
www.elsevier.com/locate/parco

Parallel Computing 31 (2005) 205–219
Large volume visualization of compressed
time-dependent datasets on GPU clusters

M. Strengert a,*, M. Magallón b, D. Weiskopf a,
Stefan Guthe c, T. Ertl a

a Institute of Visualization and Interactive Systems, University of Stuttgart, Universitätstrasse 38,

D-70569 Stuttgart, Germany
b Universidad de Costa Rica Escuela de Fisica, San Pedro de Montes de Oca 2060, Costa Rica

c WSI/GRIS, University of Tübingen, 72076 Tübingen, Germany

Received 16 February 2004; revised 20 December 2004

Available online 14 April 2005
Abstract

We describe a system for the texture-based direct volume visualization of large data sets on

a PC cluster equipped with GPUs. The data is partitioned into volume bricks in object space,

and the intermediate images are combined to a final picture in a sort-last approach. Hierarchi-

cal wavelet compression is applied to increase the effective size of volumes that can be handled.

An adaptive rendering mechanism takes into account the viewing parameters and the proper-

ties of the data set to adjust the texture resolution and number of slices. We discuss the specific

issues of this adaptive and hierarchical approach in the context of a distributed memory archi-

tecture and present corresponding solutions. Furthermore, our compositing scheme takes into

account the footprints of volume bricks to minimize the costs for reading from framebuffer,

network communication, and blending. A detailed performance analysis is provided for sev-

eral network, CPU, and GPU architectures—and scaling characteristics of the parallel system

are discussed. For example, our tests on a eight-node AMD64 cluster with InfiniBand show a

rendering speed of 6 frames per second for a 2048 · 1024 · 1878 data set on a 10242 viewport.
� 2005 Elsevier B.V. All rights reserved.
0167-8191/$ - see front matter � 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.parco.2005.02.006

* Corresponding author.

E-mail address: magnus.strengert@informatik.uni-stuttgart.de (M. Strengert).

mailto:magnus.strengert@informatik.uni-stuttgart.de


206 M. Strengert et al. / Parallel Computing 31 (2005) 205–219
Keywords: Graphics systems; Distributed/network graphics; Viewing algorithms
1. Introduction

Volume rendering is often to be applied to large data sets. For example, the

increasing resolution of medical CT scanners leads to increasing sizes of scalar data

sets, which can be in the range of gigabytes. Even more challenging is the visualiza-

tion of time-dependent CFD simulation data, which can comprise several gigabytes

for a single time step and several hundred or thousand time steps. Parallel visualiza-

tion can be used to address the issues of large data processing in two ways: both the

available memory and the visualization performance are scaled by the number of

nodes in a cluster computer.
This paper is an extension to our previous work [1], which describes a combina-

tion of the ‘‘traditional’’ benefits of parallel computing with the high performance

that is offered by GPU-based techniques. The basic idea is to apply hierarchical

wavelet compression in the context of distributed volume visualization. In doing

so, the effective size of the volume processed in a distributed memory architecture

can be further increased. In addition an adaptive, texture-based rendering algorithm

is presented and several optimizations for accelerating performance critical tasks

such as framebuffer readbacks, image compositing, and network communication
are discussed. This work is further extended by including the following topics. First,

an extended approach for CPU-based image compositing using the capabilities of

current 64-bit architectures is presented. Second, a detailed look into the system�s
performance with respect to time-dependent datasets is given. Third, we discuss

the influence of the interconnecting network, on systems built upon Gigabit, Myri-

net, and InfiniBand networks. Results are discussed for three different systems: a

mid-price system with 16 GPU/dual-CPU nodes and Myrinet, a low-cost system with

standard PCs connected by Gigabit Ethernet, and another mid-price system with 8
GPU/dual-AMD64-CPU nodes connected though InfiniBand. We believe that our

findings are useful for working groups that have to visualize large-scale volume data.
2. Previous work

