
Recursive SAH-based Bounding Volume Hierarchy Construction
Dominik Wodniok Michael Goesele

Graduate School of Computational Engineering, TU Darmstadt

ABSTRACT

Advances in research on quality metrics for bounding volume hi-
erarchies (BVHs) have shown that greedy top-down SAH builders
construct BVHs with superior traversal performance despite the fact
that the resulting SAH values are higher than those created by more
sophisticated builders. Motivated by this observation we examine a
construction algorithm that uses recursive SAH values of temporar-
ily constructed SAH-built BVHs to guide the construction. The
resulting BVHs achieve up to 28% better trace performance for pri-
mary rays and up to 24% better trace performance for secondary
diffuse rays compared to standard plane sweeping without apply-
ing spatial splits. Allowing spatial splits we still achieve up to 20%
resp. 19% better performance. While our approach is not suitable
for real-time BVH construction, we show that the proposed algo-
rithm has subquadratic computational complexity in the number of
primitives, which renders it usable in practical applications.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1 INTRODUCTION

Ray tracing is an important computational primitive used in differ-
ent algorithms including collision detection, line-of-sight computa-
tions, ray tracing-based sound propagation, and most prominently
light transport algorithms. An efficient ray tracing implementation
needs to rely on an acceleration structure. The most common ray
tracing acceleration structures are kd-trees and bounding volume
hierarchies (BVHs), with BVHs being the most widespread ones.
The reasons for this are the much smaller and controllable mem-
ory footprint of BVHs, a more efficient empty space cut-off, faster
construction, and a simple update procedure of the structure for an-
imated data, while at the same time offering similar ray tracing per-
formance as kd-trees.

BVHs give best ray tracing performance when constructed with
the surface area heuristic (SAH) [4]. State-of-the-art SAH-based
BVH builders are the greedy top-down plane-sweeping algorithm
from MacDonald and Booth [8] and the extension of this algorithm
with spatial splits proposed by Stich et al. [11]. More sophisticated
algorithms have been developed (see the summary in Aila et al. [1])
that produce higher quality BVHs with respect to SAH. But the im-
provements do not translate well to actual measured performance
and can in fact even decrease performance. Aila et al. [1] identified
geometry that overlaps bounds of subtrees to which it does not be-
long as a second major factor and proposed the end-point-overlap
metric (EPO) to measure this effect. They also revealed the unique
characteristic of greedy top-down SAH builders, that they not only
optimize SAH but also implicitly minimize EPO, which explains
why they perform so well in practice.

To the best of our knowledge no approach has been proposed
to date, which directly takes advantage of this implicit correlation

of SAH and EPO for greedy top-down builders to construct better
BVHs. We examine the possibility to improve EPO further by using
recursive SAH evaluation on temporarily built BVHs as an accurate
prediction for the SAH cost of subtrees during construction. Fur-
ther, we reason why the temporary BVHs themselves have to be
constructed with SAH to gain any benefit and propose an algorithm
that can construct BVHs with recursive SAH in O(N log2 N). Due
to the computational complexity the algorithm is mainly suitable
for static scenes and global illumination algorithms.

Our main contributions are as follows:

• a BVH construction algorithm that produces BVHs with bet-
ter average performance than state-of-the-art methods and

• a complexity analysis of our algorithm that reveals sub-
quadratic runtime in the number of primitives.

2 BACKGROUND AND RELATED WORK

The strategy chosen for BVH construction has a tremendous in-
fluence on ray tracing performance. State-of-the-art construction
approaches use the surface area heuristic (SAH) originally intro-
duced by Goldsmith and Salmo [4]. It provides an approximation
for the expected cost of traversing a given kd-tree or BVH. Under-
lying assumptions are that rays originate at infinity, have a uniform
ray direction distribution, and do not terminate on intersection. The
first and second assumption allow to compute the geometrical con-
ditional probability pn of intersecting the convex bounding volume
of a node n with a random ray given that the ray hits the convex
bounds of the surrounding parent node P(n) of n as the surface area
ratios of their bounds. Combined with implementation dependent
constants ct for traversal step costs and ci for primitive intersection
test cost the expected traversal cost for a tree node n can be recur-
sively computed as:

c(n) =

{
ct + plc(l)+ prc(r) inner node
|n|ci leaf node

(1)

Here, l and r are the left and right child of n in case of an inner node,
and |n| is the number of primitives belonging to n. Evaluating c for
the tree root yields the expected cost of the whole tree.

State-of-the-art greedy top-down plane-sweeping construction
locally applies an approximation of Equation 1 when splitting a
node. Several candidate partitions are generated and rated with c
under the assumption that the newly generated children stay leaves.
That is we compute:

csplit = ct + pl |l|ci + pr|r|ci (2)

The partition with smallest csplit is chosen and construction recur-
sively proceeds with the children. The recursion terminates as soon
as the smallest csplit is higher than the cost for creating a leaf node.
Partitions are typically generated by sweeping axis aligned planes
through every dimension and checking on which side the bounding
volume centroids of primitives fall. With this approach, only planes
which contain bounding volume centroids are relevant.

Though the assumptions underlying SAH generally do not ap-
ply in practice, SAH guided construction empirically produces

the best performing BVHs to date. Unfortunately, SAH-based
construction is also the most expensive. Wald et al. [13] intro-
duced an O(n log(n)) algorithm for SAH based BVH construction.
Fabianowski et al. [2] changed the SAH assumption of infinitely
far away ray origins to origins uniformly distributed in the scene
bounds. On average ray tracing performance increases of 3.5%
have been reported.

