompositions
of HOG-like features [16]. For [12], we consider the re-
sults based on learned models rather than the ones based
on hand-drawings, as they are comparable to our approach.
For the same reason we do not compare against [28, 35].

As shown in Fig. 3, our model without symmetry signifi-
cantly outperforms previous results on bottles and is slightly
better on giraffes. For mugs however the performance is
lower and for swans it is between [12] and [16]. On average
it outperforms both methods. We attribute this state-of-the-
art performance to the combination of robust, discriminative
local shape features with a flexible spatial model.

Adding symmetry relations (SLS) significantly increases
performance for two classes (11% for swans, 8% for mugs)
and also slightly for bottles (3%). As a consequence our mo-
del performs better than previous work on all four classes.
Using symmetries attains 89.9% on average, 6.4% better
than the next best related method.

4. Knowledge Transfer
In the following, we highlight two different levels of

inter-model knowledge transfer supported by our model.
First, we show that a full model, learned for a known
class A, can be readily transferred to a new but related
object class B. An object model for this new class B is
obtained from one or a few training instances plus the
transferred knowledge from the previously learned object
class A. Second, we also show partial knowledge transfer
by restricting a previously learned model A to a proper sub-
set of parts, retaining all knowledge about their spatial con-
figuration, relative scales, and symmetry relations. The re-
sulting partial model can be transferred to a new class B for
which only a few training instances are available.



Results Bottle Giraffe Mug Swan average
Ferrari et al. [12] 83.2 58.6 83.6 75.4 75.2

(7.5) (14.6) (8.6) (13.4) (11.0)
Fritz et al. [16] 76.8 90.5 82.7 84.0 83.5

(6.1) (5.4) (5.1) (8.4) (6.3)
Our model 91.0 91.7 76.6 77.7 84.3

(3.8) (4.1) (9.9) (5.8) (5.9)
Our model, SLS 94.4 91.7 84.5 88.8 89.9

(3.8) (2.6) (4.7) (6.9) (4.5)

Figure 3. ETHZ Shape Classes results: average detection rates,
standard deviations given in brackets.
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Figure 4. Learned ETHZ Shape Classes models (left) and exam-
ple detections (right). For models, mean local part shapes and se-
lected mean symmetry axes are drawn at mean positions and rela-
tive scales. Covariances of part positions are shown as ellipses.

4.1. Full Model Transfer
Our approach to combine prior knowledge and data

is inspired by, but not strictly adhering to, the Bayesian
paradigm. Instead of deriving a posterior distribution over
models, given data D, from a prior and corresponding like-
lihood p(θ|D) ∝ p(θ) × p(D|θ), we follow the simpler
route of directly combining and manipulating components
of models that we have learned. These manipulations are
valid because of the specific factorization and parametric
forms of involved distributions. In particular, since all dis-
tributions are Gaussian, we can manipulate means and co-
variances separately, and can restrict models to subsets of
parts by marginalizing out the ones we are not interested in.

Let mA(µA,ΣA) and mB(µB ,ΣB) be two models,
where mA is the base model, i.e., the model which we want
to transfer, and mB a model learned from k training in-
stances of class B. We denote mB a k-shot model. Now the
question arises which knowledge should be transferred from
mA to obtain a more powerful model for class B. Consider,
e.g, the case that class A corresponds to horses and class B
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(a) Partial horse model (b) Combined swan model

(c) Example detections using the combined swan model.

Figure 5. Partial transfer models (a)(b), and 1-shot detections (c).

corresponds to giraffes. While the mean of the overall ob-
ject shape is different the variation in object shape is similar
as both classes belong to the class quadrupeds. Therefore
we derive a combined model mAB(µAB ,ΣAB) for class B
by taking µAB to be µB , and ΣAB to be a weighted combi-
nation of ΣA and ΣB . For k = 1, we set ΣAB = ΣA. The
experiments in Sect. 5.1 show results of this procedure.

4.2. Partial Model Transfer
The factorization of our model into separate components

for local part shape, relative scales, symmetry relations, and
the overall spatial layout facilitates keeping subsets of parts,
while discarding others. For part shape as well as relative
scale components, we keep all relevant part contributions.
For symmetry relations, we keep all contributions invol-
ving at least two relevant parts. For spatial layout, we can
marginalize out all irrelevant parts.