This work builds up on that of Guthe et al. [2], who represent a volumetric data

set as an octree of cubic blocks to which a wavelet filter has been applied. By recur-
sively applying this filter, a hierarchical multi-resolution structure is generated. Ren-

dering is accomplished by computing a quality factor to select for which block the

higher or lower resolution representations should be used. The decompression of

the texture data is performed by the CPU. Based on this compression approach,

Wang et al. [3] independently developed a parallel volume rendering system specially

focused on large datasets and load balancing. Binotto et al. [4] presented a system

that also uses a hierarchical representation, but is oriented towards the compression



M. Strengert et al. / Parallel Computing 31 (2005) 205–219 207
of time-dependent, highly sparse and temporally coherent data sets. Their algorithm

uses fragment programs to perform the decompression of the data sets, with a

reported performance of over 4 fps for an image size of 5122 pixels and a texture data

set of 1283 voxels.

Rosa et al. [5] described a system specifically developed for the visualization of
time-varying volume data from thermal flow simulations for vehicle cabin and ven-

tilation design. The system is based on the work of Lum et al. [6], which quantizes

and lossily compresses the texture data by means of a discrete cosine transformation

and stores the result as indexed textures. Textures represented in this way can be de-

coded in graphics hardware by just changing the texture palette. The disadvantage of

this method is that support for paletted textures is being phased out by hardware

vendors. This could be replaced by dependent texture look-ups, but these have a dif-

ferent behavior with respect to interpolation of the fetched data. In comparison to
the other methods mentioned before, this approach achieves much lower compres-

sion ratios.

Stompel et al. [7] have recently proposed a compositing algorithm that takes

advantage of the fact that in a configuration of n processing elements, there are

on average n
1
3 partial images which are relevant for any given pixel of the final image.

They report promising results, using a 100 Mbps Ethernet network as the underlying

communications fabric. The efficiency of the algorithm is highly dependent on the

viewing direction, but it compares favorably to the direct send and binary swap algo-
rithms, which are commonly used for this task.
3. Distributed visualization

We use a sort-last [8] strategy to distribute the visualization process in a cluster

environment. With increasing size of the input data set, this sorting scheme is favor-

able, since the input data becomes larger than the compositing data and hence a sta-
tic partitioning in object space avoids communication regarding the scalar field

during runtime. The basic structure of our implementation follows the approach

by Magallón et al. [9].

During a preprocessing step object-based partitioning is performed to split the in-

put data set into multiple, identically sized sub-volumes, depending on the number of

nodes in the cluster configuration. To overcome possible memory limitations in con-

nection with large data sets, this step is executed using the same set of nodes as the

following render process. Once all sub-volumes are created and transferred to their
corresponding nodes, the render loop is entered, which can be split into two consec-

utive tasks.

The first task is to render each brick separately on its corresponding node. An

intermediate image is generated by texture-based direct volume visualization. We

employ screen-aligned slices through a 3D texture with back-to-front ordering

[10,11]. By adapting the model-view matrix for each node, it is assured that each

sub-volume is rendered at its correct position in image space. Since the partitioning

is performed in object space, the rendering process of different nodes can produce



208 M. Strengert et al. / Parallel Computing 31 (2005) 205–219
output that overlaps each other in image space. The second task blends the inter-

mediate images and takes into account that multiple nodes can contribute to a sin-

gle pixel in the final image. The distributed images are depth sorted and processed

through a compositing step based on alpha blending. To this end, each node

reads back its framebuffer, including the alpha channel, and sends it to other
nodes.

The original implementation by Magallón et al. takes advantage of all nodes for

the computationally expensive alpha blending by using direct send communication

scheme [12]. Each intermediate result is horizontally cut into a number of stripes

matching the total number of nodes. All these regions are sorted and transferred be-

tween the nodes in a way that each node receives all stripes of a specific area in the

image space. Then each node computes an identically sized part of the final image. In

Section 4 this scheme is extended to reduce unnecessary transfer and blending of
intermediate data.