Lauterbach et al. [7] proposed three GPU BVH construction al-
gorithms with different trade-offs between tree quality and con-
struction time: The median split-based LBVH algorithm is fast but
has poor tree quality. The second algorithm is a parallel approach
for full binned-SAH BVH construction (see Wald [12]) with high
tree quality but slower construction. The third algorithm, a hy-
brid of the former two, strikes a balance: Upper levels are con-
structed according to the highly parallel first algorithm while the
remaining levels expose enough parallelism to be efficiently con-
structed according to the second one. Pantaleoni and Luebke [9],
and Garanzha et al. [3] proposed much faster implementations for
the median split and the hybrid algorithm called HLBVH which al-
low real-time rebuilds for scenes with up to 2 million triangles. An
important change to the hybrid algorithm is, that LBVH is used to
build the lower levels of the tree first. The roots of the subtrees
themselves are then used for binned top-down SAH BVH construc-
tion. Thus the expensive part of the algorithm is performed on much
less input elements and tree quality is improved in the important up-
per levels.

Stich et al.’s [11] offline SBVH algorithm drastically improves
tree quality for scenes with widely varying degree of tessellation.
The key idea is to either use spatial splits or object partitioning de-
pending on which of them yields a better SAH value. When search-
ing for a node split, the best spatial split is determined in addition
to the best object split. Spatial splits are only applied when con-
sidered beneficial. To date no efficient GPU implementation of this
algorithm has been presented. Karras and Aila [6] proposed an ap-
proximate but real-time construction algorithm for GPUs that takes
any BVH (i.e. LBVH) as input and performs local optimizations
on small node subsets (treelets) w.r.t. SAH. They also present a tri-
angle pre-splitting heuristic with strong focus on producing splits,
which are likely to be beneficial for tree quality. Resulting trees
achieve about 90% of SBVH tree quality.

Plane sweeping only generates left-right type partitions. Popov
et al. [10] proposed to allow more general partitionings in order
to achieve smaller SAH cost. This is done by pre-generating a set
of more general child bound pairs and distributing the primitives
to these sets. Though achieving smaller total SAH values, trace
performance did not improve equally or even decreased. Further,
they also tried to improve their general partition BVH constructor
by rating partitions with recursive SAH computed from temporarily
built object-median split BVHs. This improved measurements but
results were still inferior to the standard plane sweeping algorithm.

Aila et al. [1] analyzed the correlation between measured per-
formance and the recursive SAH value of BVHs constructed with
several BVH construction algorithms. Their motivation was the
often made observation that more sophisticated construction algo-
rithms that managed to construct lower SAH BVHs improved mea-
surements less than expected or even decreased performance (e.g.
Popov et al. [10]). At the same time BVHs with similar SAH value
but constructed with different algorithms can give significantly dif-
ferent trace performance. Aila et al. identified end-point-overlap
(EPO) as the missing piece of information and proposed the EPO
metric to better predict performance of BVHs in combination with
SAH. EPO is essentially a measure for the extra traversal cost
caused by intersection with primitives which intersect bounds of
subtrees they do not belong to. We refer to Aila et al. [1] for com-
putation of EPO of a BVH. The performance predictor is a convex

combination of SAH and EPO:

p∼ SAH · (1−α)+EPO ·α (3)

Here, α is a scene dependent constant. This predictor is only de-
signed for secondary diffuse rays and scalar traversal. α can be as
high as 0.98. With such high possible values it becomes clear that
optimizing SAH alone is not enough and that even the BVH with
total minimum SAH is probably not the best performing one. A
further result especially important for the next section, where we
describe our algorithm, is that top-down greedy SAH based con-
struction algorithms implicitly reduce node overlap in a way that
also minimizes EPO, which gives them an innate superiority over
bottom-up or hybrid algorithms.

Finally, for SAH kd-tree construction Havran [5] examined a
possibly better prediction model than Equation 2 for subtree SAH
costs. He assumed that geometry is distributed uniformly in space,
that a spatial-median split strategy is used, and that the subtree root
has cubic bounds. He proved that the predicted cost is in O(N),
which renders the classic linear cost model (Equation 2) sufficient
under these assumptions. Havran further elaborates on minimum
total SAH cost kd-tree construction. This requires to recursively
evaluate SAH for each split candidate and the recursive evaluation
itself has to recursively apply recursive SAH evaluation. This re-
sults in a combinatorial explosion which Havran states to be NP-
hard and also translates to BVH construction. As a side note, a con-
sequence of the work of Aila et al. [1] would be that the minimum
total SAH cost kd-tree would probably also be the best performing
one as EPO is always zero for kd-trees.

3 ALGORITHM

The goal of the approach presented in this section is to give a better
predictor for split candidates than the classic linear model given in
Equation 2. To achieve this, the model has to improve both SAH as
well as EPO. So far greedy top-down builders are the only known
builders which, at least implicitly, minimize EPO. We want to take
advantage of this characteristic during construction. As EPO min-
imization only occurs implicitly during construction we cannot es-
timate it, e.g., just from the number of primitives and bounds of
the node to split. Thus we propose to actually construct temporary,
greedily built BVHs for the left and right side of each split candi-
date and use their recursive SAH values. The rating function for a
split becomes then

csplit = ct + plc(tl)+ prc(tr), (4)

where tl and tr are the roots of the temporarily constructed BVHs
and c is the recursive SAH function introduced in Equation 1. Note
that EPO does not directly appear in this rating function. We rely
on the correlation of SAH and EPO of the greedily top-down built
temporary BVHs to find the split with minimal EPO by finding the
split with minimal csplit. This also should implicitly guide global
construction into directions of lower EPO. Pseudocode for deter-
mining the best split is given in Algorithm 1.

