Nuclear Excited Studied by proton scattering With a High-Resolution Magnetic Spectrometer

Lecture V Photo Nuclear Reaction of Ultra-High-Energy Cosmic Rays

3537 9704 at https://menti.com/ https://www.menti.com/alaivzqmrgqy

Neutron Skin Thickness

See e.g. a review paper by James M. Lattimer et al., Particles 2023, 6, 30-56.

Figure 8. Neutron skin measurements [17,18,70–81] Horizontal dashed lines denote ± 1 standard deviatic other than CREX or PREX I+II.

Table 4. ^{208}Pb neutron skin measurements and theoretical predictions with 1σ uncertainties

²⁰⁸ Pb Experiment	Reference	r_{np}^{208} (fm)
Coherent $\pi^0\gamma$ production	[77]	$0.15^{+0.03}_{-0.04}$
Pionic atoms	[73]	0.15 ± 0.08
Pion scattering	[73]	0.11 ± 0.06
\bar{p} annihilation	[78,79]	0.18 ± 0.06
Elastic polarized p scattering	[70]	0.16 ± 0.05
Elastic polarized p scattering	[80]	$0.211^{+0.054}_{-0.063}$
Elastic <i>p</i> scattering	[81]	0.197 ± 0.042
Elastic p scattering	[72]	0.119 ± 0.045
Parity-violating e^- scattering (PREX I+II)	[17]	0.283 ± 0.071
²⁰⁸ Pb experimental weighted mean		0.166 ± 0.017
Pygmy dipole resonances	[82]	0.180 ± 0.035
r_{np}^{Sn}	[83]	0.175 ± 0.020
Anti-analog giant dipole resonance	[84]	0.216 ± 0.048
Symmetry energy ²⁰⁸ Pb	[85]	0.158 ± 0.014
Dispersive optical model	[86]	$0.18^{+0.25}_{-0.12}$
Dispersive optical model	[67]	0.25 ± 0.05
Coupled cluster expansion	[66]	0.17 ± 0.03
r_{nv}^{48}	[63,64], this paper	0.128 ± 0.040
α_D^{208}	[62], this paper	0.154 ± 0.019
α_D^{208}	[20,64], this paper	0.188 ± 0.017
²⁰⁸ Pb theoretical weighted mean		0.170 ± 0.008

Photo-Reaction of Light Nuclei and Ultra-High-Energy Cosmic Rays

Ultra High Energy Cosmic Rays (UHECRs)

Primary Cosmic Rays: Flux and Composition

Ζ	Element	F	Z	Element	F
1	Н	550	13 - 14	Al-Si	0.19
2	${\rm He}$	34	15 - 16	P-S	0.03
3 - 5	Li-B	0.40	17 - 18	Cl-Ar	0.01
6-8	C-O	2.20	19 - 20	K-Ca	0.02
9 - 10	F-Ne	0.30	21 - 25	Sc-Mn	0.05
11 - 12	Na-Mg	0.22	26 - 28	Fe-Ni	0.12

composition relative to oxygen at 10.6 GeV/A

High Energy Cosmic Rays

TeV

UHECR Observatories (Auger and TA)

Observation of UHECRs

Extended Air Shower (EAS)

Hadronic process

primarily produces mesons (π or K) p(A) +A $\rightarrow \pi$, K, and nuclear fragments

$$\begin{aligned} \pi^{\pm} &\to \mu^{\pm} + \nu_{\mu} \left(\overline{\nu_{\mu}} \right) \\ \pi^{0} &\to 2\gamma \\ \gamma &\to e^{+} + e^{-} \\ e^{\pm} + A &\to e^{\pm} + A + \gamma \end{aligned}$$

Electromagnetic Shower

(Osaka Univ. \rightarrow) Pierre Auger Observatory

Pierre Auger Observatory

[aug15, aug04]

The Pampa Amarilla site $(35.1^{\circ}-35.5^{\circ} \text{ S}, 69.0^{\circ}-69.6^{\circ} \text{ W}$ and 1300-1400 m asl) lies in the south of the Province of Mendoza, Argentina, close to Malargüe (pop. 18000) and 180 km south west of San Rafael (pop. 100000). It encompasses an area of 3100 km² (see Fig. 1a).

