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ABSTRACT
There is a continuous effort by animation experts to create
increasingly realistic and more human-like digital charac-
ters. However, as virtual characters become more human
they risk evoking a sense of unease in their audience. This
sensation, called the Uncanny Valley effect, is widely acknowl-
edged both in the popular media and scientific research but
empirical evidence for the hypothesis has remained incon-
sistent. In this paper, we investigate the neural responses to
computer-generated faces in a cognitive neuroscience study.
We record brain activity from participants (N = 40) using
electroencephalography (EEG) while they watch videos of
real humans and computer-generated virtual characters. Our
results show distinct differences in neural responses for highly
realistic computer-generated faces such as Digital Emily com-
pared with real humans. These differences are unique only
to agents that are highly photorealistic, i.e. the ‘uncanny’ re-
sponse. Based on these specific neural correlates we train a
support vector machine (SVM) to measure the probability of
an uncanny response for any given computer-generated char-
acter from EEG data. This allows the ordering of animated
characters based on their level of ‘uncanniness’.
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INTRODUCTION

Figure 1: Mori proposed a theory that the more human looking
a character becomes the more agreeably it is perceived until the
character becomes so nearly human that it causes a response of
revulsion, as seen by the valley where the corpse and zombie
end up, before the response becomes positive again in response
to real humans [30].

In recent years highly realistic computer-generated virtual
humans have become ubiquitous in movies, interactive drama
video games and as online avatars. Movies such as The curious
case of Benjamin Button and interactive drama video games
such as Heavy Rain and L.A. Noire have produced highly
realistic characters. However, the human reaction to realistic
computer-generated (cg) characters is not always a positive
one as evidenced by the response to characters in the The Polar
Express and Final Fantasy: The Spirits Within [16]. Both



movies were poorly received and the consensus seemed to be
that the characters were perceived as disturbing and evoked
feelings of discomfort [34]. Intuitively, the more human-like
a computer-generated character becomes the more appealing
it is to the intended human audience. However, increasing
human realism does not necessarily result in more appealing
characters. One theory to explain this is the uncanny valley
hypothesis put forward in 1970 by Masahiro Mori. He posited
that as something starts to look more human it is also perceived
as more agreeable until it begins to look so human it evokes
a feeling of revulsion, Fig. 1. Mori also hypothesized that
the effects would be more pronounced for moving agents as
opposed to stationary agents [30]. Although research so far has
been inconsistent, most studies have found some evidence in
support of Mori’s hypothesis [28, 19, 46, 6]. Various theories
have been proposed to explain the uncanny valley phenomenon
such as disease and threat avoidance [28]. MacDorman and
Ishiguro [28] also suggested that the uncanny valley effect
might be a result of androids eliciting and violating human
expectations about how other humans should look and act. In
other words, the more human-like an android or cg human, the
more human-like expectations are elicited. The fact that cg
humans are incapable of fulfilling these expectations results
in a disconnect. Similarly, Saygin et al. [41] discuss the
predictive coding hypothesis which is based on a similar idea
that the uncanny valley is related to expectation violations
in neural computing when the brain encounters human-like
agents.

As advances in computing hardware and software give rise
to the widespread use of realistic virtual humans, insights
into the perception of cg humans and a methodology to em-
pirically quantify this effect would be invaluable. In recent
years there have been several studies aiming to understand
and find empirical evidence for the uncanny valley [27, 42,
28]. Most studies exploring the uncanny valley have either
used subjective rating methodologies [44, 19, 47], or gaze
behaviour [9, 43]. Although these and similar studies have
provided valuable insight into the uncanny valley phenomenon,
there is as yet no methodology for measuring and predicting
this effect. Behavioural studies alone are insufficient to test
and quantify the uncanny valley effect particularly because
they rely on the explicit (overt) output of the cognitive pro-
cess. This is particularly problematic since the uncanny valley
phenomenon is complex and may involve implicit (covert)
cognitive processing [48]. Given the complexity of this phe-
nomenon and the incomplete understanding of it, it is difficult
to measure it with a single measurement like familiarity, eeri-
ness or pleasantness [39], instead it requires a more refined and
continuous measurement. Neuroimaging methods have been
used as alternates for the study of the underlying mechanisms
of the uncanny valley. Saygin et al. [41] used functional mag-
netic imaging (fMRI) to explore neural responses to robots,
androids and humans. Similarly, Cheetham et al. [10] used
fMRI to investigate the processing of human and non-human
categories in the brain. While fMRI provides valuable insight
into the underlying mechanisms of the uncanny valley, it is
unsuited to our purposes. The fMRI Blood-Oxygen-Level
Dependent (BOLD) signal is an indirect measure of neural ac-
tivity and the temporal response of the blood supply, which is