To realize the importance of partial knowledge transfer
consider the following example (see also Sect. 5.2). Let us
assume class A again corresponds to horses and class B
corresponds to swans. As the first is a quadruped and the
second is a bird, one might see little opportunity for know-
ledge transfer, since global object shape is different.

However, there is indeed partial knowledge that can be
transferred, namely the topology of a subset of parts (head,
neck, and torso). As this information is contained in the
horse model, we may first extract the corresponding rele-
vant portion by marginalization, and then transfer this par-
tial knowledge. The experimental section shows the useful-
ness of such partial knowledge transfer, which we argue to
be a very general and versatile concept, as many parts and
constellations of parts reoccur across many object classes.
Therefore, use of such partial knowledge transfer about
constellation, local shape and symmetries of object parts
and part ensembles is a powerful tool to enable scalability
to large numbers of object classes.

5. Knowledge Transfer Experiments
We demonstrate the ability of our approach to effectively

transfer knowledge between models by a series of recog-
nition experiments based on the animal quadruped classes
horse, elephant, cheetah, and giraffe for which we com-



bined images from the Mammal Images Benchmark [15],
the Corel data base, INRIA Horses [18], and additional
images from the web. Images show quadrupeds roughly
pose-aligned, but at varying scales, and contain consider-
able background clutter (see Fig. 1). While all quadrupeds
share a common topology (head, neck, torso, and four legs),
they vary significantly in the concrete embodiment, leading
to variations in both the appearance of individual body parts
as well as their spatial layout. In addition, we use the swan,
mug, and bottle classes from the ETHZ Shape Classes data
set in Sect. 5.2 for partial knowledge transfer.

All experiments follow this protocol: Models are learned
from a set of training images of a given class and evaluated
on a test set consisting of images containing at least one
instance of that class, and a comparable number of back-
ground images not containing any class instances. Perfor-
mance is evaluated in a retrieval setting where we run de-
tection for each test image and record the highest scoring
hypothesis. For each n between 1 and the number of test im-
ages, we plot the fraction of images belonging to the class
in the n highest scoring ones.

5.1. Full Model Transfer
Using the quadruped classes, we show that prior know-

ledge about the general stature of a quadruped can be used
to bootstrap specialized quadruped detectors. In particular,
we learn a base model from all 170 positive INRIA horse
images, which we assume to yield a reasonable model of
quadruped stature (see Fig. 7). We then use k training im-
ages of another quadruped class and learn a k-shot model
from these images. The models are combined as described
in Sect. 4 and the combined model is evaluated as above.
We found experimentally that the weighting of the individ-
ual models has little impact on performance and thus report
all results for uniform weighting.

Fig. 6 gives recognition results for the classes elephant,
cheetah, and giraffe without and with symmetry relations.
Each plot compares the performance of combinations of
the base model with k-shot models learned from k ∈
{1, 5, 10, 25} training images, the full model learned from
all available training images of the target class, and the base
model alone. The curves for k ∈ {1, 5, 10} are averaged
over 5 different random choices of k training images among
the full 25 training images available for each class.

We first observe in Fig. 6 that the base model learned
entirely from horse images performs surprisingly well on
elephants and cheetahs despite major differences in appear-
ance. It can therefore be transfered directly even without a
single training image. This can be explained by the fact that
the horse model already captures a fair amount of variations
in the shape and spatial layout of elephants and cheetahs.
This is also confirmed in Fig. 7 and 8: means and covari-
ances of part shape as well as constellations of full elephant
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(a) Elephant precisions (b) Elephant precisions, SLS
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(c) Cheetah precisions (d) Cheetah precisions, SLS
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Figure 6. Full model transfer recognition results without symmetry
relations (left) and with symmetry relations (SLS, right).

and cheetah models are visually close to the horse base
model (Fig. 7). Furthermore, all shown symmetry distance
models share common properties, namely, an almost linear
increase in distance between head parts (1-2), quadratic de-
pendency between pairs of leg parts (5-6 and 7-8), and the
almost flat shape of the torso (9-10).

Adding training images clearly improves precision and
adapts models to the target classes. A small number of train-
ing images (5 for cheetah and 10 for elephants) is sufficient
to achieve a performance that is largely equivalent to the
corresponding full model. Fig. 8 confirms this observation:
combinations of 5-shot and base models (middle column)
are visually close to the corresponding full models (right
column) and can thus be expected to behave comparably.

