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Abstract. Many papers on parallel random permutation algorithms assume the
input size n to be a power of two and imply that these algorithms can be easily
generalized to arbitrary n, e.g., by padding the input array to a power of two.
We show that this simplifying assumption is not necessarily correct since it may
result in a bias (i.e., not all possible permutations are generated with equal likeli-
hood). Many of these algorithms are, however, consistent, i.e., iterating them ul-
timately converges against an unbiased permutation. We prove this convergence
along with proving exponential convergence speed. Furthermore, we present an
analysis of iterating applied to a butterfly permutation network, which works in-
place and is well-suited for implementation on many-core systems such as GPUs.
We also show a method that improves the convergence speed even further and
yields a practical implementation of the permutation network on current GPUs.
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1 Introduction

Parallel generation of random permutations is an important building block in parallel
algorithms. It can, e.g., be used to perturb the input of a subsequent algorithm in order to
make worst-case behavior unlikely [3]]. It is also useful in statistical applications where
a sufficient number of sample permutations is generated in order to draw conclusions
about every possible input order. This is, e.g., the most important step in the bootstrap-
ping procedure often applied in statistical science and modeling [[16J17], in particular
in bioinformatical phylogenetic reconstruction [14/7]].

Divide and conquer is a commonly used design paradigm. With this paradigm, it is
convenient to assume that the input array size n is a power of two. This assumption is
frequently used (e.g., in [1515]) to simplify the notation of the algorithm or its proof of
unbiasedness, without pointing out an unbiased method for generalization to arbitrary
n. In this paper we argue that this simplification may be too strong and inadmissible.

We demonstrate a butterfly style [10, Sec. 3.2] permutation network, that is well-
suited for parallelization on a many-core machine with lots of processing elements (i.e.,
a number close to the problem size). If this algorithm is generalized to arrays, whose
size is not a power of two, the algorithm does not generate all possible permutations
with equal likelihood. As this algorithm and its method of generalization to arbitrary n
is not pathological but seems rather natural, this issue needs to be resolved.
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Our main contribution is to demonstrate and resolve this issue by showing that iterative
application of any permutation algorithm, whose corresponding permutation matrix is
positive, converges against an unbiased permutation, i.e., the algorithm is consistent.
Furthermore we show that with an increasing number of iterations the bias diminishes
exponentially. We present a method for improving the convergence behavior of the but-
terfly network even further and demonstrate a GPU implementation that is competitive
to or even faster than a highly optimized state-of-the-art GPU algorithm.

2 Related Work

Most random permutation algorithms belong to one of five categories listed below, the
first four of which are described and analyzed by Cong and Bader [3].

Rand _Sort assigns a random key to every value, and sorts the array in parallel ac-
cording to these keys. Hagerup [[6] gives a sorting based algorithm that runs in O(log n)
with n processing elements and O(n) space. The approach’s general drawback is, how-
ever, that by construction the array is effectively doubled in size due to the sorting keys.

Rand_Dart randomly maps elements into an array of size kn with £ > 1 (e.g.,
k = 2 [3]) and compacts the resulting array. There are two obvious drawbacks: First,
space consumption is kn, and second, memory conflicts need to be resolved. This can
be done by using memory locks and either re-throwing “darts” that had a collision into
the same “dart board” until they find an empty cell or by throwing them onto a new
“board” of smaller size.

Rand_Shuffle is essentially a parallel version of Knuth’s sequential algorithm [8|
Sec. 3.4.2]. Memory conflicts need to be resolved by sequentializing conflicting mem-
ory access. Anderson [[1] analyzes this algorithm for machines with a small number of
processing elements. For an increasing number of processing elements the likelihood of
memory conflicts increases drastically, especially if the number of processing elements
is of the same order as the problem size. Hagerup [6] gives a variant of this algorithm
which runs in O(logn) and uses n processing elements, but requires O(n?) space.

Rand_Dist assigns each of the p processing elements a subset of n/p elements. Each
processing element then sends all of its elements to random processing elements and
sequentially permutes the elements it received. Afterwards all subsets are simply con-
catenated. Cong and Bader [3] show empirically that for small numbers of processing
elements and in the presence of fast random number generators Rand_Dist can outper-
form other algorithms. However, if p is close to n the algorithm’s work is mostly about
redistributing the elements among the processing elements and load-balancing the work
among all processing elements (i.e., ensuring that every processing element receives the
same amount of work) must be traded off against implementing the algorithm in-place.