Seen from a different angle, our approach can also be interpreted
as a middle ground between the NP-hard algorithm proposed by
Havran [5] and the recursive SAH evaluation on temporary spatial-
median split trees used by Popov et al. [10] in terms of computa-
tional complexity and BVH quality. The difference is, that we give
a more representative rating for the split candidates than an object-
median split as it much closer reflects the way the main BVH itself
is constructed. Object-median split construction does not incorpo-
rate SAH in any way. Thus, SAH values retrieved from temporary
BVHs constructed this way are an unreliable guide for construction
that aims at reducing SAH.

We will now focus on the algorithmic aspects of our approach,
which we call recursive SAH-based bounding volume hierarchy

input : node // node to split
input : ct // cost of a traversal step
input : ci // cost of intersecting a primitive
output: bestP // Best primitive partition
output: bestC // Best partition costs

1 (bestP,bestC)← (/0,∞)

2 partitions← generate partitions(node)
3 foreach partition ∈ partitions do
4 tl ← build temporary bvh(partition.left,ct ,ci)

5 tr ← build temporary bvh(partition.right,ct ,ci)

6 cl ← compute sah(tl ,ct ,ci)

7 cr ← compute sah(tr ,ct ,ci)

8 (pl , pr)← compute intersection probabilities(partition)
9 csplit ← ct + pl cl + prcr

10 if csplit < bestC then
11 (bestP,bestC)← (partition,csplit)

12 end
13 end

Algorithm 1: Pseudocode for determining the best node split with
recursive SAH.

construction (RBVH). The generate partitions function in
Algorithm 1 determines if the main BVH is constructed with plane-
sweeping or binning, though more general partitions such as in
Popov et al. [10] are possible, too. The build temporary bvh
function for temporary BVH construction can also use arbi-
trary construction schemes but we only consider top-down plane-
sweeping or binning construction. As a result we have four dif-
ferent RBVH algorithms with their own asymptotic computational
complexities. We will proceed with deriving complexities for all
four cases.

3.1 Computational Complexities
We first recap computational complexity of the standard SAH-
based construction. The common plane-sweeping algorithm imple-
mentation which sorts in every dimension needs O(n logn) steps to
find a split and O(n log2 n) steps in total. Adapting the concepts of
Wald and Havran [14] to BVHs allows to find a split in O(n) steps
and needs O(n logn) steps in total. Using binning construction in-
stead results in the same complexities as Wald and Havran, but with
a smaller constant. To simplify derivation of the complexities we
make the common assumption that a split produces two new nodes
with roughly the same number of primitives and that the number of
scene primitives N is a power of two.

3.1.1 Sweep-Sweep / Sweep-Binning Construction
We start with the derivation of the complexity of sweep-sweep con-
struction. For a node with N primitives a sweep based construc-
tion generates N− 1 candidate partitions. This results in 2(N− 1)
temporary BVHs that need to be constructed. With a Wald and
Havran [14] like approach each temporary BVH can be constructed
in O(n logn), where n is the number of primitives of each side of
a candidate partition. Using the hyper factorial H(x) = ∏

x
i=1 ii and

O(n logn) = O(lognn) we can define the recurrence relation T (N)
of the algorithm:

T (N) = 2

(
N−1

∑
i=1

i log i

)
+2T

(
N
2

)
= 2log(H (N))+2T

(
N
2

)
= 2log(H (N))+2

(
log
(

H
(

N
2

))
+2T

(
N
4

))
= 2

logN

∑
i=0

2i log
(

H
(

N
2i

))
(5)

Using the simple-to-derive upper bound log(H(x)) < x2 logx we
get:

T (N) = 2
logN

∑
i=0

2i log
(

H
(

N
2i

))

< 2
logN

∑
i=0

2i
(

N
2i

)2
log
(

N
2i

)

= 2
logN

∑
i=0

N22−i (log(N)− i)

= 2N2

(
log(N)

(
logN

∑
i=0

2−i

)
−

logN

∑
i=0

2−ii

)
→ O

(
N2 log(N)

)

(6)

As we only found an upper bound for log(H(x)) the asymptotic
complexity O(N2 logN) is not tight. Using log(H(x)) > x2/2 we
get the lower bound Ω(N2) for the asymptotic complexity.

Asymptotic complexity of binning-based temporary BVH con-
struction is the same as for full-sweep-based construction akin to
Wald and Havran [14]. Consequently the sweep-binning approach
has the same complexity as the sweep-sweep approach.