the basis of fMRI, is poor relative to the electrical signals that
define neuronal communication. Instead, we use Electroen-
cephalography (EEG) data to examine the neural differences
in the perception of real and cg faces. EEG hardware is sig-
nificantly cheaper than fMRI, has a much better temporal
resolution than fMRI (EEG’s can detect changes within a mil-
lisecond time-frame) and allows monitoring of the information
processing during stimulus presentation. EEG has also been
used in decades of cognitive neuroscience research to inform
us about the processing of facial stimuli in the brain. Most of
this work has been focused on facial recognition, exploring
the selectivity of face-sensitive ERP responses and in trying
to locate the brain regions associated with face processing [31,
17, 23]. We use the accumulated knowledge in these areas
to explore the implicit human response to realistic computer
generated (cg) characters.

In this paper, we propose the application of EEG to explore and
evaluate the perception of realistic computer-generated virtual
human faces, with a particular focus on predicting the uncanny
valley effect. We use recordings from real humans, virtual
humans from the Institute of Creative Technologies Virtual
Human Toolkit [18] and state of the art computer-generated
humans Digital Emily [2] and Digital Ira [1]. We also in-
clude highly realistic characters from interactive drama video
games, ‘Kara’ from Detroit: Become Human [12], ‘Ernst’
from Squadron 42 [37] and ‘HeadTech’ from Janimation [22].
These agents are used to represent varying degrees of human-
likeness as determined by a perceptual study where partici-
pants (N=80) rank the perceived realism of the agents on a
Likert scale.

We then use an EEG device to investigate the neural responses
to the video of each agent. We intentionally use moving
humans given Mori’s hypothesis that the uncanny effect is
exacerbated with motion [30]. Based on the results of these ex-
periments, we use the neural responses to different characters
to train a support vector machine (SVM). Our goal is to create
a methodology that would allow the perceptual categorization
of a cg character with a single trial of EEG data. In other
words, that one participant could watch a clip of a cg human
once and we would be able to evaluate it as being perceived as
uncanny or not based on neural data.

This paper makes two primary contributions: 1) to identify
differences in neural components in response to real-human
and cg humans ; 2) to provide a comprehensive method for
evaluation and categorization of the uncanny response to any
computer-generated (cg) virtual human. We propose that our
approach would allow designers of animated cg humans to
evaluate and measure the ‘human-ness’ of their characters
without the use of multiple participants, or lengthy behavioural
studies. It would allow the incremental modification of cg
characters to minimize the uncanny valley effect and a better
understanding of how cg faces are perceived may help to
improve the realism in computer-generated content for movies
and games.

RELATED WORK
Face perception has been studied extensively in the cogni-
tive sciences over the last decades. Similarly, achieving com-



pletely realistically rendered humans has been a defining goal
for graphics researchers. Our work builds on developments
and research from both computer graphics and the cognitive
sciences.