Permutation Networks: Knuth [9, Sec. 5.3.4] points out that sorting networks can be
turned into permutation networks by replacing their comparers with random exchang-
ers. Waksman [[15] gives a network with size O(n logn) and time O(logn).

Most of the above approaches suffer from several shortcomings. If they are imple-
mented on a system whose number of processing elements is of the same order as the
problem size (e.g., many-core systems like GPUs), they either do not work in-place or
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Fig. 1. Recursive construction scheme of the butterfly Fig. 2. Network for n = 5. Omitted
permutation network permutations are marked dotted red.

require too much synchronization or contention resolving like memory locks. Only per-
mutation networks seem suitable in this setting. In a permutation network each of the
random exchanges, that happen in parallel in one layer of the network, can be done by
one of the processing elements. This form of parallelization is extremely fine-grained,
which makes it very suitable for GPU implementation. Also, the memory access pattern
is determined only by the network structure and not by the result of previous computa-
tions. Therefore, it is guaranteed that no two processing elements try to access the same
memory address at the same time and no contention resolving mechanism is needed.

3 A Critical Analysis of the Butterfly Permutation Network

Our algorithm is based on the butterfly network [[10, Sec. 3.2]. Given an input array with
size n = 2™ (m € Np), it recursively divides the input into two subarrays until a single
element is left, permutes the subarrays, and combines them by randomly exchanging
element ¢ with element i + & forall i € {1, ..., &} (see Fig. . This network has depth
log, 1 and size § logy n. It can be executed in parallel using p = n/2 processing ele-
ments, requires no memory locks and only log, n thread synchronizations. Compared
to Knuth’s sequential shuffling [8] the speed-up is in O(p/logn) and the efficiency is
in O(1/logn). An important property of this algorithm is, that it works in-place (in
contrast to many other algorithms, see Sec. [2). This simplifies the implementation on
modern many-core systems such as GPUs, which typically have very limited shared
memory with fast access.

In the following we will first prove that, if n is a power of two, the butterfly net-
work permutes unbiased, i.e., that the probability for an element from a certain origin
to be placed at a certain destination is equal for all origin/destination combinations.
Afterwards we demonstrate that this is not the case for arbitrary array sizes.

3.1 Unbiasedness for n = 2™

A random permutation algorithm works on an array of n elements. p;; is the probability
that, after a certain number of steps, element j of the original array can be found at

position i. The matrix M,, = [ps;], ., i<n contains all such pairwise probabilities. An



algorithm is unbiased if p;; = 1/n Vi, j after the algorithm’s termination. We show that
our algorithm is unbiased for all n = 2™ using induction over m.

Base case: For m = 0, i.e., n = 1 the algorithm terminates immediately. Since : = j =
1, M,, = [p1.1] = [1] = [1/n] holds, which is obviously unbiased.

Induction step: The induction hypothesis is, that after (log,n) — 1 steps the array
is composed of two equally sized subarrays, both of which are permuted unbiasedly
themselves. Hence, we are concerned with the following matrix:

2/n ... 2/n 0 .. O
Mpartlal = 0 ... 0 2/n..2/n

In the log, n-th step, the algorithm exchanges element ¢ and ¢ + n/2 with probability
1/2. It follows that in the final matrix M,, the rows i and i 4 5, fori € {1,..., 5}, are
the arithmetic mean of the corresponding rows from M. tial:

M,.]; = [Ma];y 2 =1/2([2/n,...,2/n,0,...,0] + [0,...,0,2/n, ...,2/n])
=1[1/n,...,1/n] O

3.2 Biasforn # 2™

If n is not a power of two, two methods for generalizing the algorithm come to mind:

The first is to pad the array to the next larger power of two, do the permutation,
and remove the padding in any way that preserves the relative order of the non-padding
data, e.g., by using parallel prefix-sum [2f]. In fact, any compaction algorithm that does
not preserve the order could be used, but in that case the compaction algorithm would
qualify as permutation and would thus need to be analyzed as well.