Pierre Auger Observatory

©google map

Pierre Auger Observatory Surface Detector (SD)

$3,000 \text{ km}^2$ (~60km ϕ)

1,600 water Cherenkov detectors (SD) in a polyethylene tank mean distance 1.5 km on triangular grid

 $\sim 0.5 \text{ SD} / \text{km}^2$

High-purity water in three-layers of polyolefin liner $(140+28+178\mu m)$

 $10 \text{ m}^2 \text{ area} \times 1.2 \text{ m depth}$

Three PMT's

Hamamatsu R5921 8"¢ or Photonis XP1802 9"φ

FADC 40 MHz

Time recording calibrated by GPS. $(\sigma=7.24 \text{ ns})$

100% running efficiency measured from 2004 Fig. 2. (a) A photograph of an EA water tank; (b) schematic view of an EA tank; (c) the Yagi antenna and the solar power array.

[aug04]

Pierre Auger Observatory (Fluorescence Detector) FD

24 fluorescence detector telescopes at 4 sites

with spherical mirror (3.5m×3.5m) and (440) PMT camera

UV light 310-390 nm fluorescence from nitrogen in the air

Continuous digitization by 10MHz 12 bit ADC

100 Hz recording using sum trigger and threshold (20µsec)

Calibrated by YAG-laser (355nm) from CLF and XLF

~15% running efficiency with clear sky no moon

Fig. 8. Basic topological patterns of triggered pixels used in the second level trigger.

30° azimuth×28.6° elevation field of view per telescope

[aug15, aug04]

(Auger \rightarrow) Telescope Array

ラス・ロイカス Las Loicas

Telescope Array

[tok11, abu12,]

FD

12 fluorescence detector telescopes at 3 sites

Primary mirror $(3.3m\varphi)$ and (16×16) PMT camera 18° azimuthal 15° elevation field of view / telescope

Telescope Array

700 km² (~30kmφ)

507 plastic scintillation counter of 3m²×1.2cm×2 layers

mean distance 1.2 km on square grid

 ${\sim}0.7~SD\,/\,km^2$

104 wavelength-shifting fibersPMT 9124SA; Electron Tubes Ltd.12bit 50 MHz FADCTime recording calibrated by GPS.

[tok11, abu12,]

Analysis Methods

Analysis Methods Event Reconstruction

Fig. 33. Geometry reconstruction of an event observed by four telescopes and the surface detector.

Absolute energy: sum of the FD signal with correction atmospheric attenuation escaped events (muon, neutrino) ~10% systematic uncertainty: 14%

The signal size (θ =38°) of SD: correlated with CR energy, calibrated to FD.

Direction of CR: time difference of SD signals

VEM: Vertical Equivalent Muon

Analysis Methods

FD

X_{max}:

atmospheric depth by FD data where the maximum number of particles is the largest.

 $< X_{max} >: mean of X_{max}$

 $\sigma(\langle X_{max} \rangle)$: standard deviation of X_{max}

for the events of interest

 $\langle X_{max} \rangle$ and $\sigma(\langle X_{max} \rangle)$ are predicted to be correlated with the mass (*A*) of the primary CR.

The correlation depends on the hadronic shower model.

Primary beam energy is above where accelerate laboratory data are available. $_{24}$

[anc19]

X_{max} distribution predictions

Composition

Mass Composition

[gor18]

Pierre Auger Observatory

The fraction of proton increases up to $10^{18.3}$ eV and then decreases.

Composition of heavier mass nuclei are becoming dominating at the highest energy.

Anisotropy

Anisotropy Pierre Auger Observatory

[aab18]

The observed anisotropy showed correlation with the distribution of SBGs (4.0σ).

SBG: star burst galaxy γAGN: γ-active galactic nucleus

Prediction of UHECR intensity assuming SBGs as the source including attenuation in the extragalactic propagation.

Note that the region (surrounded by the dashed line) close to M82 is not covered by Auger.