Computer Graphics and The Uncanny Valley
The pursuit of the perfect virtual human has been the holy
grail for graphics researchers for the last few decades [38, 4,
49, 29]. One major difficulty in producing realistic rendered
human faces is the uncanny valley effect. In recent years stud-
ies have explored this hypothesis using robots and images.
MacDorman et.al. [27] conducted studies where a cg charac-
ter’s facial proportions, skin texture, and level of detail were
varied to examine the resulting effect on perceived eeriness,
human likeness and attractiveness. They evaluated the pre-
sented human faces by asking participants to rate each image
on an 11-point semantic differential scale. All their studies
used manipulations to one base model of a 30-year old male.
In contrast, our work looks at the neural responses to a variety
of male and female faces in video sequences. We also make a
comparison between real faces and computer generated faces.
Similarly, Burleigh et al. [6] looked at the relationship between
human likeness and eeriness using digital human faces. They
observed that stimuli defined by a near-perfect resemblance
to humans do not appear to cause a greater negative effect
when compared to stimuli with perfect human likeness or no
human likeness. Another study by Zell et al. [50] looked at
the question of stylization and explored the effect of shape
and material on perceived realism. The results showed that
shape is the more important factor when rating realism and
expression intensity, while material is the main determiner for
appeal. Our work is similar in terms of exploring realism in
computer generated characters but differs in that we look at
very realistic computer generated characters in motion and use
an EEG for exploring biological differences in how humans
perceive animated cg faces.

Given that emotion is a central aspect of the uncanny experi-
ence many studies have explored facial expression of emotion
as related to the uncanny valley. Tinwell et al. [46] inves-
tigated if ‘uncanniness’ is increased for a character with a
perceived lack of facial expression in the upper parts of the
face. Their results indicate that even fully and expertly an-
imated characters are rated as more uncanny than humans
and that, in virtual characters, a lack of facial expression in
the upper parts of the face during speech exaggerates the
uncanniness. Another study conducted by McDonnell et al.
[29] explored the uncanny valley from the perspective of per-
ceived trust and rendering style. The study used deception
as a basis for the experiments to investigate the UV theory.
Their results showed that participants felt a subconscious un-
trustworthiness towards a high quality virtual character. In
contrast Kim et al. [24] looked specifically at gaze behaviour
to compare real human perceptions of a virtual human (VH)
with their expectancy of the virtual human’s gaze behaviour.
Our work on the other hand aims to exploit this subconscious
processing to predict the human response to virtual characters.

Recently, Fan et al. [14] conducted studies to explore the
processes involved in visual realism perception of faces. Their

facial stimuli consisted of real face images, scrambled face
images, inverted face images, images that show different parts
of faces and images of faces with top and bottom misaligned.
Their work shows that both holistic and piecemeal processing
are involved in visual perception of faces. They also suggest
that shading information is more important than colour for
holistic processing. Their work focuses on the actual mecha-
nism of perception of faces whereas we focus specifically on
the difference in how we perceive real and computer generated
faces. Our goal is to be able to find a method for quantifying
the feeling of ‘uncanniness’.

There have not been many studies within a graphics context
that use modalities such as EEG to understand the perception
of computer-generated characters. Urgen et al. [48] used EEG
data to explore neural components of the perception of motion
between androids, robots and humans. Their work focused on
verifying that motion exacerbates the uncanny valley effect.
Their results show that the event related brain potential N400,
which has been associated with violation of predictions, is
greater for a moving android than for a stationary android. In
contrast we focus on highly realistic virtual humans and the
evaluation of cg humans as a whole. Similarly, Saygin et al.
[42] used functional magnetic resonance imaging (fMRI) to
explore the selectivity of the human action perception (APS)
system for the appearance and motion of a human, a robot
and an android. Their study found distinctive responses to
the mismatch between appearance and motion, where sup-
pression effects for the human and robot were similar to each
other but were stronger for the android. Although interesting,
this work does not focus specifically on human realism as
related to uncanniness, instead focusing on the motion aspect
of uncanniness. Another recent study by Mustafa et al. [32]
explored the neural response to still images of real, virtual
and abstract faces. Their results show a distinct difference in
the brains response to different face categories (real, virtual
and abstract). In contrast our work focuses on highly realistic
animated characters.

