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Abstract

Recognition of object classes in natural images has made
tremendous progress in recent years. Today’s approaches
often rely on powerful learning approaches as well as ro-
bust local 2D shape or appearance features. Exploiting 3D
shape cues however has become unfashionable in recent lit-
erature. While shading cues play a major role in human per-
ception of object shape, shape-from-shading techniques are
seldom used today for object class detection. Drawing on
ideas from the early days in object recognition this paper
aims to revisit the concept of using shading primitives to
support object class detection. We demonstrate and discuss
the applicability of this approach to real world images of a
standard benchmark data set. Experimental results suggest
that our shading cues can be useful for object class detec-
tion.

1. Introduction

In recent years, impressive progress has been reported
in the recognition of a wide variety of object classes. Ob-
ject models based on robust local appearance features [20],
in combination with bag-of-words [5], or more spatially
constrained models [7] perform well on recognition bench-
marks. More recently, 2D-shape-based approaches have
also shown to yield comparable performance [8].

Interestingly, none of these ‘modern’ recognition ap-
proaches makes explicit use of 3D shape information pro-
vided by shading cues. This is in contrast to early ap-
proaches in object class recognition and also contrary to in-
tuition, since humans make extensive use of shading infor-
mation to assess object shape [15, 17], which is important
for recognition. One might argue that at least part of the
shading information is encoded implicitly by appearance
features, and thus available to ‘modern’ recognition algo-
rithms. This comes at a cost, however: in order to reliably
separate possibly relevant shading information from back-
ground, these algorithms need to use statistics over large
numbers of training samples. Explicitly modeling or lear-
ning shading information can remedy this problem, by en-

Figure 1. Shape-based object detections and shading cues on
ETHZ Mugs. From left to right: (1) original image, (2) shape-based
detection, (3) shading cue based on (2), back-projected into the
image. The green arrow reflects estimated lighting direction, seen
from above the scene.

coding relevant information into the model itself.

Inferring the shape of a surface from shading is un-
fortunately a difficult problem, and has long been a ma-
jor focus of computer vision research. By nature, shape-
from-shading (SFS) is highly ambiguous: without any prior
knowledge, a given image of an observed scene could have
been generated by an infinite number of different combi-
nations of object surfaces present in the scene, their re-
flectance, and lighting conditions. As a consequence, SFS
approaches are typically restricted to controlled environ-
ments, or reduce ambiguity by imposing strong assumptions
on surface shapes, material, and lighting [14].

As a consequence, making direct use of SFS for object
recognition in natural images has proven difficult although
there have been many attempts. Worthington and Hancock
[28] apply Shape-from-Shading techniques to object recog-
nition, on the level of individual object instances (COIL-20
data set [22]). Their work builds upon a mid-level represen-
tation of surface topography based on local curvature and



shape-index [16] information, and uses histograms and re-
gion descriptors on top of this representation. Following a
similar route, Lichtenauer et al. [19] suggest using orienta-
tion and curvature of isophotes (lines of equal brightness)
as features in a classification framework for classifying im-
age patches as face/non-face. Wu et al. [29] report improved
performance for gender-classification of pose-aligned face
images with needle-map features obtained via shape-from-
shading. Nillius et al. [23] present generic shape detectors
for cylinders and spheres, using model-based PCA, and
a multi-scale sliding-window search over image regions.
Mori et al. [21] describe shading on human limbs by proto-
typical, half-wave rectified gradient image patches, and use
a similarity score in order to identify candidate limb image
regions.

While these relatively recent approaches use SFS as
bottom-up features, more than ten years ago, Haddon and
Forsyth [13] suggested a promising alternative, by ver-
ifying given 3D shape hypotheses in a top-down fash-
ion using shading cues. In line with Biedermann’s theory
of recognition-by-components [1], and similar in spirit to
Weinshall [27], the authors suggest shading primitives as
the basis for recognition. The recognition problem amounts
to finding valid configurations of several primitives.

Borrowing from these ideas, we use a part-based object
class model at the core of our approach. We explicitly mo-
del the 2D shape of individual parts, together with pairwise,
semi-local symmetry relations, and the overall spatial lay-
out. We then establish 3D shape hypotheses based on object
parts and shading cues, and add them as additional cues to
the final detection hypothesis. In particular, our paper makes
the following contributions:

e We propose a shading model for cylindrical surface
primitives, which we show to yield acceptable model
fits on real world images, taken from a standard object
detection benchmark [9], and analyze the failure cases.

e We present first results to integrate this shading mo-
del as an additional cue into an existing state-of-the-art
shape-based object detection framework.

e We give quantitative experimental evidence that shad-
ing cues can indeed increase recognition performance.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the shading model. Section 3 reviews the
shape-based object detector. Section 4 gives experimental
results, and Section 5 concludes with an outlook on future
work.