On close inspection padding proves to be biased. Via simulations with 107 indepen-
dent runs we obtained the following matrices for n € {3, 5}, which are clearly biased:

0.191 0.191 0.191 0.191 0.235

Manersonss ~ [ 8320908 Munermes = | (31 LA AR 0TS
butterf.&pad.,3 ™ | 1515 312 0375 butterf.&pad.,5 ™ | 303 503 0,203 0,203 0.188
0.192 0.191 0,191 0,192 0.234

One might argue that the butterfly network with padding is pathological, but in fact
this happens in other algorithms as well: If padding is used in Waksman’s permutation
network [15]], (using 107 independent simulations) we can see the exact same effect:

0.191 0.191 0.191 0.191 0.234

M ~ | 038 0t 0550 | M ~ | 0393 0511 0313 0511 0156
Waksman&pad.,3 ™| (513 5313 0375 Waksman&pad.,5 ™ | 5563 (503 0'203 0.203 0.187
0.191 0.191 0.192 0.191 0.234

The second method to generalize the butterfly network for arbitrary n is to simply
use the network for the next larger power of two and omit the network’s exchanges
that involve non-existing array elements. An example with n = 5 can be seen in Fig.
where non-existing elements and omitted exchanges are marked in red. Using this
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Fig. 3. Bias B(M.,,*) for n < 1024 after k = 1 Fig. 4. Second largest eigenvalues Az of M, for
to 6 rounds of the iterating approach n <1024

method some elements in the network do not have a corresponding element they could
be exchanged with, which in turn leads to a bias. E.g., for n = 5 we can see that the
corresponding matrix is not equal to the unbiased permutation matrix:

10000 1/21/2 0 0 0 1/41/41/41/40 1/81/81/81/81/2
01000 1/21/2 0 0 0 1/41/41/41/40 1/41/41/41/4 0
00100(—| 0 0 1/21/20| —|1/41/41/41/40|—|1/41/41/41/4 0 |=M;
990489 0 0 1/21/20 1/41/41/41/4 0 1/41/41/41/4 0

0 0 0 01 0 0 0 01 1/81/81/8 1/8 1/2

The probability for an element j to end up at position ¢ is not uniformly distributed.
Especially, element 5 can only be exchanged in the last step of the butterfly network
and will thus end up at position 1 or 5.

Throughout the remainder of this paper the second generalization method will be
used, because it is faster than the first and preserves in-placeness.

To quantify bias, we define the following bias measure, that gives the relative de-
viation from a uniform random permutation matrix averaged over all matrix elements:

ii) =L

n 1 n 4=
n i,j

1 ’
The butterfly network’s bias is shown as a function of n in the topmost curve of Fig. [

4 Consistency

Since many applications deal with array sizes that are not a power of two, biased permu-
tations may lead to severe problems that are relevant in practice. We therefore show in
this section that a large group of algorithms including the butterfly network are consis-
tent even though they may be biased. An algorithm is consistent, if iterated application
reduces the bias and iterated ad infinitum the bias vanishes.

Formally, the matrices M described in the previous section are stochastic permu-
tation matrices. To obtain the matrix that results from applying an algorithm k times,
we raise its original matrix to the k-th power. Fig. displays the resulting bias B(M,F)
for k € {1,...,6} applications of the butterfly algorithm and a range of input sizes.



The figure suggests, that for k& — oo the bias converges against 0. In the following we
will prove that this is indeed the case for our algorithm and actually for the larger class
of all algorithms whose stochastic permutation matrix M is positive (m;; > 0 Vi, j)
and doubly (column and row) stochastic. Furthermore, we will demonstrate that the
butterfly network’s matrices are positive and doubly stochastic.

4.1 Convergence

To determine the bias for £ — oo, we examine the Markov chain that is associated with
the matrix M: If the Markov chain’s distribution converges against a uniform distri-
bution, the algorithm is consistent. Because M is row-stochastic, a vector describing a
uniform distribution is an eigenvector with corresponding eigenvalue 1:

M- (5 2) = (B muyen 2 ) = (2 2)'

Hence, the uniform distribution is a stable distribution in the Markov chain. Stability
does, however, not imply that the Markov chain converges against this distribution.