3.1.2 Binning-Binning / Binning-Sweep Construction

Let B = 2b,b ∈ N denote the number of bins for the main BVH.
The number of bins for the temporary BVHs is not needed, as it
does not appear in the complexity of binned construction. For sim-
plicity we assume that geometry is roughly distributed uniformly in
space such that a node with N primitives generates B bins with N/B
primitives in each bin after binning. This results in B−1 candidate
partitions and thus 2(B− 1) temporary BVHs that need to be con-
structed. Each temporary BVH itself is constructed in O(n logn),
where n is the number of primitives in the union of all bins on each
side of a candidate partition. This results in the following recur-
rence relation:

T (N) = 2

(
B

∑
i=1

i
N
B

log
(

i
N
B

))
+2T

(
N
2

)

= 2
logN

∑
i=0

2i

(
B

∑
j=1

j
N

2iB
log
(

j
N

2iB

))
∈ O(N log2 N +BN log(B) log(N)) = O(N log2 N)

(7)

We used the upper bound of logH(x) for the derivation. But it has
no effect on the asymptotic complexity. Appendix A describes the
full derivation. As we can see the binning/binning construction al-
gorithm has subquadratic complexity and thus more relevance in
practice. Though the number of bins asymptotically has no ef-
fect on runtime it linearly increased runtime in our experiments for
problem sizes we used in our tests. The reason for this is that the
BN log(B) log(N) of T is dominating up to a certain problem size.
We proceed with computing bounds for the number of input primi-
tives N for which the number of bins causes the second most dom-
inating term to dominate the N log2 N term. Using the lower bound
for logH(B) the second term becomes BN log(N). Equating the two
dominating terms of T for the upper and lower bound of logH(B)
we get:

N log2 N = BN log(N) (8)

N log2 N = BN log(B) log(N) (9)

Solving for N we get the bounds 2B < N < BB. As a result even
for the small number of B = 32 bins the BN log(B) log(N) term

dominates till 232 < N < 2160 primitives. Thus, B keeps impact-
ing construction time even for scenes which have a several orders
of magnitude higher number of primitives than current scenes in
production rendering.

Again, due to the same asymptotic complexity of binning and
sweep construction of temporary BVHs binning-sweep construc-
tion has the same complexity as binning-binning construction.

3.2 Spatial Splits
To also take advantage of spatial splits akin to SBVH from Stich
et al. [11] we cannot simply treat them as an additional tech-
nique to RBVH. SBVH uses the linear cost model from Equation
2 which is an upper bound on the cost model of RBVH (Equa-
tion 4). This does not allow us to compare split candidates from
those techniques in a meaningful way. We simply have to adapt the
generate partitions function to also generate spatial parti-
tions in order to remove this problem. This requires to temporarily
split primitives for each candidate partition, but potentially allows
to find even better split candidates. We included this variant into the
evaluation, where we call it recursive spatial split bounding volume
hierarchy (RSBVH).

4 EVALUATION

To evaluate our proposed construction algorithm we measured the
impact on SAH, EPO and traversal performance. To do so we
used a number of freely available test scenes (see Table 1). We
only evaluated the O(BN log2 N) binning-binning algorithm as the
superquadratic complexity of the sweep-sweep and and sweep-
binning algorithm proved to be impractical in practice. We also in-
cluded the RSBVH algorithm from Section 3.2 into the evaluation.
We chose the standard plane-sweeping approach as the baseline
construction algorithm to compare against for construction with-
out spatial splits. We did not include the general partitions with
recursive SAH evaluation on temporarily built object-median split
BVHs from Popov et al. [10] as the authors stated, that measured
performance was inferior to the standard plane-sweeping approach.

For construction with spatial splits we chose the SBVH algo-
rithm from Stich et al. [11]. SBVH allows to specify a parameter
which guides spatial split attempts. We follow the authors recom-
mendation and use a value of 10−5 for all scenes. Exceptions were
Hairball were we used 10−4 to avoid excessive primitive duplica-
tion and San Miguel where we had to use 10−6 for any spatial splits
to occur.

For the main BVH we have configurations with 256 bins and 64
bins for the number of object split bins. For RSBVH the number
of spatial bins is 128 and 64 for the configurations with 256 and
64 object split bins respectively. In all cases the number of bins
for temporary BVH construction is 32. SAH build constants were
set to (ct ,ci) = (1.2,1.0). With two baseline BVHs and the four
recursive-SAH based BVHs we have a total of six BVHs per scene.
All BVH algorithms and configurations along with abbreviations
we used for them are listed in Table 2.

We measure performance of front-to-back traversal with primary
rays and secondary diffuse rays to compare quality of the differ-
ent BVHs. To get implementation independent measurements we
measured the average number of traversal steps ns and the average
number of intersected triangles nt over a varying number of views
for each scene. Combined with the SAH constants we define the
average measured traversal cost

m = nsct +ntci. (10)

We also give results for predicted traversal cost with EPO accord-
ing to Equation 3. As our performance measure is slightly different
from the one used by Aila et al. we recomputed the scene depen-
dent α values together with the associated Pearson correlation coef-
ficients (see Table 1). We simply compute α by sampling the [0,1]

Table 2: List of algorithms and their configurations we used for eval-
uation. o and s denote the numbers of object and space partitioning
bins used for construction of the main BVH. t is the number of object
partitioning bins used for the construction of temporary BVHs.

Algorithm Abbr. o s t

Baseline Plane-Sweep BBVH - - -
Baseline SBVH SBVH - 128 -
Recursive SAH RBVH 256 - 32
Recursive SAH RBVH* 64 - 32
Recursive SAH + SBVH RSBVH 256 128 32
Recursive SAH + SBVH RSBVH* 64 64 32

range and selecting the α which gives the highest correlation. Cor-
relation of p with m for diffuse rays is well above 0.99 for most
scenes. Though only intended for secondary diffuse rays we also
computed a separate α for primary rays. Surprisingly, correlation
is also well above or close to 0.99 in this case except for the Soda
and Conference examples.

