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ABSTRACT

We present a massively-parallel implementation of the com-
putation of (co)evolutionary signals from biomolecular se-
quence alignments based on mutual information (MI) and
a normalization procedure to neutral evolution. The MI is
computed for two- and three-point correlations within any
multiple-sequence alignment. The high computational de-
mand in the normalization procedure is efficiently met by an
implementation on Graphics Processing Units (GPUs) using
NVIDIA’s CUDA framework. GPU computation serves as
an enabling technology here insofar as MI normalization is
also possible using traditional computational methods [11]
but only GPU computation makes MI normalization for se-
quence analysis feasible in a statistically sufficient sample
and in acceptable time. In particular, the normalization of
the MI for three-point ’cliques’ of amino acids or nucleotides
requires large sampling numbers in the normalization, that
can only be achieved using GPUs.

We illustrate a) the computational efficiency and b) the bi-
ological usefulness of two- and three-point MI by an appli-
cation to the well-known protein calmodulin. Here, we find
striking coevolutionary patterns and distinct information on
the molecular evolution of this molecule.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming; J.3 [Life and Medical Sci-
ences|: Biology and genetics
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1. INTRODUCTION

In the post-genome era sequence information is ubiqui-
tous. Large data sets allow the efficient analysis of (co)evo-
lutionary signatures in biomolecules [8, 5, 19], in particular.
Such signatures are frequently detected based on the mutual
information (MI) from multiple sequence alignments (MSA)
of protein or nucleotide sequences. The MI directly reflects
the information one position in an MSA contains about an-
other position. However, the high diversity of conservation
among the positions in MSAs and finite-size effects in the un-
derlying data sets need to be addressed. Mainly, two routes
are taken:

e by ’analytic’ normalization, such as the average pro-
duct correction (APC), the average sum correction
(ASC) [6], or the row-column weighting scheme [7] or

e by [9, 26] 'computational normalization’, e.g. via Z-
scores to a computational model of neutral evolution in
which columns are shuffled randomly to destroy spuri-

ous correlations.
The latter approach induces substantial computational work

that can be efficiently dealt with in parallel using Graphics
Processing Units (GPUs). A massively-parallel GPU im-
plementation puts the tremendous computational power of
modern GPUs into use and lets us benefit from the expected
future increases in the degree of parallelism in many-core
systems [2].

1.1 Related Work

While general MI computations have been implemented
on GPUs before [22, 23|, the above mentioned normaliza-
tion has not been done for coevolutionary biosequence anal-
ysis: Shi et. al. [23] used MI for a bioinformatics application.



They investigated generalized correlations in the molecu-
lar concentrations of intracellular networks, eventually us-
ing fitted kernel techniques to compute MI for real-valued
variables, such as concentrations. Furthermore, Shams and
Barnes [22] computed MI on images for image comparison.
All these studies, however, focused the GPU usage on com-
puting MI, but not on the normalization of such MI to a
null-model, which is, however, generally the computation-
ally most expensive part of an MI study. Furthermore, se-
quence data sets tend to be larger than other data sets (e.g.,
expression patterns) and almost always need to be normal-
ized because the local Shannon entropies in the residues at
a particular site differ by orders of magnitude.

1.2 Our Contribution

Even though the MI computation procedure from one ap-
plication could in theory be adapted to work on another ap-
plication as well, the strong constraints massively-parallel
architectures like GPUs impose onto the implementation
(e.g., very small caches compared to CPUs or the need for
control flow to be coherent among threads in a SIMD fash-
ion) make it necessary to design the algorithm from the very
beginning for a specific application and to incorporate the
characteristics of the problem at hand into the implementa-
tion’s fine-tuning in order to achieve maximum performance.
In our case this has been done for the specific application
of histogram-based MI computation on protein or DNA se-
quences where the number of histogram buckets is compara-
tively small while on the other hand the whole MI computa-
tion needs to be done a huge number of times (in the order
of 10'° or more for large data sets).

The main contribution of our implementation is the reduc-
tion of computation time to the point where MI computation
on protein sequences using a computational normalization
model with a statistically sufficient number of iterations is
usable for practically relevant MSA sizes. Even the compu-
tation of three-dimensional mutual information on moder-
ately sized MSAs becomes feasible, potentially paving the
way for new research methods: A previously held belief in
molecular evolution literature states that typically there is
not enough sequence data available to legitimate the use of
3-point MI [25]; however, this problem can be solved with
our null model of Sec. 2.2 and our present GPU implementa-
tion that addresses the high computational demand of such
sampling-based null models.