Using not only M’s row stochasticity but also column stochasticity and positive-
ness, the convergence can be shown using the Perron-Frobenius theorem [13/11]: It
states, that all positive matrices M have an eigenvalue r that satisfies the condition
min; Y jmig < 1 < max; > ; mij. For row stochastic matrices we obtain r = 1.
This Perron-Frobenius eigenvalue is a simple eigenvalue and strictly greater than all
other eigenvalues’ absolute values. r has a corresponding right eigenvector v and a left
eigenvector w. Because M is row stochastic,

1 L\T _ 1 1 T_ 21 1\T
M- (ﬁ”ﬁ) = (ﬁzjmlj,,ﬁzjm”]) = (%’,ﬁ)
holds, where (ﬁ, e ﬁ)T is a solution for v and (with analogous reasoning using
M’s column stochasticity) also for w. Then the Perron-Frobenius theorem states that
MF T 1/n ... 1/n
lim ~—— = lim M= =| . . . | O
koo TR koo wTv Un . 1jn

The constraint for M to be doubly stochastic is not a real constraint, because every per-
mutation algorithm’s matrix is doubly stochastic. In the permutation process elements
must not be lost and no new elements may be inserted into the list, hence each row and
each column must sum to 1.

Therefore, any random permutation algorithm is consistent, if the probability for
any element ¢ to be moved to position j is positive.

The butterfly network’s probability matrices are also doubly stochastic, but not
positive, as some entries are 0. We can, however, show that Mn2 is always posi-
tive. In the following, the “>“-relation on matrices denotes element-wise comparisons:
A > B <= a;; > by Vi,j. The algorithm’s matrices contain entries greater than 0
in at least the first row and the first column (proof is omitted). It follows that

mi1 Mi2 ... Min mi1 ... Min Mi1-M11 ... M11-Min

moi 0 .. 0 ma1 0.0 0 .. 0
M, %> e >[ S N IS : : >0
0 0 0

m‘nl 0 mp1 0 ... 0 Mp1 M1l .. Mp1-Min



for positive my1, ..., M1y, Ma1, ..., My1. Because M,.? is positive, klim (Mn2)k is
s — OO

the uniform distribution matrix.

4.2 Convergence Speed

For algorithms with positive permutation matrices IM the convergence speed can be
shown as well:
1 1

Let U be the uniform distribution matrix, u = (—=, ..., ﬁ)T, V = (v1,...,v,) be the

matrix of M’s eigenvectors, and V™1 = W = (wy, ..., w,,)7 be its inverse. Further-
more we assume that M’s eigenvalues \; are in decreasing order. For positive, doubly
stochastic matrices the Perron-Frobenius theorem ensures that 1 = r = A\ > |\ VI €
{2,...,n} and v; = wT = u. By eigendecomposing M¥, we obtain

IMF —U| = ||111)\’fw1 + ot v W, —u- 1 uTH

= ||lu- 1% uT + v Xswy + .+ o A Ew, — w1 T

< DIl < Pef* Y lowll € O(1X2]F)

=2 =2

Note, that ||v;w;|| only depends on M but not on k. Using |A2| < 1, it follows that
|[MP* — U]|| decreases exponentially with k. [

Since we used no assumptions besides positiveness and double stochasticity, the
exponential convergence applies to all random permutation algorithms with positive
permutation matrices.

Fig. @ shows all A, of the butterfly network’s M,, for n = 2,...,1024. The graph
displays a periodical behavior. The maximum values in each (2™, 2™ *!)-interval con-
verge against 0.5. We note, that the local maxima can be found at n = 2™ 4 1. This
is in agreement with the fact that the maxima in every (2™,2™*!)-interval in Fig.
are further to the left for larger k. Further analysis showed that for much larger £ (e.g.,
k = 51) the bias maxima are indeed located at n = 2™ + 1.

5 Improvement for the Butterfly Permutation Network

Even though iterating reduces the butterfly network’s bias exponentially, it can still be
improved by using shifting, i.e., the repeated application of the algorithm is interleaved
with circular shifting of the data using some shifting offset . Circular shifting moves
any element i of an array to position (i + ) mod n. The underlying idea is to choose
[ such that array positions with a big bias are shifted to positions with a smaller bias.
For Myif,; being a regular, non-stochastic permutation matrix that circularly shifts by
[ positions we obtain the combined permutation matrix (Mgnif; - M,,)*.

