Nuclear Excited Studied by proton scattering With a High-Resolution Magnetic Spectrometer

Lecture II

Experiment using High-Resolution Spectrometer Grand Raiden

82420953 at https://menti.com https://www.menti.com/al2r5brnmtdj

How to study the microword

light-ion (proton) scattering experiment using an accelerator and a spectrometer

Research Center for Nuclear Physics

Spectrometer Grand Raiden

Ion-Beam Production

Production of an ion bem -ECR ion source

Ion Production

Electrons are removed by the hit of electron

ECR (Electron Cyclotron Resonance) Ionizer

Electrons are accelerated by microwave (cyclotron motion)

Electrons are trapped between the strong magnetic fields. Ions are trapped by the attractive force with the electrons.

A polarized proton（deuteron）beam

Outline

HIPIS

 atomic type

Extraction

TIPS

－2．45 GHz is often used due to commercial availability and the law on electromagnetic wave
－A microwave oven often uses 2.45 GHz even though it does not match the characteristic frequency of water

dissociation
produce hydrogen atomic gas
（dissociator）
－Selection of electron spin with inhomogeneous magnetic field （Stern Gerlach）
－RF transfer of the electron spin to nuclear spin by RF（adiabatic fast passage）
－Remove electrons by ECR

Essences

－mag．field at ionization defines the nuclear spin－orientation
－spin follows the mag．field before that

A polarized proton（deuteron）beam

Outline ．produce hydrogen atomic gas

HIPIS

 atomic type

Extraction
Electrostatic Lenses
※Two sets of sextupole magnet and RF－transition for deuteron polarization （dissociator）
Selection of electron spin with inhomogeneous magnetic field （Stern Gerlach）
－RF transfer of the electron spin to nuclear spin by RF（adiabatic fast passage）
－Remove electrons by ECR

Essences

－mag．field at ionization defines the nuclear spin－orientation
－spin follows the mag．field before that

A polarized proton（deuteron）beam

Outline ．produce hydrogen atomic gas

HIPIS

atomic type

Extraction
Electrostatic Lenses

Energy diagram of an hydrogen atom in a magnetic field （Breit－Rabi Diagram）
strong Field Sextupoles
RFT Units
 RF Power （dissociator）
－Selection of electron spin with inhomogeneous magnetic field （Stern Gerlach）
RF transfer of the electron spin to nuclear spin by RF（adiabatic fast passage）
－Remove electrons by ECR

Essences

－mag．field at ionization defines the nuclear spin－orientation
－spin follows the mag．field before that

A polarized proton（deuteron）beam

Outline • produce hydrogen atomic gas

HIPIS

atomic type

Extraction
Electrostatic Lenses

Essences

－mag．field at ionization defines the nuclear spin－orientation
－spin follows the mag．field before that
 （Stern Gerlach）
－RF transfer of the electron spin to nuclear spin by RF（adiabatic fast passage）

Remove electrons by ECR

 （dissociator）－Selection of electron spin with inhomogeneous magnetic field

polarized proton beam ionization

atomic beam

Acceleration of lons

AVF（Azimuthally Varying Field）Cyclotron

AVF Cyclotron

- Ions make rotation in a uniform magnetic field The rotation frequency is independent from the energy (isochronous)
- Ions are accelerated (twice in a turn) by the electric field between the two Dee electros

Essences

- uniform mag. filed for a a cyclotron

- time increasing mag. field for a synchrotron

AVF Cyclotron

AVFビームのターンセパレーションの向上

God Eneru: 200 MV
total accel. $=2$ Eneru

Beam Lines

Dipole (Bending) Magnets

Bending magnet

- Change the beam direction
- Analysis of the particle momentum

$$
p=0.3 Q B \rho \begin{aligned}
& \substack{\mathrm{p}(\mathrm{GeV} / \mathrm{C}) \\
\mathrm{q}(\mathrm{e}) \\
\mathrm{B}(\mathrm{~T}) \\
\mathrm{r}(\mathrm{~m})}
\end{aligned}
$$

Quadrupole Magnets

Combine two or three quadruple magnets
vertical trajectory
\Rightarrow focuses the beam both for horizontal and vertical directions

High Resolution Beam-line (WS)

Spectrometer

Spectrometer Grand Raiden and LAS

Grand Raiden Spectrometer

Grand Raiden Spectrometer

Dipole（Bending）Magnet

$\frac{p}{Q}=0.3 B \rho$
p ：momentum $[\mathrm{GeV} / \mathrm{C}]$
Q ：charge［］
B：magnetic field［T］
ρ ：bending radius［ m ］

