

Atsushi Tamii (RCNP)

TU Darmstadt Topical Lecture Week April 15 - 19, 2024

Nuclear Excited Studied by proton scattering With a High-Resolution Magnetic Spectrometer

> Lecture I Nuclear Excited States, Giant Resonances (overview)

Self Introduction

Atsushi Tamii

Research Center for Nuclear Physics (RCNP), Osaka University

Concurrent positions at

- Institute for Radiation Sciences (IRS), Osaka University
- Department of Physics, School of Science, Osaka University

Research Topics:

- Study of nuclear excited states and giant resonances by using spectrometer Grand Raiden (GR) at RCNP
- Electric dipole (E1) response of nuclei by proton scattering
- PANDORA project: photo-nuclear reaction of light nuclei
- Nuclear astrophysics
- Detection of gamma-radiation from laser plasma

High-Resolution Spectrometer Grand Raiden and Large Acceptance Spectrometer

Outline of the Lectures

Monday, April 15

09:00 - 09:30 Introduction 09:30 - 10:30 Lecture 1: *Nuclear Excited States, Giant Resonances (overview)* 10:30 - 11:00 Coffee break 11:00 - 12:30 Lecture 2: *Experiments Using High-Resolution Spectrometer Grand Raiden* 12:30 - 12:45 Group picture 12:45 - 14:00 Lunch

Tuesday, April 16

09:00 - 10:30 Lecture 3: *Electric Response of Nuclei, Sum Rules* 10:30 - 11:00 Coffee break 11:00 - 12:30 Exercise 1: *Spectrometer Data Analysis, Startup, 1D/2D Histograms, Gate* 12:30 - 14:00 Lunch

18:30 Social Dinner

Wednesday, April 17

09:00 - 10:30 Lecture 4: *Nuclear Equation of State, Neutron Stars* 10:30 - 11:00 Coffee break 11:00 - 12:30 Exercise 2: *Calibrations, Excitation Energy, Cross Section* 12:30 - 14:00 Lunch

Thursday, April 18

09:00 - 10:30 Lecture 5: *Photo Reaction of Ultra-High-Energy Cosmic Rays* 10:30 - 11:00 Coffee break 11:00 - 12:30 Exercise 3: *Coincidence Analysis, Efficiency, Branching Ratio* 12:30 - 14:00 Lunch

Friday, April 19

09:00 - 10:30 Lecture 6: *Spin-Magnetic Response of Nuclei, n-p Correlation* 10:30 - 11:00 Coffee break 11:00 - 12:30 Lecture 7: *Fine Structure, Supplements, Summary* 12:30 - 14:00 Lunch

Shared Documents

Google shared drive

https://drive.google.com/drive/u/0/folders/12z-yvWinvoShI8A7Ql6j1KiLoZoYrEc4

google search: rcnp tamii

--> https://www.rcnp.osaka-u.ac.jp/~tamii/

The link to the above google share drive is placed at the top of the page.

menti free questions to Lecture I

2606 1227 at htts://menti.com

https://www.menti.com/altmxythmajj

¹²C Excitation Energy Spectrum ¹²C(p,p') at $E_p = 295$ MeV ⁴⁰⁰⁰⁰ $\theta = 0 - 0.5^{\circ}$ ^{1p-1h}

¹²C Excitation Energy Spectrum

¹²C Excitation Energy Spectrum

Theoretical Models of Nuclei

Few-Body ab initial calculations Faddeev, Gaussian Expansion Ab-initio Green Function Monte-Carlo, ... <u>Mean-Field Models</u>

Shell Model

Self-Consistent Mean Field Models

Hartree-Fock, Hartree-Fock-Bogoliubov, Random Phase Approximation 2nd RPA, Quasi-particle RPM

Anti-symmetryized Molecular Dynamics (AMD)

Alpha-Cluster Model

Liquid Drop Model, Fluid Model

Giant Resonances (overview)

Nuclear Collective Excitations

Single Particle Excitations

independent particle model

Collective Excitations

many nucleons contribute to an excited state

Vibrational Excitations (giant resonances)