Anisotropy Pierre Auger Observatory

(%)

Studying the correlation between the UHECR anisotropy and the distribution of galaxies from the 2FHL catalog (FERMI-LAT)

SBG: star burst galaxy

γAGN: γ-active galactic nucleus

Populations Investigated						
SBGs	<i>l</i> (°)	b (°)	Distance ^a (Mpc)	Flux Weight (%)	Attenuated Weight: A/B/C (%)	% Contribution ^b : A/B/C (%
NGC 253	97.4	-88	2.7	13.6	20.7/18.0/16.6	35.9/32.2/30.2
M82	141.4	40.6	3.6	18.6	24.0/22.3/21.4	0.2/0.1/0.1
NGC 4945	305.3	13.3	4	16	19.2/18.3/17.9	39.0/38.4/38.3
M83	314.6	32	4	6.3	7.6/7.2/7.1	13.1/12.9/12.9
IC 342	138.2	10.6	4	5.5	6.6/6.3/6.1	0.1/0.0/0.0
NGC 6946	95.7	11.7	5.9	3.4	3.2/3.3/3.5	0.1/0.1/0.1
NGC 2903	208.7	44.5	6.6	1.1	0.9/1.0/1.1	0.6/0.7/0.7
NGC 5055	106	74.3	7.8	0.9	0.7/0.8/0.9	0.2/0.2/0.2
NGC 3628	240.9	64.8	8.1	1.3	1.0/1.1/1.2	0.8/0.9/1.1
NGC 3627	242	64.4	8.1	1.1	0.8/0.9/1.1	0.7/0.8/0.9
NGC 4631	142.8	84.2	8.7	2.9	2.1/2.4/2.7	0.8/0.9/1.1
M51	104.9	68.6	10.3	3.6	2.3/2.8/3.3	0.3/0.4/0.5
NGC 891	140.4	-17.4	11	1.7	1.1/1.3/1.5	0.2/0.3/0.3
NGC 3556	148.3	56.3	11.4	0.7	0.4/0.6/0.6	0.0/0.0/0.0
NGC 660	141.6	-47.4	15	0.9	0.5/0.6/0.8	0.4/0.5/0.6
NGC 2146	135.7	24.9	16.3	2.6	1.3/1.7/2.0	0.0/0.0/0.0
NGC 3079	157.8	48.4	17.4	2.1	1.0/1.4/1.5	0.1/0.1/0.1
NGC 1068	172.1	-51.9	17.9	12.1	5.6/7.9/9.0	6.4/9.4/10.9
NGC 1365	238	-54.6	22.3	1.3	0.5/0.8/0.8	0.9/1.5/1.6
Arp 299	141.9	55.4	46	1.6	0.4/0.7/0.6	0.0/0.0/0.0
Arp 220	36.6	53	80	0.8	0.1/0.3/0.2	0.0/0.2/0.1
NGC 6240	20.7	27.3	105	1	0.1/0.3/0.1	0.1/0.3/0.1
Mkn 231	121.6	60.2	183	0.8	0.0/0.1/0.0	0.0/0.0/0.0
γAGNs						
Cen A Core	309.6	19.4	3.7	0.8	60.5/14.6/40.4	86.8/56.3/71.5
M87	283.7	74.5	18.5	1	15.3/7.1/29.5	9.7/12.1/23.1
NGC 1275	150.6	-13.3	76	2.2	6.6/6.1/7.5	0.7/1.6/1.0
IC 310	150.2	-13.7	83	1	2.3/2.4/2.6	0.3/0.6/0.3
3C 264	235.8	73	95	0.5	0.8/1.0/0.8	0.4/1.3/0.5
TXS 0149 + 710	127.9	9	96	0.5	0.7/0.9/0.7	0.0/0.0/0.0
Mkn 421	179.8	65	136	54	11.4/48.3/14.7	1.8/19.1/2.8
PKS 0229-581	280.2	-54.6	140	0.5	0.1/0.5/0.1	0.2/2.0/0.3
Mkn 501	63.6	38.9	148	20.8	2.3/15.0/3.6	0.3/5.2/0.6
1ES 2344 + 514	112.9	-9.9	195	3.3	0.0/1.0/0.1	0.0/0.0/0.0
Mkn 180	131.9	45.6	199	1.9	0.0/0.5/0.0	0.0/0.0/0.0
1ES 1959 + 650	98	17.7	209	6.8	0.0/1.7/0.1	0.0/0.0/0.0
AP Librae	340.7	27.6	213	1.7	0.0/0.4/0.0	0.0/1.3/0.0
TXS 0210 + 515	135.8	-9	218	0.9	0.0/0.2/0.0	0.0/0.0/0.0
GB6 J0601 + 5315	160	14.6	232	0.4	0.0/0.1/0.0	0.0/0.0/0.0
PKS 0625-35	243.4	-20	245	1.3	0.0/0.1/0.0	0.0/0.5/0.0