The alpha blending of the intermediate images is completely performed on the

CPU. Although the GPU is highly specialized for this task, the additional costs

for loading all stripes into texture memory and reading back the information after

blending would lead to a lower overall performance. The blending of pixel a onto

pixel b is given by the equation

r ¼ aþ ð1� aalphaÞ � b: ð1Þ
Since graphics hardware usually deals with 8 bit per color channel the result of the
blending can be calculated using integer-arithmetic instead of the more costly float-

ing-point arithmetic. By scaling all variables from [0,1] to [0,255], Eq. 1 can be

rewritten as

r ¼ aþ ð255� aalphaÞ � b
255

: ð2Þ

The most expensive operation in terms of computational speed in Eq. 2 is the integer
division by 255. With the substitution,

x
255

¼
xþ 128þ xþ 128

256
256

;

the calculation of the division can be replaced by fast bit-shift operations. This
expression is correct for all variables the range 0.255 when compared to the float-

ing-point version rounded up and truncated to integer results. The resulting blending

function is

x ¼ ð255� aalphaÞ � bþ 128;
r ¼ aþ ððxþ ðx � 8ÞÞ � 8Þ:

ð3Þ

To blend two RGBA pixels these equation have to be calculated four times, once for

each color channel. With MMX operations [13] working on 32-bit integers it is pos-

sible to determine the result of the blend function for all four channels of a pair of

pixel in parallel. A further extension to this is the simultaneous handling of two com-



Table 1

Blended pixels in million pixels per second

Floating-point

arithmetic

(Eq. (1))

Integer

arithmetic

(Eq. (2))

Optimized

integer

arithmetic

(Eq. (3))

MMX

implementation

(Appendix A)

AMD Athlon

XP 1800+

5.3 7.5 23.4 (3.12) 47.8 (6.37)

Intel Pentium

IV 1.8

5.1 8.6 10.7 (1.24) 64.1 (7.45)

AMD Athlon

MP+ 2000+

6.0 8.3 32.8 (3.95) 64.3 (7.74)

Intel Pentium IV 2.8 8.1 14.4 17.5 (1.21) 116.6 (8.09)

AMD Opteron 2.2 16.7 23.0 65.6 (2.85) 123.7 (5.37)

The program was compiled using gcc version 3.3.3.

M. Strengert et al. / Parallel Computing 31 (2005) 205–219 209
pletely independent pairs of pixels at the same time using the capabilities of modern

64-bit architectures like the AMD Opteron CPUs. The actual implementation for an

AMD64 system is given in Appendix A. Table 1 provides a performance comparison

of all presented blending functions and the corresponding speedup is given with

respect to the unoptimized integer arithmetic approach. In the best case two images

of size 1280 · 1024 can be composited 95 times in one second on the tested single-
CPU AMD Opteron system.

Without major changes this approach can also handle time-dependent scalar
fields. During the bricking process a static partitioning scheme is used for all time

steps, i.e., each sub-volume contains the complete temporal sequence for the corre-

sponding part of the input volume. To synchronize all nodes the information regard-

ing the current time step is broadcast to the render nodes.
4. Accelerated compositing scheme

Concerning distributed rendering the overall performance is limited by three fac-

tors: The process of reading back the results from the framebuffer, the data transfer

between nodes, and the compositing step. In the following we address these issues by

minimizing the amount of image data to be processed. The key observation is that

the image footprint of a sub-volume usually covers only a fraction of the intermedi-

ate image. For the scaling behavior, it is important that the relative size of the foot-

print shrinks with increasing number of nodes. For simplicity, we determine an

upper bound for the footprint by computing the axis-aligned bounding box of the
projected sub-volume in image space. Since the time needed to read back a rectan-

gular region from the framebuffer is nearly linearly dependent on the amount of

data, reducing the area to be retrieved leads to a performance increase of this part

of the rendering process. Similarly, the communication speed also benefits from



210 M. Strengert et al. / Parallel Computing 31 (2005) 205–219
the reduction of image data. The compositing step is accelerated by avoiding unnec-

essary alpha blending operations for image regions outside the footprints. Similarly

to SLIC [7], a line-based compositing scheme is employed. For each line the span

containing already blended data is tracked. Since the images are blended in the

depth-sorted order of their corresponding volume blocks and all blocks together rep-
resent the convex shape of the unpartitioned volume, the tracked region always

forms one segment instead of multiple separated spans. If a projected volume face

is parallel to the image plane, the depth sort results in an ambiguous ordering that