Cognitive Studies of Face Perception
Cognitive researchers have conducted many studies using an
EEG, in an attempt to understand the exact mechanisms of
face perception in the human brain. For example, Bentin et
al. [3] studied the event related potentials (ERPs) associated
with face perception in comparison to human hands, animal
faces and furniture. They also looked at ERPs associated with
upright faces, inverted faces, whole faces and isolated face
components. Their studies showed that human faces elicited a
negative potential called the N170, which was absent from the
ERPs evoked by other animate and inanimate stimuli. They
further showed that the N170 was delayed for inverted faces
but its amplitude did not change. They hypothesize that N170
may reflect the underlying mechanism tuned to face detection.
In general, it has been shown by multiple studies that human
faces elicit larger N170s than other object categories [5, 21,
40]. These studies provide us with a basis for our work for
measuring the evoked potentials in response to rendered faces.

A similar study by George et al. [17] explored the neural
basis for normal and scrambled face processing. The stimuli



used were three faces produced using one pair of eyes, one
pair of noses and a pair of mouths. The scrambled faces
were produced by reversing the positions of the eyes and nose
only. Their study found no difference between the vertex
P2 evoked by faces and scrambled faces, although temporal
ERP’s between the two conditions were different.

Another study conducted by Jefferys et al. [23] also analysed
evoked potentials in response to faces and objects such as
shoes, cars and planes. This study specifically looks at the
response properties of a distinct scalp potential called the
‘vertex positive peak’ (VPP). Their results showed that the
VPP responds preferentially to suddenly presented faces as
opposed to objects. The focus of this study is an exploration
of the physiological processes of face perception.

EXPERIMENT DESIGN
Our goal is to develop an EEG-based approach for virtual
human evaluation. We conduct two studies ; One is an online
perceptual study to determine the varying degrees of human-
likeness of our selected agents. The second study was an
EEG-based experiment to determine the neural response to the
uncanny valley.

Participants
The perceptual study was placed online and open to allow the
maximum number of participants to determine how realistic
each presented virtual and real human is. The total number of
participants in the study were 80.

For the EEG experiment forty right-handed adults (22 female
and 18 male; average age = 24) with normal or corrected-to-
normal vision and no history of neurological disorders partici-
pated. Informed consent was obtained from each participant
and participants were paid per hour or received course credit.

The participants for both the studies were distinct and unique.

Stimuli
The stimuli consists of 5-second video clips of real and virtual
human agents speaking (Fig. 7). Since we want to focus on the
visual response to agents, the audio is not included in the actual
stimulus presentation. The real human videos are recorded
in our lab (Fig. 7b). Each actor is given the same monologue
to recite in a neutral way so as to reduce differences in facial
expression.

The most simplistic agent we use is an animated ‘comic’ char-
acter (Fig. 7a). We also use 4 virtual humans (Fig. 7d) from
the Virtual Humans Toolkit from the Institute of Creative Tech-
nologies [18]. Given that we also want to analyse the neural
response to highly realistic cg humans we use 5 characters
that are highly realistic in terms of how human-like they ap-
pear (Fig. 7d,7e). Digital Emily and Digital Ira are considered
state-of-the-art in terms of real-human character animation [1,
2]. We also use realistic game characters ‘Kara’ from De-
troit: Become Human [12], ‘Ernst’ from Squadron 42 [37] and
‘HeadTech’ from Janimation [22].

The video clips are chosen for the degree of realism and
the lack of emotional expression. Since we are interested
in the perception of virtual humans we choose to exclude

emotionally heavy content. We refer to these agents as real hu-
mans (Fig. 7b) , virtual humans (VH) (Fig. 7c), comic (Fig. 7a)
and Emily and Ira human (Fig. 7e). None of the participants
had prior experience with the presented stimuli.

Although each agent has a a different background, previous
work has shown that the dynamics of face processing identified
using ERPs also applies to faces seen in complex, naturalistic
scenes [7, 32]. We therefore do not expect the background to
affect how the different agents are perceived.

Initial Study
To get an estimate of the perceptual ‘human-ness’ of each
agent we conduct an initial perceptual study and ask partic-
ipants (N = 80) to rate how ‘real’ each agent appears on a
Likert scale from 1 (least human) to 6 (most human) (Fig. 2).
We chose a 6-point likert scale because we did not want to
allow participants to choose a neutral answer or be undecided.
As can be seen the cg agents form a scale in terms of their
realism with comic being the least human-like (M = 1, SD = 0)
and Emily being the most realistic (M = 5.28, SD = 0.76) in
relation to real humans (M = 5.69, SD = 0.75). The question-
naire asked the participants how ‘real’ each agent is. This is
not the same as ‘uncanny’. Our use of an initial questionnaire
to determine degree of human-ness is similar to a strategy used
by Strait et al., to study the uncanny valley [45].

