Literature Research Primer

Alexander Hück

28.04.2021

Literature Research Primer | Alexander Hück | 1/29

Disclaimer

Literature Research Primer | Alexander Hück | 2/29

A guide to conduct (and write) a literature review, see [1].

Literature Research Primer | Alexander Hück | 3/29

- 1. Basic search strategies for scholarly sources
- 2. Basic usage of academic search engines

Approaching Literature Research

Literature Research Primer | Alexander Hück | 5/29

Specialized search engines typically offer more features and relevant scholarly sources compared to plain Google.

- Abstract preview
- Citing: What references are used in the article?
- Cited by: Who cited the article (i.e., more recent works)?
- What are the related articles?
 - Many exist, see Wikipedia list.
 - ▶ Google Scholar, IEEE Xplore, ACM ...

Literature search is an iterative process.

- 1. Breadth-first search using known terms
 - Open all papers that appear relevant from the results
 - Go a couple result pages deep
- 2. Focused deepening search
 - Identify relevance of previous results, then use their related work section and citations and read them
- Use step 2 to refine your search terms
- Go back to step 1 periodically

Taken from [2]:

- 0. Be aware of state-of-art works (in your area)
- 1. Snowballing: Look at their citations (Citing)
- 2. Backtracking: Look at works citing them (Cited by)
- 3. Use results of 1 and 2 and repeat the step 2 a few times.
- > This results in a network of important papers in your area

Independent of your starting point, familiarize yourself with the field-specific jargon during your search.

- In an article, use provided keywords and background/related work sections
- You can use these terms to help further focus your search
 - Machine learning vs. backprobagation vs. rprop AND backprobagation

Skim over key sections, ask yourself if the paper is relevant to you.

- Read the abstract
- Read the introduction and the conclusion
- (Read the paper)

Look up the (main or common) author(s) of relevant papers.

Often researchers focus on a few key areas (same topics)

Look at conference of relevant paper

- Conferences are organized by topic/domain
 - Other papers in the conference proceedings may be relevant

Google Scholar

Literature Research Primer | Alexander Hück | 12/29

Academic search engine that offers

Advanced search, see [3] and [4]

- Keyword search with operators (AND, OR, NOT) and functions (author, intitle)
- For each search result
 - Related articles : Similar articles
 - Cited by : Articles citing the result

Google Scholar

=	Google Scholar	algorithmic differentiation	<u>२</u>	SIGN If			
•	Articles	About 76.900 results (0,05 sec)		🄝 My profile 🔺 My librar			
	Any time	[BOOK] Evaluating derivatives: principles	and techniques of algorithmic				
	Since 2021	differentiation					
	Since 2020	A Griewank, A Walther - 2008 - SIAM					
	Since 2017	The advent of high-speed computers and sophistica					
	Custom range	computation of derivatives for functions defined by					
		more important. On one hand, the dependence of c					
	Sort by relevance	습 99 Cited by 3558 Related articles All 8 ve	rsions Import into BibTeX 🔊				
	Sort by date	Free Oreste has shead the later of the	41	and a second second second			
	our by date	Fast Greeks by algorithmic differentia	[PDF] semanticscholar.org				
		L Capriotti - Available at SSRN 1619626, 2010 - pa					
	include patents	Abstract We show how Algorithmic Differentiation Pathwise Derivative method for the calculation of op					
	include citations	main practical difficulty of the Pathwise Derivative n					
	Create alert	☆ 99 Cited by 79 Related articles All 7 versi					
		The connection between the complex-s	ten derivative approximation and	[PDF] academia.edu			
		algorithmic differentiation	[PDF] academia.edu				
		J.Martins, P Sturdza, J.Alonso - 39th Aerospace Sc					
		This paper presents improvements to the complexe					
		which increase its accuracy and robustness. These					
		algorithmic differentiation theory. The choice betw					
		습 99 Cited by 125 Related articles All 10 ve					
		[воок] The art of differentiating compute	[PDF] rwth-aachen.de				
		algorithmic differentiation					
		U Naumann - 2011 - SIAM					
		"How sensitive are the values of the outputs of my o					
		changes in the values of the inputs? How sensitive respect to changes in the values of the inputs? How					
		☆ 99 Cited by 315 Related articles All 6 vers					
		Related searches					
		adjoint algorithmic differentiation	algorithmic differentiation sensitivity				
		algorithmic differentiation principles and techniques	algorithmic differentiation python				
		algorithmic differentiation greeks	algorithmic differentiation implicit function theorem				
		algorithmic differentiation cva	algorithmic differentiation evaluating				
			derivatives				