2. Shading Model

Similar to the work of Haddon and Forsyth [13], our
shading model follows the principle of hypothesis verifi-
cation. Instead of recovering the 3D shape underlying an

image area in a bottom-up fashion, it starts from a given 3D
shape hypothesis and tries to verify this hypothesis based
on image evidence. In particular, the observed image ev-
idence must be consistent with the 3D shape, some esti-
mated reflectance properties, and the estimated scene illu-
mination. Proper regularization is required since the estima-
tion is highly ambiguous — the same image can be gener-
ated by different combinations of surface shape, reflectance,
and lighting.

2.1. A Shading Primitive

In the following, we present a concrete instantiation of
this hypothesis verification framework for the case of cylin-
drical surfaces. Our model starts with the hypothesized oc-
cluding contours of a cylindrical shape (the cylinder side-
walls) in the image plane and tries to verify this hypothesis
based on evidence from the pixels on the cylinder surface
using a simple model for lighting and reflectance. (Figure 1
shows some successful examples on images from the ETHZ
Mugs dataset.)

We assume that the directional lighting in the scene can
be well approximated by a single point light source located
far away from the surface of interest. In the limit, i.e., for in-
finite distance this corresponds to a directional light source.
We model the remaining contribution as ambient illumina-
tion impinging on the surface uniformly from all directions.
Both components of the model can be simply added due to
the principle of superposition.

Regarding reflectance, we restrict ourselves to the sim-
plest possible model and assume that the surface is diffuse
(Lambertian) with a constant albedo [6]. Specular effects of
surface texture are ignored and will be treated as outliers
during parameter estimation. This model implies that bar-
ring occlusion effects the reflected radiance depends solely
on the direction of incident radiance relative to the surface
normal. All points with equal surface normals will exhibit
equal brightness in the image.

Shading on cylindrical surfaces. Let us assume an or-
thographic projection of a cylindrical surface, with the
viewing direction being perpendicular to the cylinder axis.
We divide the surface into a set of circular cross-sections,
such that the viewing direction is parallel to the correspond-
ing sectional planes. A point on the observed half of a cross-
section can then be described by the parameterization ¢ (see
Figure 2). Due to orthographic projection, s = sin ¢ can
be used to parameterize the projection of the cross-section
onto the image plane without introducing any distortions.
We can now establish a functional dependency between s
and the observed image values for the corresponding sur-
face point B(s).! Let p be the angle between the direction

Note that we need to ensure that the image is in photometrically linear
space. This typically requires applying an inverse gamma correction.
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Figure 2. Geometry of visible cylinder (half) cross section, pa-
rameterized by s = sin¢, viewing direction, and light source at
infinity. p denotes the angle between illumination direction and
(orthographic) viewing direction.

of incident light and the viewing direction, both projected
on a plane perpendicular to the cylinder axis. The observed
image value is then

B(s) = a + b*max(0,cos(p — ¢(s))). (1)

The two scaling factors ¢ > 0 and b > 0 determine the
intensity of the ambient and the directional lighting, respec-
tively, multiplied with the albedo. The maximum in Equa-
tion 1 ensures that surface points with normals pointing
away from the directional light source, and which are there-
fore in shadow, do not contribute physically invalid, nega-
tive radiance.

Let us now assume viewing the cylinder from an ele-
vated angle and/or rotating the camera around the viewing
direction. The corresponding cross-sections are no longer
perpendicular to the cylinder axis, and change their shape
from circular to elliptical. As a consequence of both or-
thographic projection and directional lighting, these ellip-
tical cross-sections can be transferred into equivalent circu-
lar cross-sections by sliding all constituent points along the
cylinder’s isophotes, parallel to the cylinder axis. Follow-
ing this argumentation, Equation 1 can be proven valid for
any cylinder cross-section without changing the parameter-
ization s, as long as its projection on the image plane is a
straight line connecting the two cylinder side-walls.

Implementation. In order to determine the model param-
eters a, b, and p we need to select a set of cross-section
points
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and corresponding brightness values
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We obtain pairs of the form (s;, b;) by first sampling a fixed
number of equidistant points on the two occluding contours

of a hypothesized cylindrical surface and then connecting
corresponding pairs of points by straight lines. We finally
sample pixel brightness values b; by parameterizing each
line by s; € [—1, 1] using the Bresenham algorithm [3].