Procedure
Prior knowledge can affect judgements of artificial agents and
so each participant is given exactly the same introduction to
the experiments and the same exposure to the videos. The
participants are also asked at the end of the study if any of the
agents were familiar to them. EEG is recorded as participants
watch video clips of the agents. The experiment consists of
10 blocks and each video is shown once in each block. All
videos are presented in randomized order while ensuring that
a video is not repeated on two consecutive trials. Each partici-
pant experiences a different randomized stimuli sequence. To
prevent an erroneous visual evoked potential at the beginning
of each video onset a gray screen with a white fixation cross
is displayed. Participants are instructed to fixate the cross at
the center of the screen. To focus their attention participants
are asked to identify the agent in the video as either real or a
virtual human.

EEG Recording and Data Processing
EEG measures the electrical activity of a large number of
neurons close to the brain surface. Traditional EEG systems
require anywhere from 32 to 64 electrodes to be fitted to the
head of a participant at specific locations (Fig. 3). This is
usually achieved with a cap of attached electrode positions
that is pulled over the head. To ensure conductivity between
the electrodes and the scalp, contact gel needs to be applied
to the electrodes. We use an EEG with 32 electrodes attached
according to the international 10-20 system (Fig 3) [15]. The
raw EEG data is low-pass filtered with a stop-band frequency
of 50Hz to remove power line noise (5 lobe Lanzcos filter).
The data is also high-pass filtered with a stop-band frequency
of 0.5Hz to remove baseline drift (3 lobe Lanzcos filter) and
re-referenced to average mastoid electrodes. Then the data is
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Figure 2: Results of perceptual study to determine how realistic each agent appears (N = 80). Comic was determined to be the
least human-like and Emily the closest to photorealistic human.

Figure 3: Electrode layout in the 10-20 system. Each electrode
captures neural signals from the underlying brain region.

epoched ranging from 100 ms before video to 1000 ms after
video onset, and are time-locked to the onset of the video
clip. Automatic epoch rejection is based on a 4 channel EOG
and the mastoids. We look at only the first 1-second of the
neural response as we are interested in investigating the N400
event-related potential (ERP) which occurs approx. 300ms to
600ms after stimulus presentation.

After pre-processing, grand average event-related brain poten-
tials (ERP) for all participants and all trials, were computed
and plotted for each character (Fig. 4).

ERP Results
We investigate the EEG data with respect to a specific depen-
dent measure, the N400 event-related potential (ERP) com-

ponent [25]. The N400 is a negative-going ERP which peaks
between 300 ms - 600 ms after stimulus onset and is maximal
in fronto-central regions of the human scalp i.e., electrodes
Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8 , FC5, FC1, FC2,
FC6 (Fig. 3). The N400 is elicited in response to any meaning-
ful stimulus, however its amplitude is greater for anomalous
stimuli (i.e., stimuli that violate expectations) [48, 33, 25].
This makes the N400 ideally suited to evaluate the prediction
error hypothesis of the uncanny valley [48]. Given that the
N400 depicts violations of participants expectations the am-
plitude should be higher for agents that are more human-like
in appearance but are actually not human as compared to the
amplitude for real humans.

Fig. 4 shows the event related potentials averaged over all par-
ticipants and all trials for each agent. The signals used are from
the frontal electrodes Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8,
FC5, FC1, FC2, FC6 averaged since previous research shows
the N400 component is strongest over these electrodes [25].
The shaded area around each ERP is the 95% confidence in-
terval and shows the deviation between participants and trials.
The grey shaded rectangular area shows statistically signifi-
cantly different components between categories based on this
interval.