Literature Research Primer | Alexander Hück | 14/29

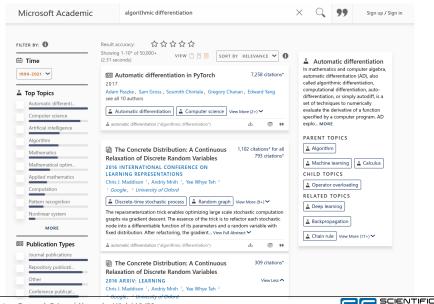
\equiv Google	Scholar	۹.	SIGN IN
Articles	About 141 results (0,05 sec)	< My profile	★ My library
Any time Since 2021 Since 2020 Since 2017 Custom range	High-performance derivative computations using codipack <u>M Sagebaum</u> , <u>T Albring</u> , <u>NR Gauger</u> - ACM Transactions on, 2019 - dl.acm.org There are several AD tools available that all implement different strategies for the reverse mode of AD. The most common strategies are primal value taping (mplemented eg by ADDLC-) can J Jacobian taping (implemented eg by Adept and dco(r+t), Particulary for	[PDF] acm.org Full View	

≡	Google Scholar	٩			
•	Articles	About 74 results (0,07 sec)			
	Any time Since 2021 Since 2020 Since 2017 Custom range	High-performance derivative computations using codipack Search within citing articles Effective adjoint approaches for computational fluid dynamics <u>GKW Kenway, CA Mader, P He</u> - Progress in Aerospace, 2019 - Elsevier			
	Sort by relevance Sort by date	The adjoint method is used for high-fidelity aerodynamic shape optimization and is an efficient approach for computing the derivatives of a function of interest with respect to a large number of design variables. Over the past few decades, various approaches have ☆ 99 Cited by 56 Related articles All 6 versions Web of Science: 25 ≫			
	✓ include citations	A review of automatic differentiation and its efficient implementation <u>CC Margossian</u> - Wiley interdisciplinary reviews: data mining, 2019 - Wiley Online Library			
	Create alert	Derivatives play a critical role in computational statistics, examples being Bayesian inference using Hamiltonian Monte Carlo sampling and the training of neural networks. Automatic differentiation (AD) is a powerful tool to automate the calculation of derivatives ☆ 99 Cited by 56 Related articles All 4 versions Web of Science: 6 ⊗			
		ADAPT: algorithmic differentiation applied to floating-point precision tuning <u>H Menon, MO Lam</u> , D Osei-Kuffuor Conference for High, 2018 - ieeexplore ieee.org HPC applications use floating point arithmetic operations extensively to solve computational problems. Mixed-precision computing seeks to use the lowest precision data type that is sufficient to achieve a desired accuracy, improving performance and reducing power ☆ 99 Cited by 22 Related articles All 5 versions ≫			

≡	Google Scholar	mpi Q
٠	Articles	About 23 results (0,04 sec)
	Any time Since 2021 Since 2020	High-performance derivative computations using codipack ✓ Search within citing articles
	Since 2017 Custom range	Towards compiler-aided correctness checking of adjoint MPI applications <u>A.Hidk</u> , J.Protze, J.P.Lehr, <u>C.Terboyen</u> 2020 IEEE/ACM 4th, 2020 - ieeexplore.ieee.org Alcorithmic Differentiation (AD) is a set of techniques to calculate derivatives of a computer
	Sort by relevance Sort by date	Augonumic Uniterentiation (AD) is a set of termingles to calculate derivatives of a computer program. In C++, AD typically requires () a type change of the built-in double, and (i) a replacement of all MPI calls with AD-specific implementations. This poses challenges on ☆ 99 Related articles All 3 versions ≫

Clicking on **Search within citing articles** filters down the total list according to your search terms, e.g., **mpi**.

Note: Does not apply to Related articles


Other Academic Search Engines

Literature Research Primer | Alexander Hück | 18/29

Microsoft Academic

Literature Research Primer | Alexander Hück | 19/29

Google Scholar vs. MS Academic

- Each paper has it's own subpage with Abstract
 - References, Cited by and Related articles
 - Not sure if Cited by can be searched
- Has a graph of related topics, i.e., parent and child topics
 - Algorithmic Differentiation (AD) -> child("Operator Overloading")
 - Note: A related topic is not only focused on AD

High-Performance Derivative Computations using CoDiPack

2019 ACM Transactions on Mathematical Software | Volume: 45, Issue: 4, pp 1-26 | DOI: 10.1145/3356900 Max Sagebaum, Tim Albring, Nicolas R. Gauger Kalesrbautem University of Technology