Rotational Excitations

Collective Vibrational Excitations

Multipole

Collective Vibrational Excitations

Multipole

Light Ion Reactions and ΔS , ΔT , ΔL n ω, q A(a,b)B $\begin{array}{c} \Delta L \\ \Delta S \\ \Delta T \end{array}$ ⁹⁰Nb* ╋ π B a \boldsymbol{A} ⁹⁰Zr beam ejectile residual nucleus target р to be studied (detected) ω, q B A ω, q ΔL \boldsymbol{B} $\Delta L, \Delta S, \Delta T$ $\Delta S \\ \Delta T$ \overrightarrow{T}_i $\overrightarrow{T}_f = \overrightarrow{T}_i + \Delta \overrightarrow{T}$ $\vec{J}_f = \vec{J}_i + \Delta \vec{J}$ \vec{J}_i a A $\Delta \vec{J} = \Delta \vec{L} + \Delta \vec{S}$

Spin and Isospin

Nuclear interaction is the same for protons and neutrons (isospin independence)
 The assumption is not completely correct but is very well full-filled.

A neutron and a proton are considered to be an identical particle but have a different 3rd component of isospin. t,τ are vectors

Nucleon isospin operator: $t = \frac{\tau}{2}$ τ : Pauli matrices having the x,y,z components. T has the same matrix expression as σ but operates in the isospin-space.

$$\mathbf{t}^{2}|n\rangle = \frac{1}{2} \left(\frac{1}{2} + 1\right) |n\rangle \qquad t_{z}|n\rangle = +\frac{1}{2} |n\rangle$$
$$\mathbf{t}^{2}|p\rangle = \frac{1}{2} \left(\frac{1}{2} + 1\right) |p\rangle \qquad t_{z}|p\rangle = -\frac{1}{2} |p\rangle$$

The sign definition is of the field of nuclear physics, that is opposite in the filed of particle physics (I and $I_{z)}$

The Collective Response of the Nucleus: Giant Resonances

Isoscalar (In phase) $\Delta T = 0$

Isovector (Out of phase) $\Delta T = 1$

Dipole $\Delta L = 1$ (GDR)

Quadrupole $\Delta L = 2$ (GQR)

M. Itoh

Hitting a nucleus to oscillate: Operator

Wooden Hammers

Metalic Hammers

a hammer = an operator "probe"

A bell has its characteristic sounds depending on its structure. The sound also depends on the used hammer.

A nucleus has its characteristic sound (collective vibrations). The sound depends on the hammer (operator).

Operators

Operators to cause transitions for the ground state to a giant resonance Y: Spherical Harmonics

$$\begin{split} \Psi_{\text{GR}}^{\Delta L,\Delta S,\Delta T} &> = O^{\Delta L,\Delta S,\Delta T} | \Psi_{\text{g.s.}} > & \text{mathematical expansion of a "shape"} \\ O^{\Delta L,\Delta S=0,\Delta T=0} &= \sum_{i=1}^{A} r_i^{\Delta L} Y_{\Delta L}(\hat{r}_i) & \text{is pans nucleons} \\ O^{\Delta L,\Delta S=1,\Delta T=0} &= \sum_{i=1}^{A} r_i^{\Delta L} Y_{\Delta L}(\hat{r}_i) & \text{Magnetic (spin)} \\ O^{\Delta L,\Delta S=0,\Delta T=1} &= \sum_{i=1}^{A} r_i^{\Delta L} Y_{\Delta L}(\hat{r}_i) & \text{Isoscalar} \\ O^{\Delta L,\Delta S=1,\Delta T=1} &= \sum_{i=1}^{A} r_i^{\Delta L} Y_{\Delta L}(\hat{r}_i) & \text{Isovector} \\ \end{split}$$

Operators

Operators to cause transitions for the ground state to a giant resonance

 $|\Psi_{\rm GR}^{\Delta L,\Delta S,\Delta T}\rangle = O^{\Delta L,\Delta S,\Delta T} |\Psi_{\rm g.s.}\rangle$