Our results indicate that observation of all agents elicits an
N400 component regardless of the agent type (Fig. 4). Fig. 4a
shows the difference in ERP for category comic versus real
humans. Since category ‘comic’ is immediately recognizable
as being not real-human and scores low on realism (Fig. 2)
there is no expectation of human-ness and hence no violation
of expected behavior. The ERP between humans and comic
does not show a statistically significant difference in the N400
component (approx. 320 ms).
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Figure 4: ERP responses to the CG and real agents averaged over frontal electrodes. The ‘Uncanny’ category encompasses ‘Kara’,
‘Ernst’ and ‘HeadTech’ (Fig. 7). The ERPs are time-locked to the start of the videos. The shaded area along each curve shows
the standard deviation for the ERP. The grey-shaded rectangular boxes show areas of statistically significant differences between
categories.

Similarly, the Virtual Human (VH) stimuli are rated low on
realism (Fig. 2) and as expected the ERP response does not
show a statistically significant difference in the N400 ERP
component (approx.320 ms) as compared to the real human
responses.

Figure 5: Average amplitudes of N400 component of ERPs
from Fig. 4 along with the p-values between agent categories.
The amplitudes show an ordering of the characters in terms of
‘uncanniness’

However, the uncanny stimuli which were rated in the percep-
tual study as being close to real humans show a significant
difference in the N400 peaking with the greatest difference
at approx. 320 ms, as can be seen from Fig. 4c. The ERP re-
sponses for all characters within the ‘uncanny’ category show
only minor differences between each other Fig. 4f.

If we look at the N400 response to the Emily stimulus (Fig. 4d),
which is the most highly rated in terms of human-ness in our
perceptual study (score of 5.2/6, Fig. 2), there is a distinct and
significant difference in the N400 component peaking at ap-
prox. 320 ms . This is in-line with the previous research which
provides evidence that amplitude changes in N400 are asso-
ciated with the semantic incongruity caused by mismatched
expectations [48].

Fig. 5 shows the average peak amplitudes of the N400 compo-
nent in response to each agent category along with the p-values
for the comparison. The peak amplitudes show an ordering of
the stimuli based on the N400 component with Emily being
the most ‘uncanny’ and real humans the least. The p-values
also show that there are statistically significant differences



between the uncanny category and real humans and between
Emily and real humans.

SUPPORT VECTOR MACHINE CLASSIFICATION
We use a standard support vector machine [8] for all classifica-
tion tasks, using a C-SVM with a radial basis function (RBF)
classifier and a set of fixed parameters. For the statistical anal-
ysis, we performed a standard 5-fold cross-correlation test to
avoid over-fitting. The data is split randomly into 5 groups of
228 trials. The training is done with 1140 trials and testing
is done with 2037 trials which were not part of the training
set. The support vector machine is trained with the peak time
and voltage of the N400 component of each of the 13 frontal
electrodes. The N400 component is extracted by band-pass
filtering the raw EEG data between 1 Hz to 50 Hz. The data is
then timelocked to 300 ms after the start of the stimulus (ear-
lier ERP analysis of the N400 shows the exact time where
the component peaks), and the closest local minimum found.
The exact time and amplitude is then extracted. Both, the
cross-correlation test and the peak time and voltage extraction
are used to avoid over-fitting the SVM to the training data.

According to Mori’s uncanny valley hypothesis [30], and as
verified by previous behavioral studies [29, 6], a highly realis-
tic human evokes an uncanny valley response. However, since
there is little empirical evidence on what the neural response
to ‘uncanny’ agents looks like, we take the EEG response to
Digital Emily to train the SVM on what a uncanny response
looks like given that Emily scores the highest on our percep-
tual study (most realistic cg character). This difference in the
response to Emily versus real humans is also seen from the
ERP data (Fig. 4d). The neural responses to real humans are
used to train the SVM to learn the neural responses to non-
uncanny agents. The binary classification is then turned into
a probability function using Platt scaling [36]. This allows
the SVM to probabilistically determine if there is an uncanny
response to a cg character. Figure 6 shows the probabilities
for an uncanny response as determined by the SVM plotted
against the realism scores from the perceptual study (1 to 6).
The probabilities from the SVM correlate with the realism
ratings in that the more realistic a virtual agent is, the the
higher the probability of an uncanny neural response. Comic
is the least human-like in appearance (Likert score of 1) and
the SVM also, based on the N400 component, classifies the
response with a low probability of being uncanny. As we
move higher up the realism scale, the neural responses to the
cg characters are classified with higher probabilities of being
uncanny. The VH characters are rated by participants on the
Likert scale with an average of 1.9, given this, we would ex-
pect the neural response to these agents to be classified with a
lower probability of being uncanny than Emily or Kara which
are higher in terms of realism scores. From Fig. 6 we can see
that the classifier categorizes VH characters with a lower prob-
ability of being an uncanny response as compared to the cg
characters that scored high on the perceptual study like Digital
Emily, ‘Kara’ and ‘HeadTech’. Correspondingly, the response
to cg characters ‘Kara’ and ‘HeadTech’ are categorized with
a higher level of ‘uncanniness’. This correlates to their per-
ceived realism as measured by the perceptual study (Fig.2)