may break this property. In this case the topology is used to ensure the connectivity

of the marked span. With this information the new image data of the next compos-

iting step can be separated into a maximum number of three segments. Two seg-

ments contain pixels that map into the region outside the marked span. These

pixels need no further processing and can be copied into the resulting image. The
remaining segment maps into an area where already other color information resides

and alpha blending has to be performed. An example of this procedure is given in

Fig. 1. After one iteration the size of the span containing data needs to be updated

and the next image stripe can be processed. In doing so only a minimal amount of

blending operations for a given volume partitioning must be carried out.
Fig. 1. Depth-sorted blending of footprints of four volume blocks. For each compositing step the regions

with and without the need for blending are marked.



M. Strengert et al. / Parallel Computing 31 (2005) 205–219 211
5. Hierarchical compression and adaptive rendering

Even with distributed rendering techniques the size of a data set can exceed the

combined system memory of a cluster configuration and the already bricked data

set is larger than one single node can handle. Another challenge is to further improve
the rendering speed. We address the memory issue by using a hierarchical compres-

sion technique, and the performance issue by adaptive rendering.
5.1. Single-GPU wavelet compression

We adopt a single-GPU visualization approach that utilizes compression for

large data sets [2]. The idea is to transform the input data set into a compressed

hierarchical representation in a preprocessing step. An octree structure is created
with the help of wavelet transformations. The input data set is split into cubes of

size 153 voxels, which serve as starting point for the recursive preprocessing. Eight

cubes sharing one corner are transformed at a time using linearly interpolating

spline wavelets. The resulting low-pass filtered portion is a combined representation

of the eight input cubes with half the resolution of the original data. The size of this

portion is again 153 voxels. The wavelet coefficients representing the high frequen-

cies replace the original data of the eight input blocks. After all cubes of the origi-

nal data set are transformed, the next iteration starts using the newly created
low-pass filtered cubes as input. The recursion stops as soon as the whole volume is

represented through one single cube. This cube forms the root node of the hierarchical

data structure and is the representation with the lowest quality. Except for the root

node, all other nodes hold only high-pass filtered data, which is compressed

through an arithmetic encoder [14]. While it is possible to increase the compression

ratio by thresholding, we focus on lossless compression for best visualization

results.

During rendering we use an adaptive decompression scheme that depends on the
viewing position and the data set itself. Starting at the root node of the hierarchical

data structure, a priority queue determines which parts of the volume are decom-

pressed next. Depending on the ratio between the resolution of a volume block and

the actual display resolution, regions closer to the viewer are more likely decom-

pressed than others. Additionally an error criterion describing the difference be-

tween two representations of varying quality is used to identify regions that can

be rendered in low quality without noticeable artifacts. After the quality

classification is finished, all decompressed blocks are transferred to the graphics
board�s texture memory for rendering. Depending on the reconstructed quality
level of a block, the number of slices used for rendering is determined.

With increasing reconstruction quality the number of slices increases as well,

delivering higher quality for areas closer to the viewer. Additionally a cache strat-

egy is used to avoid the expensive decompression step for recently processed

blocks. Unnecessary texture transfers are avoided by tracking the already loaded

textures.



212 M. Strengert et al. / Parallel Computing 31 (2005) 205–219
5.2. Extension to parallel rendering

In a distributed visualization system, this approach leads to a problem concerning

correct texture interpolation between sub-volumes rendered on different nodes. A

typical solution is to create the sub-volumes with an overlap of one voxel. With mul-
ti-resolution rendering techniques it is necessary to know not only the border voxels

of the original data set but also the data value at the border of all other used quality

levels [15]. This information can be determined in the preprocessing step. After cre-

ating the sub-volumes and constructing the hierarchical data structure, each node

transfers the border information of all quality levels to its appropriate neighbors.

But even with this information available on each node a correct texture interpolation

cannot be generated easily. The remaining problem is to determine the quality level

used for rendering of a neighboring node. This is necessary for choosing the correct
border information of the previously transferred data. An example showing this

problem is given in Fig. 2. Since communication between the nodes is costly due

to network latency, requesting this information from the neighboring node is not

suitable. Another approach is to compute the quality classification on each node

for an expanded area. Unfortunately this is also impractical, because the quality clas-

sification is dependent on the volume data.