This paper is organized as follows: In Sec. 2 basic con-
cepts are introduced. Sec. 3 details our GPU implementa-
tion. Sec. 4 and 5 evaluate the software, first from an algo-
rithmic (i.e., speed and numerical stability) and then from a
bioinformatics perspective. Sec. 6 concludes and points out
future work.

2. CENTRAL CONCEPTS

This section introduces central concepts such as mutual
information or the shuffling null-model, that define our prob-
lem and are needed throughout the rest of the paper.

2.1 Mutual Information

The mutual information (MI) on an MSA is defined for
amino acid positions ¢ and j by [17]:

ML := > pij(a,b)log, <IM> (1)

T i(a) p;(b)

where 4,7 € [1; L] identify the amino acid positions, A is
the set of symbols (amino acids, nucleotides) at the re-
spective positions and p;;, p;, p; are the two- and one-point
probabilities’ to observe a particular amino acid (pairing).
MI;; reflects the generalized information between the two
columns (4,7) in the MSA. Rewriting the MI [18], one ob-
serves MI;; = H; + H; — H;;, where H, are the traditional
Shannon entropies H of the single columns i and j, as well
as the Shannon entropy of the joint probability distribution
for (i, 7).

This observation allows us to extend the notion to higher
correlation functions, such as a three-column mutual infor-
mation as

MLk, = Hi+ Hj+ Hix — Hiji
Pijk(a, b, ¢) )
= iik(a, b, c)lo 2
|2 parlabolos (ot ) @

M1, applied to an MSA reflects then the coevolution among
a '3-clique’ of amino acid positions.

2.2 Null-Model

The overall magnitude or scale of the signal one can ob-
serve in the mutual information values of Egs. 1 and 2 is
largely determined by the single-column entropies H;, Hj,
and Hy, respectively. To normalize to a shared reference
scale for all columns in an MSA regardless of the single col-
umn entropies H;, a null model of neutral evolution was
suggested [9, 11]. Here, one shuffles the columns ¢, j (and
k) independently niter times, recomputes the 1\“4’11-]- or mijk
after - each shl@ing, and derives an empirical distribution for
the MI;; or MI;ji, values of the shufled MSAs. The shuf-
fling destroys residual correlations, expressed in the H;; and
H;j, between the MSA columns, while maintaining the in-
dividual column entropies H;, H;, and Hj. Assessing the
“background noise” and finite-size effects in real-world data
[3] suggested that the scaling law of this statistical effect is

O (nizelr/ 2).

From the empirical distributions of the mij or I\TL-]-;C we
can derive two major values to compare MI;; with MI,
for different pairs (i,) and (i, '), or ML, with MLy /s,
respectively: the Z-scores Z;; and Z;j;, and the percentiles
cij and ¢, of MI;; with respect to 1\7ﬁij or of Ml with
respect to I\ﬁuk Here, c;; is defined as the fraction of shuf-
fled 1\7[/1” smaller than the MI;; for the original MSA. Thus,
a value of ¢;; = 1 indicates that all shuffled columns (4, 5)
showed a smaller MI than the original one, indicating a sig-
nificant coevoultion on the background of neutral evolution.
Note, that the same definition holds for ¢;jy.

Furthermore, for the Z-score normalization with

7z, = M- (ML) 3)

- (41,

we need to compute two expectation values: the average of

the ’shuffled” MI (MI;;) and its variance o (Mlij). Using
—~ 2 —~ 2 —

the trick’ o (MI;;) = (ML) — (MI;;)? (with (....) denot-

ing expectation values) we can do this in linear time within

constant memory with respect to the number of sequences in

Lempirically obtained from histograms as relative counts



the MSA. If the percentiles ¢;; or ¢;;; need to be computed,
this is done in a separate step.