The parameters a, b, and p can now be determined using
standard non-linear least squares optimization techniques,
such as the Levenberg-Marquardt algorithm [18], by mini-
mizing the sum of squared residuals

S(a,b,p) =Y (b — B(s:))”. (4)
i=1

In practice, we observe that the non-differentiable max(.)
function does not pose any problems during optimization.

Since surface texture, specular reflections, and other un-
modeled effects often yield a significant number of out-
liers (see, e.g., the textured mug in Figure 3(a)), we use
RANSAC [10] to select a single consistent model. Invari-
ance w.r.t. global brightness variations is achieved by select-
ing inliers according to a threshold on the squared residual
(log b; — log B(s;))? in logarithmic space.

2.2. Example shading model fits

In order to demonstrate the validity of the proposed
cylindrical shading model, we give qualitative as well as
preliminary quantitative results on the Mug category of the
ETHZ Shape Classes dataset [9]. Figure 3 visualizes exem-
plary shading model fits of varying quality on eight differ-
ent images, starting from shape-based object detections (see
Section 3). In particular, we select the single best true pos-
itive Mug-hypothesis per image, each consisting of seven
parts (left and right side-walls, upper and lower rims, bot-
tom, and two handle parts), and fit a cylindrical shading mo-
del between the side-walls of the Mug.

2.3. Discussion

Table 1 gives an assessment of the quality of obtained
shading fits on Mug objects. It compares shading fits ob-
tained by using detection hypotheses from the shape-based
object detector with fits obtained from ground truth annota-
tions of Mug side walls. Since we obtain ground truth side
walls by marking actual shape features in images, these an-
notations are available only for 36 of 44 Mug images, due to
imperfect shape feature detections. The table further gives
estimates on the quality of the original shape fits, as these
constitute the basis for shading fits. Since ground truth on
the lighting conditions in which the images were taken is
hard to acquire in retrospect, shading fit quality is assessed
by visual inspection, and roughly categorized into near per-
fect (all parameters sensibly fit), acceptable (parameter esti-
mates deviate slightly from human assessment), and failure
(clearly erroneous parameter estimates).

We note the following observations: First, in 0.94 of the
cases, an at least acceptable shading model can be fit from
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Figure 3. Example shading fits, based on shape-based object detection hypotheses (see Section 3). First column: original image. Second
column: back-projected shading model. Third column: RANSAC inliers and estimated lighting direction, seen from above the scene. Fourth
column: shading model fit with accepted samples (red) and outliers (blue). Near perfect fits: (a) - (d), acceptable fit: (e), failures ((f) - (h))
due to object texture (f), specularities (g), erroneous shape fits (h).



Fit quality Shape | Shading on GT | Shading on shape fit
Failure 0.14 0.06 0.27
Acceptable 0.18 0.25 0.16
Near perfect 0.68 0.69 0.57
Non-failure 0.86 0.94 0.73

Table 1. Quality of shape and shading model fits. The last row
summarizes the two preceding rows.

Failure case | Specularities | Shape fit | Lighting | Texture
Fraction 0.42 0.32 0.16 0.11

Table 2. Likely failure reasons of shading model fits.

available ground truth occluding contours. This indicates
that the proposed shading model is in principle capable of
modeling most shading artifacts present on the tested ETHZ
Mug images, despite variations in shape, texture, material,
and lighting. Second, despite the fact that this number de-
creases significantly if shape model fits are used as a ba-
sis an encouraging amount of 0.73 of the obtained shading
models is still at least acceptable. These models correctly
reflect the cylindrical 3D shape of the Mug objects, and can
thus be beneficial for recognition.

Table 2 lists the most likely reasons for imperfect fits,
again assessed by visual inspection. The most frequent
likely reason (0.42) for failure is the presence of specu-
larities and reflections, which are not explicitly included
in the shading model, but possibly rejected as outliers by
RANSAC. Figure 3(g) gives an example of an erroneous
fit, caused by the highly specular, dark material of the mug.

The second most frequent reason for failure is the some-
times insufficient quality of shape model fits used as the
basis for shading. According to Table 1, 0.14 of these shape
fits are failures, resulting in erroneous support for the shad-
ing model. Figure 3(h) shows an example, where pixels on
the mug and pixels from the background are wrongfully
combined in the set of selected inliers.

Figure 3(e) gives an example of a still acceptable fit,
showing a deviation in the estimated incident light direc-
tion from what one would expect: contrary to intuition, the
incident light is estimated as coming strictly from the left,
and not from the direction of the window. This is an instance
of difficult lighting conditions, and attributed to 0.16 of the
failure cases.