Our implementation of the algorithms only parallelized the for-
each loop in Algorithm 1. This is not optimal as it introduces global
synchronization between every node split. It is possible to paral-
lelize the whole construction process, though. Our test platform
is equipped with two Intel Xeon E5-2650-3930K octacore CPUs.
Construction timings are included in our results.

All performance measurements are collected in Table 4. To give
a more condensed view of the results Table 3 shows relative im-
provements averaged over all scenes with BBVH and SBVH as
baseline. For each scene measurements are sorted from best to
worst with respect to m of diffuse rays.

RSBVH managed to improve SAH, EPO and trace performance
in all scenes compared to BBVH and SBVH. Performance of pri-
mary and diffuse rays improves roughly by the same amount on av-
erage. RSBVH achieves 25% and RBVH 11% improvement. But
with an average improvement of 19% SBVH performs better than
RBVH. SBVH improves SAH only slightly compared to RBVH,
but outperforms RBVH in EPO improvements. On average RS-
BVH manages to improve on SBVH by 8% and 16% for SAH and
EPO. But improvements of up to 15% and 70% have been achieved.
In terms of trace performance RSBVH achieved improvements of
up to 19% over SBVH with an average of 9% for primary rays and
5% for diffuse rays.

Recursive-SAH based construction time is one to two orders of
magnitude higher than for the baseline. For the number of primi-
tives of our scenes runtime almost linearly increases with the num-
ber of bins. RSBVH* needs a similar or smaller amount of time
for construction than RBVH. At the same time its quality is almost
identical to RSBVH.

5 DISCUSSION

The proposed RBVH and RSBVH builders managed to reduce SAH
as well as EPO by a significant amount. Both algorithms do not
handle EPO reduction directly but rely on the implicit correlation
of SAH and EPO minimization of greedy top-down builders. Thus,
our results also reconfirm the results from Aila et al. [1]. Though
SBVH already gives high average reduction in SAH and more so in
EPO, RSBVH managed to push both reductions even further. Al-
though RBVH manages to reduce SAH and EPO well, the spatial
splits of SBVH prove to be a superior splitting strategy. Consid-
ering that RBVH only performs object splits, an EPO reduction of
up to 65% and 23% on average is quite impressive. If primitive
duplication is not desired RBVH might be an alternative to SBVH.

Table 1: Listing of all scenes used for benchmarking our algorithms along with their number of primitives. αp and αd are the EPO weights of
primary and diffuse rays along with their Pearson correlation coefficient for the measurements.

Babylon: 488199 Bubs: 1850084 Conference: 282675 Fairy: 172677 Hairball: 2850000

αp : 1.0 corr.: 0.994 αp : 0.0 corr.: 0.997 αp : 0.0 corr.: 0.884 αp : 0.56 corr.: 0.965 αp : 0.61 corr.: 0.995
αd : 0.53 corr.: 0.999 αd : 0.25 corr.: 0.997 αd : 0.4 corr.: 0.999 αd : 0.85 corr.: 0.946 αd : 0.73 corr.: 0.998

Powerplant: 294703 San Miguel: 10483092 Sibenik: 79937 Soda: 2169046 Sponza: 262141

αp : 0.42 corr.: 0.999 αp : 0.82 corr.: 0.988 αp : 0.66 corr.: 0.993 αp : 0.0 corr.: 0.576 αp : 0.39 corr.: 0.991
αd : 0.21 corr.: 0.999 αd : 0.93 corr.: 0.998 αd : 0.77 corr.: 0.998 αd : 0.7 corr.: 0.969 αd : 0.78 corr.: 0.999

Table 3: Average, minimum, and maximum relative reduction of SAH, EPO, as well as predicted (p) and measured (m) traversal cost of primary
and diffuse rays over all scenes. Algorithms are either compared against BBVH or SBVH as baseline. For each baseline, algorithms are sorted
from highest to lowest reduction in traversal cost of diffuse rays. The highest reduction of each attribute is highlighted per baseline.

Avg. (Min/Max) reduction (%)

Primary rays Diffuse rays

Baseline Algorithm SAH EPO p m p m

BBVH

RSBVH -21.5 -72.2 -35.1 -25.7 -36.4 -24.8
(-6.3 / -34.8) (-19.7 / -86.2) (-7.9 / -86.2) (-11.8 / -36.3) (-11.1 / -75.5) (-8.3 / -32.6)

RSBVH* -21.7 -72.4 -35.4 -23.7 -36.6 -24.5
(-6.3 / -36.6) (-21.2 / -86.3) (-8.0 / -86.3) (-2.1 / -33.6) (-11.6 / -74.1) (-6.9 / -32.4)

SBVH -14.4 -64.3 -27.6 -17.9 -29.6 -20.1
(+3.8 / -26.9) (-19.5 / -83.0) (1.1 / -83.0) (3.0 / -31.8) (-4.5 / -61.2) (-2.1 / -32.3)

RBVH -12.7 -23.2 -14.5 -12.0 -15.9 -10.7
(-2.7 / -33.3) (-1.4 / -65.3) (-2.7 / -33.3) (-2.3 / -28.3) (-2.7 / -36.3) (-1.9 / -24.5)