where these characters were given a score of 3.3 and 3.8 re-
spectively as compared with low scores for VHs (avg. score
1.7).

The correlation between ‘real’ from questionnaires and ‘un-
canny’ from EEG data (Fig. 6) shows the higher the Likert
score for an agent, the probability of an uncanny EEG response
is higher. Both measures do not provide the same result e.g.,
although according to the questionnaire Digital Emily was
‘real’(M = 5.28, SD = 0.76 vs real human score M = 5.69,
SD = 0.75) we know from EEG data that she is not perceived
as ‘real’(peak amplitude of real human = -4.5 vs Emily = -7.6).
If we looked at only the data from the questionnaire we would
conclude Emily was perceived as human as real-humans. This
is clearly not true from the EEG data i.e. there is a mismatch
between Emily and real-humans.

DISCUSSION
We used the N400 component of ERPs to find the uncanny
neural response to cg characters. The amplitude of N400
(negative peak 400ms after stimulus) brain response is a well
established measure associated with mismatched expectation
i.e. you see something that does not match your expectation
of what it should look like. We also know the exact electrode
locations (parts of brain) where this signal comes from (from
fMRI and EEG studies) [20, 25]. This makes the N400 suited
for exploring the uncanny effect.

The ERP responses in our study reflect this in terms of the
‘uncanniness’ of the cg characters. According to the N400
component, the uncanny response is strongest when the cg
character appears highly realistic (Fig. 4). An analysis of the
average amplitude of the N400 component for each character
shows a distinct ordering from the most uncanny agents, i.e.
Emily to the least uncanny, i.e. real humans (5). Interestingly,
digital Emily, which is a state-of-the-art digital human and is
rated the highest in terms of realism, has the greatest amplitude
at the N400 component. This supports the predictive coding
hypothesis where the uncanny valley is related to expectation
violations in neural computing when the brain encounters
highly realistic characters. Oddly, we would have expected
Digital Ira (another highly realistically rendered human) to
rate highly not only in the perceptual study (Fig. 2) but also
to evoke an ERP response similar to Emily’s. However, Ira
rates low in terms of realism (avg. score 3.4) as compared
to Emily (avg. score 5.31) and consequently, the ERP N400
response to Ira evokes a lower amplitude than Emily (Fig. 5).
One explanation is that in appearance Digital Ira is less human-
like than Digital Emily.

Given the results from the ERP responses, we train an SVM to
categorize and predict the level of ‘uncanniness’ of any given
cg animated character. The SVM is trained on the responses
to Emily which are labelled as ‘uncanny’ and the responses
to real humans which were labelled as ‘not uncanny’. Based
on the responses to only these two characters the SVM is able
to create an ordering of the agents based on the difference
in the amplitude of the N400 which represents the anomalies
between internal expectations and external stimuli i.e. ‘un-
canniness’. The ordering of characters created by the SVM



correlate with the user rating for each agent. The more re-
alistic a cg character is rated the more toward uncanny the
neural response is. Conversely, the less like a real human a
cg character is scored on realism, the lower the probability of
a uncanny neural response (Fig. 6). So for example, ‘comic’
is scored the lowest of all characters on realism (Fig. 2, likert
score of 1) and it is also classified by the SVM with a low level
of ‘uncanniness’ (Fig. 6). Similarly, Virtual Humans are rated
low in terms of realism, and the SVM also gives them a lower
‘uncanniness’ probability than Emily, ‘HeadTech’, ‘Kara’ and
‘Ernst’. Interestingly, the SVM also classifies Ira with a low
probability of ‘uncanniness’ which is in-line with the realism
score from the perceptual study and the ERP response.