Giant resonance is not a single state

door-way state

transition matrix element for the *i* th excited state:

cross section of the *i* th excited state:

$$\left\langle \Psi_{\text{g.s.}} \right| O^{\Delta L, \Delta S, \Delta T} \left| \Psi_{i} \right\rangle$$

$$\propto \left| \left\langle \Psi_{\text{g.s.}} \right| O^{\Delta L, \Delta S, \Delta T} \left| \Psi_{i} \right\rangle \right|^{2}$$

Type of Giant Resonances

杉本・村岡「原子核構造学」

(Isoscalar) Giant Monopole Resonance (GMR)

breathing mode

Type of Giant Resonances

T. Li et al., PRC99, 162503(2007)

Type of Giant Resonances

杉本・村岡「原子核構造学」

Isoscalar Giant Dipole Resonance (ISGDR)

by M. Itoh 29

Type of Giant Resonances

(Isovector) Giant Dipole Resonance (GDR) $rY_1\tau$

$$(\Delta T, \Delta S) \quad (0, 0) \qquad (1, 0) \qquad (0, 1) \qquad (1, 1)$$

単極振動 $\Delta L = 0$ $(0, 0)$ $(1, 0)$ $(0, 1)$ $(1, 1)$
双極振動 $\Delta L = 1$ $(p+n)$ $(p+n)$

1944 prediction of GDR by A. Migdal 1947 experimental discovery of GDR

. . .

杉本・村岡「原子核構造学」

(Isovector) Giant Dipole Resonance (GDR)

by P. Adrich₃₁

(Isovector) Giant Dipole Resonance (GDR)

AT et al., PRL107, 062502 (2011) 32

Type of Giant Resonances

Spin Dipole Resonance (SDR)

杉本・村岡「原子核構造学」

 $rY_1\sigma$

 $rY_1\sigma\tau$

¹²C Excitation Energy Spectrum ¹²C(p,p') at $E_p = 295$ MeV ⁴⁰⁰⁰⁰ $= 0-0.5^{\circ}$

1+ state

1+ state

¹²C Excitation Energy Spectrum

¹²C Excitation Energy Spectrum

Type of Giant Resonances

Gamow-Teller Giant Resonance (GTGR)

杉本・村岡「原子核構造学」

Gamow-Teller Giant Resonance (GTGR)

Figure 10 Zero-degree (p,n) spectra for medium A-mass nuclei at the indicated incident energies.

原子核の多様な振動モード:巨大共鳴

Isoscalar Giant Quadrupole Resonance (ISGQR)

杉本・村岡「原子核構造学」

Isoscalar Giant Quadrupole Resonance (ISGQR)

by M. Itoh 47

原子核の多様な振動モード:巨大共鳴

Isovector Giant Quadrupole Resonance (IV-GQR)

杉本・村岡「原子核構造学」

IV Giant Quadrupole Resonance (IVGQR)

by P. Adrich

menti free questions to Lecture I

2606 1227 at menti.com

https://www.menti.com/altmxythmajj

An exercise

Below, photo-absorption cross section data of ⁹⁰Zr are plotted.

The structure is recognized as isovector GDR, i.e. the dipole oscillation between neutrons and protons.

- Estimate the following quantities of the GDR oscillation
- angular frequency (ω)
- Photo-absorption Cross Section(mb) T. Kawano et al., Nuclear Data Sheets 163, 109 (2020) 300 • damping constant (τ) Berman (1967 **IAEA 1999** IAEA 2019 **GDR** 200 (a) 90 Zr(γ ,abs) 100 n 0 Damping of IVGDR 20 10 30 40 0 **Excitation Energy**

51

An exercise

Below, photo-absorption cross section data of ⁹⁰Zr are plotted.

The structure is recognized as isovector GDR, i.e. the dipole oscillation between neutrons and protons.

- Estimate the following quantities of the GDR oscillation
- angular frequency (ω)
- damping constant (τ)

 $E = \hbar \omega$

width Γ (~FWHM)

$$\Gamma\tau\sim\hbar$$

uncertainty principle $\hbar c = 197 \text{ MeV} \cdot \text{fm}$ $c = 3 \times 10^8 \text{ m/s}$