RBVH* -12.0 -23.0 -13.4 -11.5 -15.4 -10.3
(-2.4 / -33.3) (-2.6 / -66.0) (-2.4 / -33.3) (+0.8 / -28.1) (-2.4 / -36.3) (-2.5 / -24.4)

SBVH

RSBVH -8.2 -15.7 -11.6 -9.0 -10.6 -5.7
(-1.9 / -15.6) (+53.3 / -70.6) (-3.0 / -29.0) (-0.7 / -19.0) (+0.6 / -37.8) (-0.5 / -15.9)

RSBVH* -8.4 -16.0 -11.9 -6.7 -10.6 -5.2
(-1.3 / -14.7) (+40.6 / -71.1) (-3.1 / -25.9) (+7.8 / -19.8) (-2.0 / -33.2) (+4.0 / -19.1)

RBVH +2.6 +167.8 +50.7 +8.9 +24.4 +12.6
(+24.0 / -12.0) (+401.8 / +9.5) (+401.8 / -8.7) (+38.7 / -12.3) (+93.6 / -6.4) (+32.1 / -4.0)

RBVH* +3.5 +169.9 +55.6 +9.4 +25.1 +13.2
(+25.0 / -9.2) (+445.3 / +8.6) (+445.3 / -8.7) (+42.3 / -12.2) (+94.0 / -6.5) (+34.6 / -3.9)

The downside of our proposed algorithms is the large increase
in construction time, which makes them highly unsuitable for real-
time applications. Our largest test scene, San Miguel, took almost
4 hours to construct with RSBVH. However, global illumination
computations are one application that requires many intersection
tests and can thus offset the initial costs of acceleration structure
construction. We also have to remark that our implementation was
not heavily optimized and not entirely parallelized. With enough
implementational effort it should be possible to significantly in-
crease construction performance. Construction of temporary BVHs
could be completely offloaded to a GPU. Only primitive bounds
are needed for construction. When primitive bounds are reordered
according to the bins they fall into, the GPU can incrementally con-
struct all temporary BVHs without further reloading or reordering.
This also should give a significant performance boost.

An important observation we made in Table 3 is that the aver-
age predicted performance increase for diffuse rays is around 50%
higher than the average measured performance. This is surprising
as eight out of ten test scenes have a correlation coefficient of 0.997
or higher, and the remaining two scenes have a coefficient of 0.946
and 0.969. Under these circumstances we would expect the rela-
tive increases of predicted and measured performance to be almost
identical. After first suspecting an implementational fault we found
the explanation in the data. Having for example a look at the data
for diffuse ray performance of San Miguel in Table 4 we can see
that there is a huge discrepancy in predicted and measured relative
difference in performance. At the same time the correlation coeffi-
cient is 0.998 which is really good. The corresponding αd of 0.93
suggests that EPO dominates performance in this scene. But an αd
of 0.1 already explains the observed performance quite well. The
corresponding correlation coefficient of 0.715 makes it seem that
this is not a good choice. Though less pronounced this behavior
can be observed for all other scenes with high correlation coeffi-
cient. Thus, the Pearson correlation coefficient is not a good metric
for determining a good α and an alternative needs to be developed.

6 FUTURE WORK

There are several directions for future work. One direction would
be to include the general partitions from Popov et al. [10] into
generate partitions. But this time the recursive SAH of
greedy top-down SAH built BVHs is used. Combining our observa-
tions and the observations from Popov et al. [10], we expect further
reductions in SAH from this approach. But as the general partitions
allow to produce more node overlap, which in turn increases EPO,
than the sweep based algorithms we fear that the algorithm might
still produce inferior results.

Another direction that definitely should improve results even
further is to include spatial splits into build temporary bvh.
This only works in combination with RSBVH as the main construc-
tion algorithm has to be able to perform at least the same splits as
build temporary bvh.

A further exciting direction is to directly include EPO into the
construction process. We can readily compute EPO of a candidate
partition from the temporarily built BVHs combined with the node
to split. This would allow us to directly use Equation 3 to guide
construction into directions of low p. An unpleasant aspect of this
approach is that construction depends on prior knowledge of α . In
this regard fast and accurate determination of α for unknown scenes
is also an interesting problem.

ACKNOWLEDGEMENTS

The work of D. Wodniok is supported by the ’Excellence Initia-
tive’ of the German Federal and State Governments and the Gradu-
ate School of Computational Engineering at Technische Universität
Darmstadt. We would like to thank J. Good for Babylon, R. Vance
for Bubs, A. Grynberg and G. Ward for Conference, University of

Utah for Fairy, S. Laine for Hairball, UNC for Powerplant, G. M.
L. Llaguno for San Miguel, M. Dabrovic for Sibenik, UC Berkeley
for Soda, and F. Meinl for Crytek-Sponza.

REFERENCES

[1] T. Aila, T. Karras, and S. Laine. On quality metrics of bounding vol-
ume hierarchies. In Proc. HPG, 2013.

[2] B. Fabianowski, C. Fowler, and J. Dingliana. A Cost Metric for Scene-
Interior Ray Origins. In Proc. EG, 2009.

[3] K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster
HLBVH with work queues. In Proc. HPG, 2011.

[4] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies
for ray tracing. IEEE Computer Graphics and Applications, 1987.

[5] V. Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, 2000.
[6] T. Karras and T. Aila. Fast parallel construction of high-quality bound-

ing volume hierarchies. In Proc. HPG, 2013.
[7] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha.