Instead, we propose an approximate solution that presumes that there are no

changes in quality classification at the border of the sub-volumes. With this ap-
proach errors only occur if different qualities are used on each side of a sub-volume

border (example visualization in Fig. 3). Due to the similar position of adjacent parts

of the sub-volumes it is however likely that both regions are classified with the same

quality. Experimental data showing the proportion of the error remaining under this

presumption is given in Table 2 for both the unweighted number of transitions and

for the area-weighted ratio. The measurement was performed while rendering the

Visible Human data set on 16 rendering nodes (Fig. 4). In this configuration a total

number of 185,212 cube transitions are present in the whole dataset. Considering
only those transitions that lead to an interpolation error results in 723 cube borders,

which is less than one percent of the total amount of transitions.
Fig. 2. Texture interpolation at a sub-volume border for a 1D case. Texels on one side of the border (white

cells) are filled with previously transferred information of the neighboring node. Errors arise if the quality

level of the neighboring node is unknown and hence a wrong level is chosen. For the incorrect, case border

information of level 0 are used for interpolation, although the rendering of the neighboring node is

performed on level 1.



Fig. 3. In the left part of the image the volume was rendered using different quality levels for each of the

two sub-volume blocks. Assuming identical classification for interpolation leads to visible artifacts as seen

in the left magnified area. For comparison the right image was rendered with identical classification for the

sub-volume blocks.

Table 2

Quantification of changes in quality classification at block faces

Unweighted (%) Area-weighted (%)

Total volume

Same quality 89.8 81.7

Different quality 10.2 18.3

Sub-volume borders only

Same quality 91.2 83.0

Different quality 8.8 17.0

Borders compared to total volume

Same quality 99.6 99.1

Different quality 0.4 0.9

Fig. 4. Rendering result of the Visible Human Project male data set. The whole body is rendered on 16

nodes.

M. Strengert et al. / Parallel Computing 31 (2005) 205–219 213
For a correct solution of the interpolation problem, we propose another approach

that separates the computation of the quality classification and the rendering pro-

cess. In each frame an adaptive classification is determined, but the associated ren-
dering is delayed by one frame. In doing so, the information regarding the used

quality levels can be transferred to the neighboring nodes at the time of distributing

the intermediate results during the compositing step. Since at this time communica-

tion between all nodes must be performed anyway, the additional data can be ap-

pended to the image data. Having the transferred data available at the next frame



214 M. Strengert et al. / Parallel Computing 31 (2005) 205–219
the rendering process can produce a properly interpolated visualization. The down-

side is that the latency between user interactions and the systems reaction is increased

by one frame. To avoid this, a hybrid technique that exploits both described ap-

proaches is possible. While the viewing parameters are changed, the approximate

solution is used to generate an image without increased latency times during user
interaction. As soon as the camera parameters are kept constant, a correct image

is rendered based on the quality classification that is transferred from the previous

rendering step. Thus a fast user interaction is combined with a correct sub-volume

interpolation for the static case.
6. Implementation and results

Our implementation is based on C++ and OpenGL. Volume rendering adopts

post-shading realized either through NVIDIAs register combiners or alternatively

through an ARB fragment program, depending on the available hardware support.

MPI is used for all communication between nodes.

Three different cluster environments were used for developing and evaluation. The

first one is a 16-node PC cluster. Each of these nodes runs a dual-CPU configuration

with two AMD 1.6 GHz Athlon CPUs, 2 GB of system memory, and NVIDIA

GeForce 4 Ti 4600 (128 MB) graphics boards. The interconnecting network is a
Myrinet 1.28 GB/s switched LAN providing low latency times. Linux is used as oper-

ating system, the SCore MPI implementation drives the communication [16].