Interestingly, the base model performs poorly for the Gi-
raffe class as the full giraffe model differs quite strongly
from the horse base model (e.g., the neck parts, see Fig.
8(c)). Note however, that even a single training image is
sufficient to boost the performance to almost the level of the
full model. This is particularly pronounced for added sym-
metry relations, and explained by the high degree of simi-
larity among all symmetry distance models.

In order to understand the role of the base model, we
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Figure 7. The horse base model used in the k-shot experiments of
Sect. 5. For clarity, we show only a subset of symmetry relations:
numbers above plots in (b) refer to pairs of part numbers in (a).
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(b) Cheetah
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(c) Giraffe

Figure 8. Animal models: left: 5-shot model, middle: 5-shot model
combined with base model, right: full model. Note the similarities
between the models on the right and in the middle.

further compared the performance of combined 1-shot mod-
els with 1-shot models using isotropic regularization, which
we determined empirically on a separate data set (ETHZ
Shape). Even though these models can perform on a simi-
lar scale as the combined models, they tend to be slightly
worse on average, and introduce the disadvantage of having
to choose a suitable regularizer, while regularization comes
for free with a base model.
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Figure 9. Partial model transfer recognition results without sym-
metry relations (left) and with symmetry relations (SLS, right).

To summarize, knowledge transfer with a suitable base
model clearly reduces the number of required training im-
ages in all cases. k-shot models including symmetry rela-
tions between parts are often superior. Also, the variance of
the curves including symmetry relations exhibit less varia-
tion, in particular for giraffes (Fig. 6(f)) clearly showing the
importance of symmetry relations for knowledge transfer.

5.2. Partial Model Transfer
For partial model transfer, we restrict a base model to a

proper subset of parts and combine this restricted base mo-
del with a k-shot model of a new class. As mentioned before
we can transfer partial knowledge of a horse base model to
the swan class. Therefore, in a first experiment, we restrict a
horse model to head, neck, and torso parts and then combine
this restricted base model with k-shot models of swans (see
Fig. 5). In the second experiment we transfer partial know-
ledge of a mug base model to the bottle class. For this we
restrict the mug model to the sidewall and bottom parts, dis-
carding handle and upper rim parts and combine this with
k-shot models of bottles. As before we report retrieval per-
formance for swan and bottle images respectively.

From Fig. 9(a) and (b), it is immediately apparent that
the restricted horse base model performs only at chance
level for the swan retrieval, both with and without sym-
metries. Strikingly, adding a single image of a swan dras-
tically improves detection rate (base + 1-shot). As before,
adding only a handful of images to the restricted base mo-
del yields performance close to the full model. Likewise,
adding symmetries to the model is highly beneficial. In par-
ticular, the combined swan 1-shot model benefits signifi-
cantly (≈ 10%) from including symmetry relations.



In the second experiment (Fig. 9(c) and (d)) the mug base
model already enables to retrieve bottle images quite well.
This is due to the fact that the two classes not only share
several common parts, but their shape is also similar. In this
case, already a single training example is sufficient to reach
the performance level of the corresponding full models.

From these experiments we can conclude that our model
does indeed allow for partial knowledge transfer and en-
ables to train object models from few training images. In
cases where object classes share many similarities (mug-
bottle-transfer) as little as one training instance can suffice.
For larger variations between objects (horse-swan-transfer)
using only five training instances can yield a good model.

6. Conclusions and Future Work
While pioneering work on knowledge transfer for ob-

ject class model training exists, none of it has been adopted
widely. Despite this fact, we strongly believe that know-
ledge transfer is an important ingredient to enable lear-
ning and recognition of large numbers of object classes. As
demonstrated by our results, our shape-based model enables
explicit knowledge transfer between object classes thereby
drastically simplifying training for new object classes. The
model’s ability to transfer individual components makes our
approach applicable to a large number of scenarios. Its com-
petitive results on the ETHZ Shape Classes confirm the va-
lidity of the object model formulation for object class detec-
tion. The use of local symmetries improves the performance
both for detection and model transfer significantly although
symmetries are so far seldom used for object detection.

Since both, the model as well as the inference method,
can be easily extended to larger number of parts and to
include other complementary features, we believe that it
presents large opportunities for future work.
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