Fast BVH construction on GPUs. CGF, 2009.
[8] D. J. MacDonald and K. S. Booth. Heuristics for ray tracing using

space subdivision. Vis. Comput., 1990.
[9] J. Pantaleoni and D. Luebke. HLBVH: Hierarchical LBVH construc-

tion for real-time ray tracing of dynamic geometry. In Proc. HPG,
2010.

[10] S. Popov, I. Georgiev, R. Dimov, and P. Slusallek. Object partitioning
considered harmful: space subdivision for bvhs. In Proc. HPG, 2009.

[11] M. Stich, H. Friedrich, and A. Dietrich. Spatial splits in bounding
volume hierarchies. In Proc. HPG, 2009.

[12] I. Wald. On fast construction of SAH-based bounding volume hierar-
chies. In Proc. IEEE IRT, 2007.

[13] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes
using dynamic bounding volume hierarchies. ACM Trans. Graph.,
2007.

[14] I. Wald and V. Havran. On building fast kd-trees for ray tracing, and
on doing that in O(N log N). In Proc. IEEE IRT, 2006.

A BINNING-BINNING CONSTRUCTION COMPLEXITY

In this appendix, we derive the result from Equation 7 in detail. We
used logH(B)< B2 logB.

T (N) =2

(
B

∑
i=1

i
N
B

log
(

i
N
B

))
+2T

(
N
2

)

=2

(
B

∑
i=1

i
N
B

log
(

i
N
B

))
+

4

(
B

∑
i=1

i
N
2B

log
(

i
N
2B

))
+4T

(
N
4

)

=2
logN

∑
i=0

2i

(
B

∑
j=1

j
N

2iB
log
(

j
N

2iB

))

=2
logN

∑
i=0

N
B

(
B

∑
j=1

j log
(

j
N

2iB

))

=2
logN

∑
i=0

N
B
(logH(B)+B logN− iB−B logB)

<2
logN

∑
i=0

N
B

(
B2 logB+B logN− iB−B logB

)
=2

logN

∑
i=0

(BN logB+N logN− iN−N logB)

=2
(

N log2 N +BN log(B) log(N)−

O(N logN)−O(log2 N)
)

∈O(N log2 N).

(11)

Table 4: Results for all scenes. ns, and nt is the average number of measured traversal steps and triangle intersection tests. p is the EPO
measure for BVH performance (Equation 3) and m the average measured traversal cost (Equation 10). For each scene builders are sorted from
smallest to largest m. The highest reduction of each attribute is highlighted per scene.

Primary rays Diffuse rays

Scene Builder Time(s) Dupl. SAH EPO ns nt p m ns nt p m

Babylon

RSBVH 457.87 69.94% 39.08 2.09 28.93 2.61 2.09 37.33 30.49 4.26 19.29 40.85
RSBVH* 212.90 70.22% 39.79 2.07 30.29 2.60 2.07 38.94 31.30 4.26 19.61 41.81
SBVH 18.65 40.28% 40.41 2.56 28.65 3.21 2.56 37.59 31.21 4.94 20.16 42.39
RBVH 261.86 - 49.22 12.86 38.77 5.34 12.86 51.86 41.08 6.71 29.77 56.01
RBVH* 88.89 - 49.67 13.98 40.11 5.34 13.98 53.48 41.92 6.74 30.58 57.04
BBVH 3.81 - 53.72 15.12 39.83 5.28 15.12 53.08 44.47 7.10 33.07 60.47

Bubs

RSBVH 1835.54 6.46% 15.81 1.85 23.10 2.91 15.81 30.63 24.82 3.95 12.37 33.73
RSBVH* 812.17 6.38% 15.37 1.95 23.61 2.62 15.37 30.96 25.31 3.87 12.07 34.24
RBVH 1509.98 - 16.16 2.91 24.26 2.85 16.16 31.96 26.09 4.17 12.90 35.48
RBVH* 476.78 - 16.16 2.84 24.33 2.84 16.16 32.04 26.13 4.17 12.89 35.53
SBVH 22.68 2.47% 17.70 1.76 26.58 2.98 17.70 34.87 27.42 4.05 13.78 36.95
BBVH 16.77 - 24.23 8.38 34.26 3.44 24.23 44.55 35.40 4.50 20.33 46.98

Conference

RSBVH* 114.19 83.34% 33.35 2.84 20.29 2.96 33.35 27.31 24.01 4.98 21.18 33.80
RSBVH 221.26 83.09% 33.37 2.93 20.54 2.93 33.37 27.58 24.18 4.97 21.23 33.99
SBVH 7.71 30.32% 38.32 3.53 23.16 6.26 38.32 34.05 26.39 7.26 24.44 38.93
RBVH 133.01 - 38.56 7.09 19.76 6.14 38.56 29.85 26.13 9.94 26.01 41.29
RBVH* 51.45 - 39.85 7.08 19.88 6.05 39.85 29.91 26.64 9.94 26.78 41.91
BBVH 2.16 - 46.44 9.79 25.44 6.44 46.44 36.97 32.16 10.40 31.82 48.99