A spectrometer maps a momentum to a position

$$
\begin{aligned}
\underset{\text { dispersion }}{\text { momentum }} & =\frac{\Delta x}{\delta} \\
\delta & \equiv \frac{\Delta p}{p_{0}}
\end{aligned}
$$

momentum dispersion of Grand Riden： 15.4 m
When analyzing 295 MeV proton in 17 keV resolution
する場合
$17 \mathrm{keV} / 295 \mathrm{MeV}=6 \times 10-5$
\rightarrow momenutm deviation $\delta=3 \times 10^{-5}$
\rightarrow position difference $\Delta x=0.5 \mathrm{~mm}$

Grand Raiden Spectrometer for different momentum

Momentum

a proton beam analysis

Grand Raiden Spectrometer for different incidence angle

"focusing"

a proton beam

Dispersion Matching for high-resolution

Standard mode (achromatic)

A beam has an energy spread
\rightarrow The energy resolution is limited
by the energy spread.

momentum matching
momentum dispersion

The beam momentum is analyzed before the target point.
The momentum is mapped on the horizon position on target \rightarrow matched with the horizontal magnification of the spectrometer

angular matching
momentum dispersion angular dispersion The incidence angle is matched with the momentum
\rightarrow the angle is matched at the focal plane good angular resolution

0 -degree proton scattering experiment setup

0 -degree proton scattering experiment setup

0 -degree proton scattering experiment setup

0 -degree proton scattering experiment setup

primary beam

0 -degree proton scattering experiment setup

primary beam

0 -degree proton scattering experiment setup

primary beam
scattered proton

0 -degree proton scattering experiment setup

primary beam
scattered proton

0 -degree proton scattering experiment setup

Detectors, Electronics

Plastic Scintillation Counter (PS)

Mechanism

- Excite molecules in the scintillator by charged particle passage
- Emit light when de-excited (scintillation light)s
- Collect light, convert to electrons, and multiply the electrons (PMT)

Essences

- The energy loss of a charged particle is proportional to the square of the incident particle charge and inversely

${ }^{12} \mathrm{C}\left(p, p^{\prime}\right)$ at $\theta=8^{\circ}$ proportional to the square of the particle velocity $\left(\Delta E \propto z^{2} v^{-2}\right)$
- Good timing resolution(<100 ps). Energy resolution is not good (100-200 eV for an excitation)。
- Cheap, can be big, good for shaping
- Particle identification by the wave form analysis(n, $r, \mathrm{p}, \mathrm{d}, \mathrm{etc})$. Exploiting the fact that longer-decay comonent is more excited for higher energy-loss density

Energy loss in PS1 (Channel)

Applications

- Trigger detector
- Energy loss detector

Tips

- Alcohol is not good for plastic scintillators
- Some people insist that they can recognize the scintillation light in their eyes

Focal Plane Detectors

Figure 2.5: The standard focal plane detectors and the Focal Plane Polarimeter (FPP) at the focal plane of the spectrometer in the setup of the 0° experiment.

Plastic Scintillator:
Quick response: ~10 nsec

Plastic Scintillator
energy loss detector, timing detector, and trigger detector charged particle

Good timing resolution: $\sim 100 \mathrm{psec}$
Good ($\sim 100 \%$) detection efficiency for charged particles
Inexpensive, can be thin ($>=0.1 \mathrm{~mm}$), easy to shape

Vertical Drift Chamber (Muliti-Wire Drift Chamber)

MWPC-X
MWPC-U
MWPC-V

[^0]
Multi-wire Drift Chambers

Multi-wire Drift Chambers

Mechanism

- Electron-ion pairs are produced along the trajectory of a charged particle
- Electrons drift to the anode wires with a nearly constant velocity ($\sim 50 \mu \mathrm{~m} / \mathrm{nsec}$)
- Electrons are accelerated at close to an anode wire. \longrightarrow Produce more electrons. \rightarrow Avalanche effect. ~105-6. Ions are also created.
- Ions move to a cathode foil, inducing the signal in the anode wires.
- The anode wire signals are pre-amplified, discriminated, and time-recorded.
- Timing signals are used for determination of the position and incidence angle of charged particles.

Essences

- High-position resolution (0.2-0.5mm) covering large area
- Gas material density is low. Charged particle go straight with negligible deflection by collision.
- Designed to have a nearly constant drift velocity of electrons.
- Signal size is proportional to the energy loss (proportional counter)

Multi-wire Drift Chambers

TIPS

- G. Charpak got a Nobel prize for developing MWDCs.

A student Sauli was excellent. See Sauli's papers to learn MWPCs and MWDCs.

- A type of mixed gas is commonly used (magic gas)

Inert gas is for producing electron seeds (no molecular oscillation of rotation to consume energy).