2.3 Diagonal Entries in MI Tensors as Refer-
ence
The ObjeCtS MIij, Zij, MIijk, and Zijk are 2- and 3-dimen-
sional tensor527 respectively. The diagonal elements MI;;
and MI;;; serve as a reference for the underlying sequence
Shannon entropy, which follows from the definitions in Egs. 1
and 2:

Ml; = H;+H; — Hy
-~
—H,;
= 2H; — H;
= H (4)
Mli;; = H;+ H;+ H; — Hiy
-
=H;
= 3H; — H;
= 2H; (5)

These entries are therefore a reference on the (local) se-
quence variability of an MSA. In fact, the aforementioned
analytic normalization procedures [6, 7] make heavy use of
this property. Furthermore, the respective diagonal entries
of the Z tensors vanish altogether due to the implemented
null model of shuffled MSA columns, which maintain the
column-wise entropies H; (see Sec. 2.2).

This property of MI;;, Zij, Mk, and Z;;, will be used to
discuss and gauge the relation between the two- and three-
point MI analysis below.

3. IMPLEMENTATION

In this section the computation process is mostly described
for the case of two-point MI. Three-point MI computation
works analogously with one more dimension (e.g., the ma-
trices being computed are not matrices but general tensors).
Also, it is first described for the sequential single-core case
and then the parallelization scheme is pointed out.

3.1 Sequential Version

The computation process consists of two major parts: In
the first step (see Listing 1) the MI matrix, which contains
the MI;; values for every combination of MSA column pairs %
and j, is computed according to Eq. 1. Note, that it suffices
to compute the matrix’ lower triangle (or one sixth of the
whole tensor in case of 3-point MI), because the matrix is
symmetric (from Eq. 1 follows that ML; = MI;;). Also
note, that the one-point probabilities p;(z) are precomputed
for all columns ¢ and characters x. This computation is
linear in the number of columns as opposed to the quadratic
complexity of the MI matrix computation. The p;(x) are
then stored in the sequence alignment data structure and
accessed via MSA.getOnePointProbability(...).

In the second step (see Listing 2) the ((MI;;)) and the

(<1\TI,2]>) matrix, which are needed for normalizing the MI
(see Eq. 3), are computed. This is done by alternately shuf-
fling all columns in the MSA independently (e.g., by using
a Knuth’s shuffling [14, Sec. 3.4.2] on all elements of the

2Note, that a two-dimensional tensor is identified with a
traditional matrix here.

float computeMI(SequenceAlignm& MSA, int i, int j) {
int histogramALPHABETSIZE|[ALPHABETSIZE];
memset(histogram, 0, sizeof(twoOrThreePointOccs));
// fill with 0Os
for each sequence in MSA
histogram|[MSA.getChar(sequence, i)][MSA.getChar(
sequence, j)|++;
float MI = 0;
for each x in alphabet {
float p_i x = MSA.getOnePointProbability(x, i);
if (p-ix < EPSILON) continue;
for each y in alphabet {
float p_j.y = MSA.getOnePointProbability(y, j);
if (p_j.y < EPSILON) continue;
float p_ij xy = float(histogram[x|[y]) / float(
numberOfSequences);
MI += p-ijxy * log2(p-ijxy / (p-ix * pj-y));

}

return MI;

}

void computeMIMatrix(SequenceAlignm& MSA, Matrix&
MI) {
for each column i in MSA
for each column j >=1iin MSA
MI.set(i, j, computeMI(MSA, i, j);

}

Listing 1: Sequential computation of the MI matrix

void computeEMIMatrices(SequenceAlignm& MSA,
Matrix& EMI, Matrix& EMI2) {
for it = 1 to numlterations
for each column i in MSA
MSA randomlyPermuteAllElementsInColumn(i);
for each column i in MSA
for each column j >=1iin MSA
float MI = computeMI(MSA, i, j);
EMLset(i, j, EMLget(i, j) + MI);
EMI2.set(i, j, EMI2.get(i, j) + MIxMI);
EMI.divideEveryElementBy (numlIterations);
EMI2.divideEveryElementBy (numlterations);

Listing 2: Sequential computation of the ((1\7[/1”)) and
the ((1\7{“12)) matrix

respective column) and then computing the MI on the shuf-
fled MSA. Again it is sufficient to compute the matrices’
lower triangle. Also, the p;(z) can be precomputed once
before the whole shuffling null-model computation, because
shuffling a column does not change its one-point character
distribution. The whole process of shuffling and MI com-
putation is repeated for a statistically sufficient number of
times, typically around 10,000 iterations.