Fig. [5 displays the bias for two array sizes and various shifting offsets. The graph
for n = 304 reveals a global minimum for a shifting offset of 229 where the bias’ mag-
nitude is reduced to 1.8% of the bias without shifting (I = 0). The graph for n = 400
demonstrates that the bias can even exceed the bias without shifting. E.g., if we shift
with an offset of 112, the bias is 3.4 times larger than without shifting. Comparing the
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graphs for the two different choices of n shows large differences in the bias’ overall be-
havior. Therefore, [ needs to be carefully selected for each n to achieve optimal results.

Optimal shifting offset We empirically determined optimal shifting offsets for a range
of array sizes by analyzing the permutation matrices (Mgpir,- M, )* for k = 3 and 4 (see
Fig.[7). Note, that the optimal shifting offset is slightly different for different choices of
k. The optimal offset can be precomputed at programming time for any combination of
k and n. Using these optimal offsets, we obtained the bias graph for k = 3 as shown in
Fig.[8] which shows a clear improvement over the basic algorithm without shifting.

Convergence of Shifting The convergence arguments detailed in Sec. ] also apply for
the algorithm’s shifting extension, since (Mgpig; - M,,)? is also positive. Furthermore,
the convergence improvement by shifting is in agreement with the measure used for the
convergence behavior: Fig. [6] shows a strong correlation between the A, and the bias of
M, - Mg for various shifting offsets. This shows, first, that the theoretically derived
measure is valid in a practical application and second, that the bias (and thus the optimal
shifting offset) can be predicted by looking at the second eigenvalues.
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6 Experimental Results

To demonstrate the butterfly network’s speed and suitability for many-core systems we
implemented our algorithm on GPUs using NVIDIA’s CUDA framework [12]]. Fig. [9]
shows the runtime for performing array permutations with sizes up to n = 6000 and k =
1,...,5 iterations with optimal shifting. Each array was permuted by a single CUDA
thread block and stored in shared memory. All experiments were run on a GeForce
GTX 480. The implementation is not limited to n = 6000 but can permute arrays of up
to 12,288 4-byte or 49,152 1-byte values. 49,152 byte is the maximum shared memory
that can be used by one thread block on current NVIDIA GPUs.

For comparison, we also implemented a second algorithm based on the Rand_Sort
approach using radix sort for sorting. Rand_Sort is known to be unbiased but cannot
be implemented in-place since random sorting keys need to be stored for each array
element. We used the radix sort implementation from the CUDPP library [4], which
requires array sizes smaller than 4096. This is not a fundamental limitation but merely
an implementation issue. The CUDPP code is highly optimized and can therefore legit-
imately be regarded as suitable state-of-the-art performance reference.

Fig. [0 shows that the butterfly network with & = 3 and optimal shifting is about as
fast as the reference approach while requiring less memory due to being in-place. If a
higher bias is acceptable, using k¥ = 2 or 1 (which does not perform shifting since M,,
is applied only once) yields significant speedups of roughly 1.5 and 3, respectively.

7 Conclusions and Future Work

We showed that not all random permutation algorithms can be easily generalized for
n that are not a power of two without introducing some bias. We proved that any al-
gorithm, whose corresponding stochastic permutation matrix is positive, is nevertheless
consistent, i.e., iterative application reduces the bias at an exponential rate. We also gave
a specific example of a biased algorithm, the butterfly network, whose convergence be-
havior is further improved by shifting with carefully chosen shifting offsets. Because



the butterfly network is well-suited for implementation on a GPU (due to enabling fine-
grained parallelism, needing few thread synchronizations and no contention resolving
scheme), we implemented it on a current GPU and it proved to be competitive to or
even faster than another highly optimized algorithm well suited for GPUs.

Further analysis needs to be done on more involved shifting strategies: In this pa-
per we determined an optimal offset [ as a function of n. There is room for further
improvement, e.g., by applying varying shifting offsets after each iteration. This would
require intensive pre-computations of lookup-tables for all n and &, which is beyond
the scope of this work. Also, it would be interesting to analyze whether or not shifting
can improve the convergence of other algorithms as well.
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