The second environment is built from standard PCs, using a Gigabit Ethernet

interconnection with a maximum number of eight nodes. Each node has an Intel

Pentium4 2.8 GHz CPU and 4 GB system memory. The installed graphics boards

are a mixture of NVIDIA GeForce 4 Ti 4200 and GeForce 4 Ti 4600 both providing

128 MB of video memory. Running Linux, the MPI implementation LAM/MPI is

used for node management and communication [17].
The last configuration consists of 8 PCs interconnected through an InfiniBand

network. Each node is equipped with two AMD Opteron 248 CPUs clocked at

2.2 GHz, 4 GB of system memory and an NVIDIA Quadro FX 1100 (128 MB)

graphics board. The 10 GB/s network devices are connected using the PCI-Express

interface. Again Linux is used as operating system, and an InfiniBand-capable

MPI implementation drives the communication.

We use various large-scale data sets to evaluate the performance of the imple-

mented visualization system. The first static data set is an artificial scalar field show-
ing a radial distance volume that is additionally combined with Perlin noise. For our

testing purposes a 10243 sized volume is used. The second static data set is derived

from the anatomical RGB cryosections of the Visible Human male data set [18].

The slices are reduced to 8 bit per voxel and cropped to exclude external data like

gray scale cards and fiducial markers. The obtained data set has a resolution of

2048 · 1024 · 1878 voxels (Fig. 4). For evaluating the systems performance with re-
spect to time-dependent input data two additional data sets were selected. The first

sequence was obtained from a CFD simulation of a flow field with increasing



M. Strengert et al. / Parallel Computing 31 (2005) 205–219 215
turbulence. In total it consists of 89 individual time bins each 2563 in size. Second,

the IEEE Visualization 2004 contest data set showing a simulation of cloud move-

ment during the hurricane Isabel in 2003 was used. Each time step of this simulation

is 512 · 512 · 124 in size and the complete sequence consists of 48 time steps result-
ing in a total data amount of 1.6 GB. Selected images of this data set are given in
Fig. 5.

The Visible Human male data set can be visualized on a 10242 viewport using 16

nodes with 5.2 frames per second on our Myrinet-based cluster system. The quality

classification was set to use the original resolution for most regions. Due to the uni-

form characteristic of the surroundings, these areas were displayed in a lower reso-

lution without any noticeable disadvantages. With a viewport of half size in each

dimension and the same settings the obtained framerate increases to 8.6 frames

per second. Using the InfiniBand cluster system, the obtained results increased to
6.5 fps and 11.4 fps, depending on the viewport size. The increased performance is

mainly the result of the faster image compositing possible in this cluster environment

as well as the interconnecting network. The total amount of communication per

frame is mainly determined by the image compositing step. The maximal amount

of data to be transferred with a viewport of M · N pixels in a configuration with

k nodes is (in bytes)

vol ¼ 4 � ðM � NÞ � ðk � 1Þ � ð1þ 1=kÞ:
The constant factor of 4 is due to the need for sending RGBA images for correct

image compositing. With a viewport of 10242 this leads to a data amount of 15 MB

per frame. Using the Myrinet environment the maximal performance is solely limited

by the communication to nearly 14 fps. Besides the communication bandwidth the

network latency directly influences the system�s performance. Using the Gigabit clus-
ter environment with its eight nodes, only 2 frames per second are achieved for ren-

dering the distance volume, while eight nodes of the Myrinet based cluster achieve
with 4.3 frames per second. Due to the similar configuration of each node this gap

is solely caused by the Gigabit Ethernet in comparison to Myrinet. While delivering

comparable bandwidth, the Myrinet clearly outperforms a conventional Gigabit

Ethernet regarding latency times. Switching to the InfiniBand architecture the same

test results in 6.4 fps. Besides the faster image compositing the further optimized
Fig. 5. Images of three different time steps of the IEEE Visualization 2004 Contest dataset. The content

of the data shows a simulation of the cloud movement during the hurricane Isabel.



216 M. Strengert et al. / Parallel Computing 31 (2005) 205–219
latency times on an InfiniBand architecture are the main reason for this performance

increase. For a better comparison of the latency times, Fig. 6 shows the point-to-

point performance for a typical range of packet sizes used in this application.