3.2 Parallelization

The nested loops in the sequential code (iteration over
all ¢, j, = and y) reveal a lot of potential for paralleliza-
tion: Each matrix entry can be computed independently of

—~ —~ 2

all others and as the ((MLj;)) and ((MI;;)) matrices are
typically very large (their size is quadratic in the MSA’s se-
quence length L) there is enough inherent parallelism for not
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Figure 1: The matrices to be computed are subdi-
vided into submatrices of Ai- Aj elements and the
content of each submatrix is computed by one block
of k- Ai-Aj threads.

only parallelizing it on a multi-core system but rather on a

many-core system capable of running hundreds of thousands

of threads. ~
We parallelized the computation by dividing the ((MLJ>)

and the ((1\7[/1123)) matrix into small submatrices of A7 - Aj
elements and assigning the computation of each submatrix
to one CUDA block of threads [1], as can be seen in Fig. 1.
The reason for this subdivision is the following: Each thread
block computes Ai - Aj matrix entries, but for computing
these entries it only needs to access Ai+ Aj MSA columns.
As cache size is typically very limited in GPUs (currently
16 KB per block [1]), this subdivision is necessary to let the
accessed MSA columns fit completely into the cache.

Inside each submatrix, groups of k threads work together
on the computation of one matrix entry, leading to k- Ai-Aj
threads per block. This parallelization is extremely fine-
grained, as is necessary for efficient GPU computation.

At first sight the work on the main diagonal blocks seems
to be unbalanced, because not all entries in those blocks need
to be computed (white boxes in the main diagonal blocks in
Fig. 1), dooming some threads to idleness. We found this
to be negligible, mainly because the number of blocks on
the main diagonal is only linear in the sequence length L, as
opposed to the quadratic total number of blocks.

In order to compute one matrix entry, each group of k
threads builds a shared histogram with |.A|*> (]A| being the
size of the amino acid or nucleotide alphabet) entries to com-
pute the p;;(a,b) for Eq. 1. Usually one would use basic
integers for this histogram. Shared memory, that is local
to thread blocks and much faster accessible than the global
RAM, is almost as limited as memory cache (currently 48
KB per block [1]). Thus, in cases where we know that his-
togram entries will not exceed a certain limit using basic
integers seems wasteful. Therefore, we pack groups of up
to four histogram entries into one integer using bit-masking
and shifting. E.g., if the MSA at hand consists of 1023 or
less sequences, no histogram entry can exceed 1023, 10 bit
suffice for each entry and 3 entries can be packed into one
32 bit integer.

The compression factors as well as other parameters like
Ai and Aj are dependent on the problem size (the MSA’s
sequence length and number of sequences, but also whether
2-point or 3-point MI is to be computed or whether the
underlying alphabet is the amino acid or the nucleotide
alphabet). As standard C++ templating can be used in
CUDA kernels as well, we implemented all these parame-
ters as template parameters for the GPU kernel and tuned

each template parameter individually for each problem size.
Histogram compression in combination with templating re-
duced shared memory consumption and increased overall
performance considerably.

The shuffling, which is executed in alternation with the MI
computation, turned out to be very time-consuming as well.
Thus, we used a highly GPU suitable algorithm: the butter-
fly network [16, Sec. 3.2], which is usually used in network
routing or in Fast Fourier Transform (FFT), can be used
as a permutation network. Its topology fits the massively-
parallel architecture very well because it allows fine-grained
parallelism: Each of the parallel exchanges in the permuta-
tion network can be executed by a separate thread. Further-
more the memory access pattern is predefined and does not
depend on the outcome of previous computations. In [24] we
showed the butterfly network to be much faster than other
state-of-the-art algorithms and proved that it permutes un-
biased if implemented properly.

4. ALGORITHMIC EVALUATION

In this section the implementation is evaluated from an
algorithmic perspective. First (Sec. 4.1), it is shown that
the numerical error induced by the GPU implementation is
negligible because it is overshadowed by the noise inherent
to the shuffling null-model. Second (Sec. 4.2), the GPU
implementation’s speed-up compared to a CPU multi-core
version running on a current CPU is shown and discussed.

4.1 Numerical Stability

Fig. 2 a) compares the obtained (1\7{1”) and <1\7f1fj> values
for an MSA of HIV1-protease computed by a CPU refer-
ence implementation with the CUDA implementation. As
expected the differences diminish with an increasing number
of shuffling null-model iterations. For comparison, Fig. 2 b)
gives the difference of two independent CPU runs with dif-
ferent initial random seeds. The almost perfect similarity
to Fig. 2 a) shows, that the difference between CPU and
GPU is indistinguishable from the problem-inherent noise
imposed by the algorithm’s random nature and is thus un-
avoidable. The GPU-induced noise, that originates from a
different floating-point hardware implementation as well as
a different evaluation order of arithmetic expressions due to
the parallel algorithm, seems to be insignificant.