Surprisingly, texture is rarely a source of confusion (0.11
of the cases). Figure 3(f) shows one of the few examples
where object texture (a photo printed onto the mug) is
wrongfully picked up by the shading model (the shape fit
for this example is also imperfect; the corresponding shad-
ing fit for ground truth side-walls is in fact near perfect).
Figure 3(a) - (c) gives examples of successfully handled tex-
tures.

3. Shape Model

Our approach to integrate shading cues into object recog-
nition is based on the shape-based object class detector pre-
sented by Stark et al. [25]. In particular, we use informa-
tion from this model in two different ways: 1) the shading
model described in Section 2 is used to verify hypotheses
provided by the shape-based part-detections (cylinder side
walls), and 2) a final score is calculated by combining the
shape-based detection scores with the fitted shading model
parameters (detailed in Section 4). We give a brief overview
on the most important aspects of the shape-based detector,
but refer the reader to [25] for details.

Local shape features. The detector is based on a novel
flavor of local shape features, which constitute a discrete,
over-complete representation of image contours. The shape
features are based on the Contour Segment Network (CSN)
of Ferrari et al. [9], and its associated local companions, k-
Adjacent Segments (k-AS) [8]. Multiple k-AS of varying k
are combined by fitting a parametric B-spline curve to all
constituent edgel chains, using the exact same parameteri-
zation, independent of k. This offers the benefit of retaining
the original curvature information and increasing the dis-
criminative power of the features compared to the original
k-AS represented by straight line approximations. Spline
curves are fit against edgel chains, once they have been
transformed into a translation and scale invariant space, us-
ing Procrustes analysis [4]. The resulting spline parameters
are used as a low-dimensional local shape description.

Semi-local symmetry relations. In order to facilitate dis-
crimination between object parts and background clutter,
the detector of [25] includes another powerful perceptual
cue, which relates pairs of local shape features by identify-
ing and describing symmetries between them. In particular,
it uses a B-spline-based implementation [24] of Smoothed
Local Symmetry (SLS). SLS were originally proposed by
Brady and Asada [2] in the context of planar shape anal-
ysis. Starting from the spline-based representation of SLS,
[25] devises a semi-local symmetry descriptor, which cap-
tures both the shape of the symmetry axis and the lengths
of lines connecting points on the axis with corresponding
points on either of the symmetrical splines (the symmetry
lines). The first is achieved by representing the axis as a lo-
cal shape feature, as described in the previous paragraph.
The second is achieved by recording a length profile of se-
lected symmetry lines.

Probabilistic model. In [25] objects are modeled as an
assembly of spatially arranged parts, in the spirit of the
constellation model of Fergus et al. [7]. The corresponding
probabilistic formulation subsumes individual part shape S,



binary symmetry relations B, relative part scales R, and
their overall spatial layout X .

During detection, the goal is to find an assignment of all
P model parts to local shape features, denoted the detec-
tion hypothesis H = (hy,...,hp). That is, h, contains a
local shape feature identifier assigned to part p. The detec-
tion problem can be formulated as a maximum a posteriori
hypothesis search over the distribution p(X, R, S, B, H|0),
which is the joint posterior distribution of H and image
evidence, given a learned model 6. It factors into separate
likelihood contributions for local part shape, symmetry re-
lations, spatial part layout, relative part scales, and a prior
on hypotheses, as follows:

p('X7R’ S’B’H|9) =
p(S|H,0) p(B|H,0) p(X|H,0) p(R|H,0) p(H|0)(5)
—_———— — — — — " — —

Local Shape Symm. Rel. Layout Rel. Scale  Prior

Learning and inference. Model parameters 6 are learned
using maximum likelihood estimation via supervised train-
ing. Supervision is provided by labeling contour segments
in training images.

Inference aims at identifying the maximum a posteriori
hypothesis Hyjap = arg maxy p(H|X, R, S, B, 6). This is
equivalent to argmaxy p(X, R, S, B, H|0). [25] approxi-
mates Hyap by drawing samples from p(X, R, S, B, H|0)
using the Metropolis-Hastings (MH) algorithm [12]. The
Single Component update variant of MH is employed, since
it allows to separately update individual components of the
target density, conditioned on the remaining portion of the
current state of the Markov chain. This opens the possibil-
ity to guide the sampling towards high density regions by
data-driven, bottom-up proposals [30, 26].

Multiple object instances are detected by running a
number of independent Markov chains, and memorizing
the per-chain highest-scoring hypotheses. The greedy non-
maximum suppression described by Fritz and Schiele [11]
is used to prune overlapping hypotheses.