To show the scaling behavior of the visualization system configurations of 2 up

to 16 render nodes were measured using the Myrinet based cluster environment.
The data set for all these tests is the distorted radial distance volume with a size

of 1 GB. Running on two nodes a new frame is rendered every 340 ms. Due to

the limited amount of texture memory available using two 256 MB graphics boards,

the data set cannot be reconstructed to the finest detail possible and is shown in a

coarser representation. For all the following configurations the dataset is rendered

in the original quality. Adding two more nodes reduces the time required per frame

to 272 ms and with a total of eight nodes 233 ms are achieved. For a 16 node con-

figuration the data set can be rendered in 174 ms, which corresponds to a refresh
rate of 5.7 Hz.

For the time-dependent of the cloud simulation (Fig. 5) the whole sequence is

rendered with an average of 3.3 fps on the InfiniBand cluster system, using a con-

figuration that forces the original quality to be rendered in a 10242 viewport. For

the CFD data set, Fig. 7 shows the results for rendering each time step in a row

on the Myrinet cluster. The test was performed using three different quality levels.

In case of the original quality the required time clearly increases towards the end of

the sequence. The reason for this behavior is found in the characteristic of the data
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1e+06 2e+06 3e+06 4e+06

tim
e 

in
 u

se
c

packet size in byte

InfiniBand
Myrinet

Gigabit Ethernet

Fig. 6. Comparison of latency times for point-to-point communication using three different network

architectures.



50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90

tim
e 

in
 m

s

timestep

full resolution
1/2 resolution
1/4 resolution

Fig. 7. Performance rendering time-dependent turbulence data set in different qualities.

M. Strengert et al. / Parallel Computing 31 (2005) 205–219 217
set, which becomes more and more turbulent over time, leading to a higher number

of blocks that have to be decompressed. In the case of time-dependent data sets the

performance is mainly limited by the speed of decompressing. Stepping from one

time bin to another cancels the possibility to make use of the current cached blocks

and everything has to be decompressed again starting at the root node for each

block. Therefore the performance is rather slow for time-dependent data sets com-
pared to the static ones.
7. Conclusion and future work

We have presented a distributed rendering system for texture-based direct volume

visualization. By adapting a hierarchical wavelet compression technique to a cluster

environment the effective size of volume data that can be handled is further im-
proved. The adaptive decompression and rendering scheme results in a reduction

of rendering costs depending on the viewing positing and the characteristics of the

data set without leading to noticeable artifacts in the final image. The problem of

texture interpolation at brick borders in connection with multi-resolution rendering

has been addressed and different solutions have been provided. Parts of the rendering

process crucial to the systems performance benefit from the applied reduction of the

processed region in image space, especially with increasing numbers of rendering

nodes.



218 M. Strengert et al. / Parallel Computing 31 (2005) 205–219
The achieved performance is often restricted by the capabilities of the intercon-

nection between the rendering nodes and the computation of blending operations

during the compositing step. We have measured performance characteristics for lar-

gely different network architectures and CPU/GPU combinations. With viewports

sized 10242 the best performance is approximately 14 frames per second on our
AMD64 cluster with InfiniBand.

To increase this upper limit an exact calculation of the footprints instead of using

a bounding box could be helpful. Doing so avoids the remaining unnecessary blend-

ing operations and further reduces communication costs. In case of time-dependent

data sets the performance is additionally bound by the decompression step because

the performed caching of decompressed blocks cannot be used in this context.

Future acceleration techniques of time-dependent data could be based on the coher-

ence between time steps.
Appendix A. Blending using MMX operations on AMD64

The following code performs the operation r = a + ((1 � aalpha)*b)/255 for two

pairs of pixels simultaneously. It uses 128-bit registers as found on recent AMD64

hardware. The code is written in the GNU Compiler Collection�s (GCC) ‘‘extended
assembly’’ notation, which means the operands are in AT&T syntax. %0, %1 and %2
are (r, r 0), (a, a 0) and (b,b 0), respectively. Each parameter is 64 bit in size, storing two

non-interleaved RGBA pixels.