Additionally, we verified the implementation’s correctness
by a comparison with an independent package [11] written
by a different programmer in a different language (R and C)
and obtained similar results regarding numerical stability.

Another information that may be deduced from Fig. 2 a)
is the number of shuffling null-model iterations one approx-
imately needs to obtain sufficiently accurate results. In our
case 10,000 iterations seem to be sufficient. This is actu-
ally a large number — greater than the (resource restricted)
number of iterations frequently employed in previous studies
[27, 9] that relied on CPU implementations. This supports
our notion, that massively-parallel implementations such as
ours are needed to extend the information theoretical anal-
ysis of molecular evolution to the genome scale. We discuss
this property further in the next section.

4.2 Computational Efficiency

The massively-parallel implementation’s advantage is ob-
viously the reduction of wall clock time for computing the

full ((mlj>) and ((mi)) matrices for all (4,5) € [1...L]%
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Figure 2: Average relative difference between the matrices (<I\TLJ>) and ((1\712)) generated by a) the GPU
and the CPU implementation and b) two independent runs of the CPU implementation. Note the strong

similarity to the CPU-GPU comparison.

| niter | Core i7-960 @ 3.2 GHz, 4 threads | GeForce GTX 480 | relative speed-up |

calmodulin (753 sequences of length 264 aas), 2-point MI
10,000 | 12.7 min | 1.03 min | 12.3x
calmodulin (753 sequences of length 264 aas), 3-point MI
10,000 | 3.09 days 1.15 days | 2.7x
ribozymes (140 segs. of length 71 nts), 3-point MI
10,000 | 12.5 min 0.445 min | 28.1x

Table 1: Comparison of wall times between the CUDA implementation of the shuffling null-model of Eq. 3
and the equivalent CPU implementation, using all 4 CPU cores; lengths and alphabet sizes vary (aas—amino
acids — 22, nts=nucleotides — 6, including a gap character -’ and a not-known-character 'X’).

Wall clock time comparisons are shown in Table 1. For the
CPU timings the CPU code was parallelized to 4 threads
(the Core i7-960 has 4 physical cores) using OpenMP. 8
threads have been tried as well, but they turned out to be
slower than 4 threads.

As can be seen from Table 1 speed-ups compared to the
multi-core implementation are highly problem size depen-
dent and range from roughly 3 to more than 20.

There are multiple reasons for the problem size depen-
dent speed-up: First, if the number of sequences is high, the
maximum histogram entry, that can be expected, is large
and histogram compression can only safely be used with a
small compression factor or no compression at all (see his-
togram compression in Sec. 3.2), leading to increased shared
memory consumption. Also, if 3-point MI is to be computed,
the histogram’s size is |.A|2, which increases shared memory
consumption drastically.

Theoretically, each block of threads (see Fig. 1) has 48 KB of
fast shared memory available, but practically it is advisable
to use only a fraction of this, because this enables the GPU
scheduler to map multiple blocks onto one multiprocessor
and switch between blocks when one block is busy with wait-
ing for data from the memory [1]. If histogram compression
cannot be used (e.g., number of sequences > 216) or 3-point
is computed, this may not be possible anymore, significantly
reducing the GPU implementation’s performance.

Another issue are small data sets: If the sequence length is
very short, the number of blocks is small, which also makes
switching between blocks inside one multi-processor harder.
If the number of sequences is very short, the histogram gen-

eration itself, whose speed-up is almost linear in the number
of threads, is done very fast, which in turn makes other
parts with sublinear speed-up (e.g., parallel reduction that
sums over all z and all y in the MI formula, or the shuffling
process) more relevant in the overall timing.

The highest speed-up has been achieved for a nucleotide
data set, where the alphabet (and thus the histogram as
well) is considerably smaller. Also, caching during reading
the precomputed one-point probabilities p;(z) is much more
effective. This is not the standard case and the 12.3 speed-
up for the protein sequence set is more representative for
typical use cases.