Detection results. Figure 4 shows learned models and ex-
ample detections for four categories Giraffes, Swans, Mugs,
and Bottles of the ETHZ Shape Classes data set [9]. [25] re-
ports competitive results for these four classes outperform-
ing, e.g., [8, 11]. For further details on these results and the
model we refer to [25].

4. Experiments

The following examines the potential benefit of adding
our shading cue for object recognition. To integrate our
shading cue into the probabilistic model of the shape-based
object detector described in [25], we combine the outputs
of both models in a discriminative framework (sometimes

sy

Figure 4. Learned ETHZ Shape Classes models (left) and exam-
ple detections (right). For models, mean local part shapes and se-
lected mean symmetry axes are drawn at mean positions and rel-
ative scales. Covariances of part positions are shown as ellipses.
Reproduced from [25] with permission.

referred to in the literature as late integration). In particu-
lar, we train two linear SVM classifiers. The first is using
the shading model parameters a, b, p, the fraction of inliers,
and the mean squared residual on the inliers. The second
additionally uses the shape-based detection score.

As in Section 2, we base our evaluation on the category
Mug from the ETHZ Shape Classes data set [9]. We set up
a binary classification task as follows: for each of the 251
images (44 Mugs, 207 non-Mugs) of the data set, we se-
lect the highest scoring detection hypotheses for the cate-
gory Mug. We then either store it as a positive (in case it
qualifies as a true positive detection according to an overlap
criterion) or as a negative (in case it does not) training ex-
ample. We then train and test classifiers on these examples
using 5-fold cross validation, in order to have a reasonable
amount of positive training examples available. Each mo-
del is individually optimized w.r.t. the maximum margin-
training error minimization tradeoff parameter C' of the lin-
ear SVM. Please note that this experiment is different from
the original setup in [8] and therefore does not allow for di-
rect comparison. However, as a first proof of concept and
to understand the potential benefit of our shading cues for
recognition we consider this experiment appropriate for the
purpose of this paper.

Figure 5 plots precision and recall curves for the binary
classification task described above. While the red curve is
based on the shape-based detection score alone, the blue
and green curves have been obtained by varying a threshold
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Figure 5. Precision/recall curves for classifying shape-based detec-
tion hypotheses into Mugs/non-Mugs, based on different scores.

on the corresponding SVM scores, obtained by 5-fold cross
validation.

Observations. First, the classifier trained on shading mo-
del parameters alone essentially fails to discriminate be-
tween positive and negative examples. This is not surpris-
ing, since it fully neglects valuable information about the
shape and spatial layout of Mugs, while concentrating fully
on cylindrical shading (as, e.g., in Figure 6(i),(j)).

Second, the shape-based detection score shows good per-
formance (Equal-Error-Rate (EER) of 77.3%), despite the
negative examples being hard ones (since we picked the
highest-scoring ones per image).

Third, combining the shape-based detection score and
the shading model parameters yields a considerable im-
provement over the shape-based detection score. The shad-
ing cue improves recall at precision level 100% from 50%
to 72.7%, and lifts EER from 77.3% to 79.6%. Figure 6(a) -
(h) depicts complementary detections hit and missed by the
two classifiers, respectively. It lists high scoring detections
correctly classified by one, but mis-classified by the other
classifier, at the highest achieved recall for precision 1.0.
Apparently, the combined shape-shading classifier makes
efficient use of available shading information, compensat-
ing weak shape model fits (Figure 6(c) - (f)). The two exam-
ples mis-classified by the shape-shading combination can
be attributed to imperfect shading fits due to specularities
and texture, respectively. Figure 6(i),(j) show two false pos-
itive classifications of the combined shape/shading score.
While the bottle label is in fact an instance of cylindrical
shading, the water surface underneath the swan is clearly an
error.

®

Figure 6. (a) - (h): complementary detections. (a) - (f): six high
scoring Mug-hypotheses correctly classified by the combined
shape/shading score, but missed by the pure shape score (pre-
cision level 1.0, highest recall). (g),(h) the only two hypotheses
for the inverse case. (i), (j) Two false positives of the combined
shape/shading score at EER.

5. Conclusions and Future Work

In this paper, we have introduced a shading model for
cylindrical surface primitives, based on hypothesis verifica-
tion, and demonstrated its validity on images of a standard
data set for shape-based object detection. We have shown
preliminary results of integrating this shading model as an
additional cue into an existing, state-of-the-art, shape-based
object detection framework, and obtained quantitative ex-
perimental evidence for its potential usefulness in recogni-
tion.

Based on these encouraging results, we consider the
proper integration of the proposed shading cue into the
Data-Driven Markov Chain Monte Carlo framework of [25]
an obvious next step, as well as adding more 3D surface
primitives.
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