16 References 99 73 Citations*

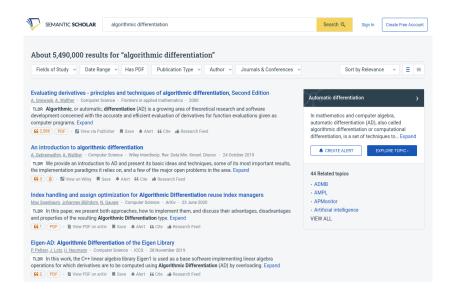
Abstract

There are several AD tools available that all implement different strategies for the reverse mode of AD. The most common strategies are primal value taping (implemented e.g. by ADOL-C) and Lacobina taping (implemented e.g. by Adept and dco/c++). Particulary for Jacobian taping, recent advances using oxpression templates make it very attractive for large scale software. However, the current implementations are either closed source or miss essential features and flexibility. Therefore, we present the new AD tool CoIDPack (Code Differentiation Package) in this paper. It is specifically designed for minimal memory consumption and optimal runtime, such that it can be used for the differentiation of large scale software. An essential part of the design of CoIDPack is the modular layout and the recursive data structures which not only allow the efficient implementation of the Jacobian taping approach but will also enable other approaches like the primal value taping or new research ideas. We will finally present the performance values of CoDIPack on a generic PDE example and on the SU2 code.

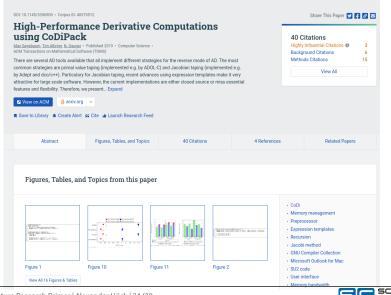
Other Links

Website(s): arxiv-vanity.com | arxiv.org | dblp.uni-trier.de | dl.acm.org

Other Versions High-Performance Derivative Computations using CoDiPack 2017 arXiv: Mathematical Software


Related Topics 0

▲ Expression templates ▲ Data structure ▲ Automatic differentiation View More (7+) ✔


Google Scholar vs. Semantic Scholar

- Each paper has it's own subpage with Abstract
 - References, Cited by and Related articles
 - Cited by can be searched
- Some papers also have list of topics including explanation
 - May be inaccurate

An Article: View

Literature Research Primer | Alexander Hück | 24/29

npi	Q	Show Filters	Clear	Sort by Relevance
πμ	Ч.	Show Filters	Glear	Soft by Relevance
wards compiler-aided correctness checking of adjoint MPI applications xander Hück, Joachim Protze, Jan-Patrick Lehr, Christian Terboven, C. Bischof, M. Müller + Compute	as Calanaa			
20 IEEE/ACM 4th International Workshop on Software Correctness for HPC Applications (Correctness				
🛿 Highly Influenced 🕔 🖶 View 5 excerpts, cites methods 🛛 🗮 Save 🔹 Alert 🔹 Research Feed				
Cites methods from "High-Performance Derivative Computations usi	-			
We apply the AD tool CoDiPack [11] and the AD MPI library MeDiPack [10] to the Co	ral LULESH benchmark.			
For efficiency, modern AD tools use template metaprogramming and inlining of calls	s for the derivative computa	ation, see [11] .		
Additional Excerpts				
We chose these candidates as (i) they provide modern C++ implementations of the MeDiPack is the most feature-complete adjoint MPI library, and, also, (iii) due to our			orogrammi	ing for efficiency, (ii)
3) Main time-stepping compute loop: The main compute loop is augmented with AF	PI calls to CoDiPack for see	ding and extrac	ting the de	erivative values.
				ick calls, and, also, (iii)

Conclusion

Literature Research Primer | Alexander Hück | 26/29

Literature search takes time, and is an iterative process.

- Reserve appropriate chunks of time
- Learn to skim articles, too much to read otherwise
- Make use of search engines with Cited by, Related articles, or date-based filtering
- For more tips see [2] and [5]

References

Literature Research Primer | Alexander Hück | 28/29

[1]

H. Snyder, "Literature review as a research methodology: An overview and guidelines," *Journal of Business Research*, vol. 104, pp. 333–339, 2019, doi: 10.1016/j.jbusres.2019.07.039.

[2]

"How to find related work efficiently." [Online]. Available: http://www.chaklam. com/node/15.

[3] "Google scholar help." [Online]. Available: https://scholar.google.com/scholar /help.html.

[4]

"How to use google scholar." [Online]. Available: https://www.wur.nl/en/articl e/How-to-use-Google-Scholar.htm.

[5]

"Tips for searching and managing related work." [Online]. Available: https://cms. cispa.saarland/inputinference/3/Tips_for_Searching_and_Managing_Rel ated_Work.