Concerning speed-up we remark that, while the theoretic
peak performances (roughly 50 GFlops (depending on the
clock frequency) for the i7-960 and 1345 GFlops for the
GTX 480) allow a maximum speed-up of about 27 for re-
alistic, compute intensive (as opposed to memory-intensive)
applications such as the MI computation, the constraints
the hardware imposes onto the programmer (e.g., coher-
ence among concurrently running threads) only allow much
lower speed-ups [10, 15]. Our own experiments showed, that
even numerical NVIDIA code (namely the cublas project),
that can be regarded as highly optimized, runs at perfor-
mances much lower than the theoretical peak performance:
765 GFlops. Extremely high speed-ups need to be seen skep-
tical, as they are likely to result from sub-optimal CPU im-
plementations or implementation ’tricks’ that have been ex-
ploited on the GPU but not on the CPU (as has indeed
been done with the histogram compression, which is one of
the reasons for the high speed-up of the ribozyme file).



S. APPLICATION TO CALMODULIN

Calmodulin is a small, acid- and heat-stable protein which
consists of approximately 149 amino acid residues. Its se-
quence is highly conserved in all eukaryotes. Calmodulin
has no enzymatic activity on its own, but binds Ca?*-ions
through EF-hand motifs which leads to a conformational
change within the protein. Thereby, calmodulin can in-
teract and regulate a variety of proteins such as phospho-
diesterase, brain adenylate cyclase, myosin light chain ki-
nases, brain membrane kinases, calcineurin and nitric ox-
ide synthase. Furthermore, calmodulin is a multifunctional,
ubiquitous second messenger protein and plays an impor-
tant role as a mediator in many cell signaling pathways.
Due these biological functions and due to its broad interac-
tion specificity and the regulatory function in response to
intra-cellular Ca®*-concentration, we expect calmodulin to
be subject to distinct and complex selective pressures in its
molecular evolution in eukaryotes.

5.1 Data Preparation

A BLAST-search based on a sequence of a human calmod-
ulin (149 amino acids) was performed on the NCBI-Server®.
Approximately 1,206 sequences with an sufficiently low F-
value below 107%° were chosen and aligned in a multiple
sequence alignment using the alignment tool CLUSTAL-W.

We obtained an alignment with length 264 for the 1,206
sequences, which were manually curated to avoid duplica-
tions and other artifacts in the sequence data; resulting in a
final sequence set of 753 sequences.

5.2 Results for 2- and 3-point MlIs

First, using the visual analytics tool MatrixViz [4] we in-
vestigated the classical two-point MI of Eq. 1 for patterns
and connections of real MI values and the normalized Z-
scores.

Figure 3 shows the results for the two-point mutual in-
formation calculations and the normalization to Z-scores in
the null model of Section 2.2. Most importantly, we notice
a correspondence to the secondary structure of the protein,
in particular significant coevolution occurs at the N- and
C-terminus domains.

As previously observed [9], conserved residues induce
’stripes’ of low MI values in the 2D visualization. The ex-
tended region in the middle of the protein backbone stretch-
ing from residue numbers 40 to 110 corresponds to the ’con-
necting’ a-helix (compare Figure 6) This linker is rather con-
served as is obvious in the entropy shown in the lower portion
of Fig. 3 (b). Therefore, the coevolution of residues in this
isolated secondary structure is non-surprisingly rather low —
the helix is just maintained.

5.3 Are 3-Point MlIs Simple Constructs of 2-
Point MIs?

The 3-point MI;;; of Eq. 2 and its normalization to Z-
scores or percentiles may reveal more involved and complex
coevolution than the 2-point MI. Theoretically, the 3-point
MI;;, might be just given by the coevolution of pairs (4, j),
(4,k), or (i,k), alone. Or, in contrast, MI;;; might reveal
unique new insights beyond what one can deduce from the
2-point MI analysis of Sec. 5.2. Here, we show, that this is

3http://www.ncbi.nlm.nih.gov
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Figure 3: (a) color-coded Z values of Eq. 3 for the 264
positions in the MSA of calmodulin (blue=high val-
ues, red=low values of MI). (b) same as above, but
restricted to those resiudes present in the human
variant of calmodulin with L = 149 amino acids; we
also depict the secondary structure annotation (red
blocks=helices) of the pdb-file 2W73-B of calmod-
ulin; secondary structure information was obtained
using the software yasara [13]. Furthermore we indi-
cate the local sequence entropy H; for each position
i in the MSA, computed with the BioPhysConnectoR
package [11] implemented in R [21]. Pictures were
rendered and analyzed with the MatrixViz package
for (2d) MI analysis [4].



indeed the case and that the 3-point MI (and its normaliza-
tion by the null model) is an interesting object on its own.