- Quencher gas (e.g. isobutane: C 4 H 10) absorb X -rays from the de-excitation of the inert gas. Efficient absorption of X-rays due to molecular oscillation of rotations.
- Without quenching gas, X-ray reaches to cathode an create photo-electrons. The electron drift to the anode wire and make signals. It can cause a positive-feedback to produce a very large signal that is not proportional to the energy loss (Geiger Mueller counter)
- A small amount of alcohol (iso-propyl alcohol) is mixed in the gas for longer life-time of the detector. The quencher gas is ionized and drift to the cathode and stack on the surface on the cathode by polymetrization. Alcohol quickly exchange electrons with the quencher gas ions and drift to the cathode but does not make polymetrization.

Focal Plane Polarimeter (FPP)

Figure 3.5: Structure of the MWPCs.

Table 2.3: Specification of the MWPCs.

	MWPC1,2	MWPC3	MWPC4
Wire configuration	$\mathrm{X}\left(0^{\circ}\right)$	$\mathrm{X}\left(0^{\circ}\right), \mathrm{U}\left(-45^{\circ}\right), \mathrm{V}\left(+45^{\circ}\right)$	
Active area	$760^{\mathrm{W}} \times 200^{\mathrm{H}} \mathrm{mm}$	$1400^{\mathrm{W}} \times 418^{\mathrm{H}} \mathrm{mm}$	$1400^{\mathrm{W}} \times 600^{\mathrm{H}} \mathrm{mm}$
Number of wires	384	704 (X), 640 (U,V)	704 (X, U, V)
Anode-cathode gap	6 mm		
Anode wire spacing	2 mm		
Anode wires	$25 \mathrm{~mm} \phi$ gold-plated tungsten wire		
Cathode film	$10 \mu \mathrm{~m}$ carbon-aramid		$6 \mu \mathrm{~m}$ aluminized mylar
Cathode voltage	-4900 V	-4700 V	
Gas mixture	argon:iso-butane:freon:iso-propyl-alcohol $=66: 33: 0.3:^{1}$ LeCroy 2735PC and Nanometric N277-C3 LeCroy PCOS III		
Pre-amplifier			
Digitizer			

- Measure the second scattering angular distributions \longrightarrow measure polarization

Trigger Circuit, Data Acquisition System

Mechanism

- Decision of DAQ by a trigger created from fast detectors (PS)
- Aquire timing (TDC) and signal size (ADC) information

TIPS

- Recent digital acquisition system record a wave form a detector signal.
- The data size become much larger, more complicated analysis?
- At RCNP with Grand Raiden, 1TB of data are taken typically for a beam time of 3-7 days.

Targets

- pure foils with a thickness of $10-100 \mu \mathrm{~m} \sim 100 \mu \mathrm{~m}$.
- a size of 1-2 cm
- isotopically enriched (expensive)
- various types of targets dep. on the material

Sulfur: H. Matsubara et al., NIMB 267, 3682 (2009)

gas target : H. Matsubara et al., NIMA 678, 122 (2012)

Perform Experiments

PANDORA exp. in October 2023)

PANDORA exp. in October 2023)

Experimental setup

 trouble shootings

Beam Tuning, Calibrations

- It takes 1-2 days for tuning a high-quality highresolutions beam
- Check all the detectors are working properly.
- Optimize measurement conditions, DAQ
- Online monitoring of data, trouble shooting
- Take data for calibrations
- Record everything in the logbook!

TIPS

- Always troubles happen in experiments.
- In my feeling, a good experiment is suffered from more troubles
- Fixing problems are indispensable skill of experimentalists. It is a good chance for showing the skill when one a problem happens.
finding a problem
localizing the problem guess and prove the origin of the problem fixing the problem or alternative measure?

Beam spot in the dispersive mode

Data Analysis

Calibration of the Scattering Angle using a sieve-slit

a sieve-slit was placed at the entrance of GR

Sieve Slit Calibration (Scattering Angle)

Sieve slit data by using ${ }^{58} \mathrm{Ni}\left(p, p_{0}\right)$ reaction at 16°

Horizontal scattering angle resolution:

$$
\Delta \theta=0.15 \mathrm{deg}
$$

Vertical scattering angle resolution depends on the F.P. position $\Delta \phi=0.5$ deg at lower E_{x}.
0.8 deg at higher E_{x}.

horizontal scattering angle [deg]

horizontal scattering angle [deg]

Higher-order corrections of the spectrometer ion-optics for high-resolution measurement

Background estimation, subtraction

simplified method

Correction of spin-rotation in the spectrometer

$$
\begin{array}{ll}
\theta_{p}=\gamma\left(\frac{g}{2}-1\right) \theta_{b} & \begin{array}{l}
\theta_{\mathrm{p}}: \text { precession angle with respect to the beam direction } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { : Lande's } \text { : gamma in special relativity }
\end{array}
\end{array}
$$

Data Analysis

High-resolution Excitation Energy Spectra

[^0]: ${ }^{1}$ Mixed with the argon gas in $2^{\circ} \mathrm{C}$ vapor pressure.