Fairy

RSBVH 170.77 32.62% 31.27 2.70 26.49 4.47 15.16 36.26 29.96 8.22 7.07 44.17
RSBVH* 72.47 33.10% 31.29 2.65 27.19 4.48 15.14 37.11 30.55 8.21 7.03 44.87
RBVH 115.61 - 31.48 2.97 27.73 4.93 15.40 38.21 31.26 8.65 7.33 46.16
RBVH* 38.26 - 31.46 2.94 28.22 4.92 15.38 38.78 31.56 8.64 7.31 46.51
SBVH 3.53 9.37% 34.65 2.71 31.39 4.66 16.63 42.33 32.39 8.32 7.60 47.18
BBVH 1.22 - 33.38 3.37 30.12 4.97 16.45 41.12 32.88 8.73 7.96 48.19

Hairball

RSBVH* 1800.68 199.59% 384.90 8.15 77.75 26.87 154.71 120.17 69.20 29.93 109.50 112.97
RSBVH 4492.63 191.41% 386.54 8.31 74.61 25.83 155.44 115.37 72.72 30.09 110.05 117.36
SBVH 134.25 40.31% 427.92 28.25 80.56 44.48 183.72 141.15 76.74 47.48 135.76 139.56
RBVH* 510.46 - 455.34 36.83 83.73 55.45 199.63 155.93 78.66 57.35 149.41 151.74
RBVH 1700.80 - 453.97 36.72 81.95 54.95 199.03 153.29 79.30 57.40 148.96 152.57
BBVH 24.74 - 466.36 37.82 85.58 56.08 204.52 158.78 81.33 58.00 153.09 155.59

Powerplant

RSBVH* 130.18 148.76% 32.68 2.22 26.76 3.45 19.76 35.56 29.64 5.15 26.16 40.72
RSBVH 271.60 148.90% 32.37 2.28 26.84 3.49 19.61 35.70 29.79 5.23 25.93 40.98
SBVH 14.03 84.81% 33.12 3.10 27.10 3.79 20.39 36.30 30.07 5.78 26.70 41.86
RBVH 96.77 - 41.06 12.97 33.55 10.07 29.15 50.34 35.77 11.65 35.05 54.58
RBVH* 37.92 - 41.40 12.81 34.03 10.08 29.28 50.91 36.70 11.54 35.28 55.58
BBVH 2.09 - 43.93 13.16 35.98 10.05 30.88 53.22 38.89 11.78 37.34 58.45

San Miguel

RSBVH* 5588.86 21.81% 16.71 1.80 61.45 6.24 4.54 79.98 56.70 8.87 2.82 76.91
RSBVH 14273.60 21.73% 16.54 1.60 61.35 6.80 4.35 80.43 57.25 9.28 2.63 77.99
SBVH 216.34 13.71% 19.59 3.09 63.79 7.04 6.13 83.59 59.86 9.98 4.23 81.82
RBVH 8926.36 - 17.25 7.52 72.50 9.81 9.31 96.81 67.56 12.97 8.19 94.04
RBVH* 2952.33 - 17.82 7.49 72.18 9.71 9.39 96.32 68.32 12.87 8.20 94.85
BBVH 135.45 - 20.28 10.21 84.25 10.00 12.07 111.09 75.18 13.16 10.91 103.38

Sibenik

RSBVH* 31.79 80.53% 45.54 1.23 31.15 3.32 16.38 40.69 34.43 5.68 11.64 47.00
RSBVH 62.45 81.23% 46.51 1.23 31.82 3.31 16.71 41.49 34.82 5.70 11.87 47.49
SBVH 3.78 34.75% 47.42 1.55 33.53 3.82 17.24 44.06 34.46 6.36 12.33 47.71
RBVH* 11.25 - 48.79 4.11 36.58 4.47 19.39 48.37 37.02 7.10 14.61 51.52
RBVH 29.88 - 48.75 4.16 36.29 4.46 19.41 48.01 37.27 7.07 14.64 51.79
BBVH 0.48 - 53.64 5.00 40.43 4.39 21.63 52.90 39.68 7.01 16.43 54.63

Soda

RSBVH 2363.37 25.83% 61.09 2.34 29.63 3.52 61.09 39.07 28.67 4.92 19.78 39.33
SBVH 47.35 14.03% 66.52 2.68 31.05 3.48 66.52 40.75 29.42 4.98 21.64 40.29
RSBVH* 969.97 25.54% 61.21 2.47 33.90 3.24 61.21 43.92 30.98 4.74 19.92 41.91
RBVH* 480.51 - 66.22 9.80 29.82 4.77 66.22 40.55 32.11 6.84 26.56 45.37
RBVH 1432.23 - 66.15 10.17 30.12 4.84 66.15 40.99 32.07 6.91 26.80 45.39
BBVH 21.31 - 77.93 13.70 33.03 5.23 77.93 44.87 36.92 7.51 32.78 51.81

Sponza

RSBVH 259.73 58.20% 64.94 4.59 41.29 4.05 41.59 53.60 42.61 6.06 17.87 57.19
RSBVH* 115.17 58.01% 64.16 4.21 42.56 4.79 40.96 55.87 42.45 6.47 17.40 57.41
SBVH 9.77 29.16% 70.12 3.00 46.43 3.78 44.14 59.50 42.68 6.23 17.76 57.45
RBVH* 48.53 - 70.72 7.98 46.38 7.08 46.44 62.74 48.43 9.09 21.79 67.21
RBVH 138.12 - 70.86 7.85 47.77 7.16 46.48 64.49 49.21 8.90 21.71 67.95
BBVH 2.09 - 83.14 12.95 65.31 5.76 55.97 84.13 63.73 8.40 28.39 84.87