M. Strengert et al. / Parallel Computing 31 (2005) 205–219 219
References
[1] M. Strengert, M. Magallón, D. Weiskopf, S. Guthe, T. Ertl, Hierarchical visualization and

compression of large volume datasets using GPU clusters, in: Eurographics Symposium on Parallel

Graphics and Visualization (EGPGV04), Eurographics Association, 2004, pp. 41–48.

[2] S. Guthe, M. Wand, J. Gonser, W. Strasser, Interactive rendering of large volume data sets, in:

Proceedings of the Conference on Visualization �02, 2002, pp. 53–60.
[3] C. Wang, J. Gao, H.-W. Shen, Parallel multiresolution volume rendering of large data sets with error-

guided load balancing, in: Eurographics Symposium on Parallel Graphics and Visualization

(EGPGV04), Eurographics Association, 2004, pp. 23–30.

[4] A.P.D. Binotto, J.L.D. Comba, C.M.D. Freitas, Real-time volume rendering of time-varying data

using a fragment-shader compression approach, in: IEEE Symposium on Parallel and Large-Data

Visualization and Graphics, 2003, p. 10.

[5] G.G. Rosa, E.B. Lum, K.-L. Ma, K. Ono, An interactive volume visualization system for transient

flow analysis, in: Proceedings of the 2003 Eurographics/IEEE TVCGWorkshop on Volume graphics,

2003, pp. 137–144.

[6] E.B. Lum, K.-L. Ma, J. Clyne, A hardware-assisted scalable solution for interactive volume rendering

of time-varying data, IEEE Transactions on Visualization and Computer Graphics 8 (3) (2002)

286–301.

[7] A. Stompel, K.-L. Ma, E.B. Lum, J.P. Ahrens, J. Patchett, SLIC: scheduled linear image compositing

for parallel volume rendering, in: IEEE Symposium on Parallel and Large-Data Visualization and

Graphics, 2003, pp. 33–40.

[8] S. Molnar, M. Cox, D. Ellsworth, H. Fuchs, A sorting classification of parallel rendering, IEEE

Computer Graphics and Applications 14 (4) (1994) 23–32.

[9] M. Magallón, M. Hopf, T. Ertl, Parallel volume rendering using PC graphics hardware, in: Pacific

Graphics, 2001, pp. 384–389.

[10] B. Cabral, N. Cam, J. Foran, Accelerated volume rendering and tomographic reconstruction using

texture mapping hardware, in: Proceedings of the 1994 Symposium on Volume Visualization, 1994,

pp. 91–98.

[11] T. Cullip, U. Neumann, Accelerating volume reconstruction with 3d texture mapping hardware,

Tech. Rep. TR93-027, Department of Computer Science at the University of North Carolina, Chapel

Hill, 1993.

[12] U. Neumann, Parallel volume rendering algorithm performance on mesh-connected multicomputers,

in: IEEE/SIGGRAPH Parallel Rendering Symposium, 1993, pp. 97–104.

[13] A. Peleg, U. Weiser, MMX technology extension to the Intel architecture, IEEE Micro 16 (4) (1996)

42–50.

[14] S. Guthe, W. Strasser, Real-time decompression and visualization of animated volume data, in:

Proceedings of the Conference on Visualization �01, 2001, pp. 349–356.
[15] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, T. Ertl, Level-of-detail volume rendering via

3D textures, in: Volume Visualization and Graphics Symposium 2000, 2000, pp. 7–13.

[16] PC Cluster Consortium, Web page: http://www.pccluster.org/.

[17] LAM/MPI Parallel Computing, Web page: http://www.lam-mpi.org/.

[18] The National Library of Medicine�s Visible Human Project, Web page: www.nlm.nih.gov/research/
visible/.

http://www.pccluster.org/
http://www.lam-mpi.org/
http://www.nlm.nih.gov/research/visible/
http://www.nlm.nih.gov/research/visible/

	Large volume visualization of compressed time-dependent datasets on GPU clusters
	Introduction
	Previous work
	Distributed visualization
	Accelerated compositing scheme
	Hierarchical compression and adaptive rendering
	Single-GPU wavelet compression
	Extension to parallel rendering

	Implementation and results
	Conclusion and future work
	Blending using MMX operations on AMD64
	References