Uncanny has previously been defined with concepts such as
‘familiarity’ , ‘eeriness’ or ‘relatedness’ [9, 26]. We argue that
this is exactly what makes the hypothesis difficult to study. In
contrast, we define it based on what the EEG responses show
i.e. the difference in the amplitude of the N400 ERP compo-
nent. So for us, ‘uncanny’, as defined by EEG responses, is
the mismatch between what we know is human versus what
is presented on screen. EEG allows us to analyse the implicit
responses as they occur during participant viewing versus re-
lying on remembered feelings. So we can determine which
components are activated on a ms scale. It is not possible to
get this data from questionnaires. The likert scale provides
a single answer which depends on the question asked and as
stated above would not provide the same result as the ERP
responses.

CONCLUSION
Findings from our study provide empirical evidence into the
nature of the uncanny neural response for computer-generated
faces. Our work is of particular interest for animation artists,
and video game developers as a method for evaluating their
animated humans. Wireless EEG headsets are now afford-
able (typically < $1000), readily available, wireless and gel-
less [13]. Similaly, open source tool-kits with interactive
graphical user interfaces such as the Matlab EEGLAB tool-
box [11] and FieldTrip [35] make it easier to process and
analyse EEG data. This makes EEG more accessible and
lowers the barrier for use in research and application.

Our method provides a quantitative way to measure the kind
of reaction any given computer generated agent might evoke
in the intended audience. To our knowledge, this is the first
work that classifies computer-generated characters based on
the level of the evoked ‘uncanniness’ as measured by neural
data. This initial study shows promise for using neurological
measures for determining the perceived realism of virtual
humans. To be able to land on the other side of the uncanny
valley further experimentation is required into specific aspects
of computer-generated humans.

In particular we are interested in comparing digital Emily with
the real actress on which digital Emily is modelled. This was
beyond the scope of our current work since, to be able to
make a valid comparison we would need footage of real Emily
with similar hair, camera angle etc. which we is currently
not available. Also, because familiarity is a consideration we
would need to conduct multiple experiments showing one set

of participants only real Emily and another set showing only
digital Emily, so as to discount influence of one animation over
the other e.g. real Emily would influence how digital Emily
is perceived. For this paper we were interested in looking at
the neural responses to digital characters in isolation without
influence from their human counter-parts. However, this kind
of comparison is part of our future work plan. In the future
we would also like to work on the changes in perception of
cg humans based on changing anatomy i.e., a bigger nose or
more pronounced ears etc. Such a detailed analysis would
allow us to pinpoint the salient features of animated humans
that contribute most to the uncanny valley phenomenon.
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Figure 6: Probabilities of an uncanny neural response plotted against the user responses from the perceptual study with a fourth
order polynomial fitted against the data points. The results show a correlation between the neural responses as classified by
the SVM and how realistic each agent is. The more human-like a cg character, the more the neural response tends towards the
‘uncanny’. The results resemble Mori’s uncanny valley hypothesis as seen in Fig. 1

(a) Most simplistic ‘comic’ character within the tested agents.

(b) Real agents recorded in our lab.

(c) Virtual human (VHT) agents recorded from the Institute of Creative Technologies Virtual Human Toolkit [18].

(d) Virtual human agents with varying degrees of realism and higher ’uncanny’ responses (‘Kara’ [12], ‘Ernst’ [37] and ‘HeadTech’ [22])

(e) Highly realistic state-of-the art rendered humans Emily [2] and Ira [1]

Figure 7: Exemplars of animated agents with varying degrees of human-ness used in EEG study to explore and predict neural
responses to different levels of realism in animated humans.
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