In Fig. 4 we show a scatter plot of the MI values for the
three-amino-acid-clique (i, 7, k) and combinations of the re-
spective two-point MIs for the pairs (i,7), (¢, k), and (j, k)
constituting the clique (i, 7, k).

Using the relation of diagonal entries Ml;;; from Eq. 5, we
can immediately see that the straight line in Fig. 4 consists
of the diagonal entries of the two- and three-dimensional
tensors MI;; and MI; ;. This line can serve as a reference
of trivial and obvious correspondence of 2-point and 3-point
MIs for the special case of diagonal entries (i,14,1).

Fig. 4 (a) suggests that for some cliques (i, 7, k) the M1,
has a different behavior than the combination of the respec-
tive 2-point MIs. This suggests a potential contradiction to
previous assumptions [20] on the ’composability’ of MIs and
models on effective two-body interactions in intra-molecular
coevolution. Note, that it is not necessary to show two dis-
tinct clusters in Fig. 4, a bimodal distribution distinct from
the diagonal is already sufficient to disprove the above men-
tioned assumption on composability.

To investigate this further, we can now employ the compu-
tationally efficient normalization to the null model of neutral
evolution in our GPU implementation and obtain, e.g., the
percentiles ¢;; and c;j.

In Fig. 5 we show an analysis of these normalized val-
ues. In particular Fig. 5 (a) suggests a binary classifica-
tion of cliques (1,7, k): those for which c¢;;x is larger than
max (¢ij, Cik, ¢jk) and those for which the opposite holds.
For those cliques (4, j, k) of the first case we define the set C
as follows

C = {(4,4, k)| max (cij, cik, cjr) < cijr} (6)

Members of C are those 3-amino acid cliques for which there
is more coevolution among observable the three simultane-
ously than what one can maximally detect in any combina-
tion of two of them (i,7), (i,k), or (j, k). Thus, for those
cliques in C the 3-point MI;ji contribute new and unique
insight into the molecular coevolution.

Our results clearly show that the MI for high-order corre-
lations (at least three residues involved) is not decomposable
into simpler (i.e., 2-point) MI contributions. Thus, cliques
of three coevolving residues seem to coevolve in a much more
involved fashion than was claimed previously [25].

For a biological interpretation of these interesting patterns
in the set C we counted the number of cases in which a
residue ¢ contributed to this set. In Fig. 6 we overlay this as
a color code onto the 3D-structure of the protein.

Most interestingly, we found a correlation to structural
and functional characteristics of calmodulin. In particular,
Table 2 shows almost all residues to be either members of
the flexible helices C, E, and F or involved in Ca?t binding.
Furthermore, the residues in C that are found in helices ap-
pear at the start or end of the respective helix, suggesting
a distinct contribution to the maintenance of this structural
element. Furthermore, the helices involved in the conforma-
tional change are found also.

Now, conformational changes and binding of cofactors are
typically synergistic process; a property we found to be
present significantly enriched in the molecular coevolution
of 3-cliques? in comparison to 2-point Mls.

4and potentially beyond, e.g., in 4-, 5-, ... generalized MIs

max (Ml Ml M)

min(Mb; Ml Ml

150 200

100

Zi+Zy+ Zic

Figure 4: (a) comparison of the maximum of the
2-point MI in a ’clique’ max (MI;;, MI;x, MI,;) on the
y-axis with the 3-point MI;;; of the ’clique’ (4,7, k) on
the z-axis, the red line is a straight line with slope
1/2 (see text and Eq. 5 for explanation); (b) same as
above, but for min (MI,;;, MI;;, MI;;) on the y-axis; (c)
the same as in (a), but for the Z-scores of Eq. 3
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Figure 5: Comparing combinations of normalized MI of two-point coevolutionary signals and ’clique’-like

combinations of amino acids (i, j, k).

Here, the normalization or reference values are the percentiles c;;; and

Cijy Cik, and cji. The red line indicates equality between the plotted values.

Figure 6: The three-dimensional structure of the
calmodulin protein. The color (red=high values,
blue=low values) indicates the frequency with which
an amino acid contributed to the 3-’clique’s set C of
Eq. 6. The structure was rendered with VMD [12].

6. CONCLUSIONS

In the present study we have obtained interesting insights
into the molecular (co)evolution of an important regulatory
protein (calmodulin). We have shown that distinct patterns
of coevolution can be found. We generalized from the co-
evolution of two amino acids among each other, to ’cliques’

2nd
structure

residue | no. helix | function

26
28
40
44
48
53
55
64
66
68
85
88
89
93
102

Ca”T-binding
Ca®"-binding
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Ca®"-binding
Ca?*-binding
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Table 2: The residues in the set C appearing most
frequently. The secondary structure elements are
abbreviated: H=helix, C=coil. The functional an-
notation is based on [28].

of three residues potentially coevolving in a more involved
fashion than previously assumed. It was found that indeed
such higher-order correlations are present and connected to
function and dynamo-structural properties of calmodulin,
showing a pressing need for efficient computational tools to
incorporate higher-order terms in future research in molec-
ular evolution.

Generally speaking, the GPU times are much faster than
what is achievable with a current multi-core CPU. MI com-



putation and normalization on moderately sized MSAs can
now be computed 3 to 28 times faster. As has been argued
in Sec. 4 one order of magnitude can be seen as respectable
and realistic given current hardware. Also, this speed-up
has an important consequence: It allows quasi-interactive
normalized MI computation. If some parameter needs to
be changed in the tool chain in a step before the MI com-
putation (e.g., the alignment process) this can be done and
the MI can quickly be recomputed and normalized, which
allows to work with coevolutionary sequence analysis in a
completely different way.

One may argue, that the degree of parallelism also in-
creases in CPUs in the future. This, however, holds even
more for future GPUs. Currently there is a strong trend
from multi-core towards many-core systems, which can be
expected to continue in the near future [2]. With an efficient
GPU implementation we are on a good way to benefit from
this development.

3-point MI computationtimes still need improvement. But
even though the 2.7x speed-up for the calmodulin 3-point MI
evaluation from Table 1 may seem small, it is faster for the
ribozymes file (which is doubtlessly not the most relevant
use case) as well as for other files we tested during our test-
ing phase. In any case the GPU implementation acts as
an enabling technology by reducing the run-time to a point
where one actually starts to think about using 3-point MI.
There is a fundamental difference between ~ 3 days and ~ 1
day for a computational biologists’ sequence analysis work-
flow and we argue that 3-point MI computation thus comes
into reach as a practicable tool for future investigation.

We found interesting patterns of higher-order coevolution,
in particular in important structural motifs and functional
sites. It remains to be seen, whether this holds for other pro-
teins. However, with the present software such large-scale
investigations on a comprehensive set of proteins, potentially
covering the known protein-space, have become possible due
to the speed-ups made possible by GPU-usage.

6.1 Future Work

For future investigation it might be interesting to look
into auto-tuning. The GPU kernel’s performance heavily
depends on a lot of template parameters which all depend
on the problem size. Also they can only be tuned to a very
small set of GPUs by the programmer and for other, possibly
yet-to-appear GPUs the parameters may not be the same.
Therefore it may be very rewarding to let these parameters
be automatically tuned.

The parallelization of software to hundreds of thousands
of threads on a single GPU raises the question whether it is
also parallelizable on a higher level for multi-GPU support.
We are therefore currently parallelizing the implementation
for a cluster with multiple GPUs per cluster node. Here,
one iteration of the shuffling null-model is computed by one
GPU (with different random generator seeds per GPU) and
iterations are distributed to the GPUs in a round-robin fash-
ion. This can be done with an almost arbitrary number of
GPUs, because each iteration is independent of all other it-
erations. First experiments showed, that this parallelization
scheme yields a speed-up that is almost linear in the number
of GPUs, mainly because the whole task is compute inten-
sive and network traffic (sending the MSA to the nodes and
sending the matrices back to the master node) is negligible
compared to the amount of computation. On a 32 GPU

cluster we achieved a speed-up of almost 32 on top of the
basic single-GPU speed-up.
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APPENDIX
A. AVAILABILITY

The source code to our software as well as installation
and usage documentation can be obtained at http://www.
gris.tu-darmstadt.de/projects/comic/ and may be used
and redistributed under the terms of the GPLv3 license;
provided that this study is cited in all publications and other
work using results obtained with it.
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