2.3

0.0/0.2/0.0

0.0/0.0/0.0

I Zw 187

77.1

33.5

247

Table 1

[aab18]

Energy Loss Process in Space Propagation

Greisen, Zatzepin, and Kuzmin (GZK) Cut-off

[gre66,zat66]

GZK predicted a cutoff of UHECR flux at around 10²⁰ eV due to energy-loss with the collision of CMB in extragalactic propagation

in 1940's

"The elements in the universe must have been produced in a hot temperature that existed in the beginning of universe."

Gorge Gamow

"What a stupid idea that the universe was in a Big Bang..."

Fred Hoyle

Discovery of the Cosmic Microwave Background (CMD)

A direct evidence of the existence of Big Bang.

1964-65 Arno A. Penzias (right) Robert R. Wilson (left)

There exists a noise coming from any direction that can never be eliminated.

High-sensitivity antenna

Satellite Observation: COBE(1989-96), WMAP(2001-), PLANCK(2009-)

WMAP *T*=2.72548±0.00057 K

Greisen, Zatzepin, and Kuzmin (GZK) Cut-off

[gre66,zat66]

38

GZK predicted a cutoff of UHECR flux at around 10²⁰ eV due to energy-loss with the collision of CMB in extragalactic propagation

Photo-nuclear reactions determine the travel distance of UHECRs nuclei and their composition/energy modification in extra-galactic propagation.

PANDORA Project

Photo-Absorption of Nuclei and Decay Observation for Reaction in Astrophysics

Systematic Measurement on E1 Strength Distribution and n,p, α , γ decays up to A~60

- E1 excitation strength distribution
- n, p, α , γ decay branching ratios
- from light to A~60 for stable nuclei

Photo-Nuclear Reactions of Light Nuclei

Astro-nuclear Physics, Astro-particle Physics

Energy-loss process of UHCRs

Nucleosynthesis

Neutral current neutrino detection: gamma-emission of GRs

Radiation shield, decommissioning, reactions in nuclear reactors

Photo-radiation Analysis, nondestructive inspection

 γ -imaging, CT-Diagnostics, Biological Effects

Home-Land Security, Inspection of fission or explosive material

Medical RI production by photo-irradiation

Nuclear reaction/gamma radiation in thunder volts

99.99999% of the elements consists of nuclei below A=60

Photo-Nuclear Reaction

is "described" as photo-absorption process + decay process

GDR:Giant Dipole Resonance

Nuclear excitation by photo-absorption \simeq electric dipole excitation of nuclei

 $\sigma_{\rm abs} = \frac{16\pi^3}{9} \alpha E \frac{dB(E1)}{dE}$

 $\sigma_{\rm abs}$: photo-absorption cross section

B(E1): electric-dipole reduced transition probability of the nucleus

E : photon-energy = nuclear excitation energy

Is the photo-absorption cross section well understood?

Is the photo-absorption cross section well understood?

Is the photo-absorption cross section well understood?

For light nuclei

• photo-abs. c.s. \neq (γ ,xn) c.s.

large branch to p and α emissions

• More complicated description is required for theoretical models

Structure

- stronger shell effect
- nuclear deformation
- nucleon correlations:

a clustering, np pairing, tensor correlation

Decay

- pre-equilibrium decay process
- isospin selection rule in the α -decay proce

- Lack of data especially for charged particle decays
- Large inconsistency among experimental data
- Unsatisfactory theoretical predications

$$^{2}C(T = 0) + \gamma \rightarrow 1^{2}C * (GDR : T = 1)$$

ightarrow 8 Be(T = 0) + α(T = 0)

isospin forbidden

Is the photo-absorption cross section well understood?

For light and medium mass nuclei

• photo-abs. c.s. \neq (γ ,xn) c.s.

significant contribution from p and α emission channels

• More complicated description is required for theoretical models

Structure

- stronger shell effect
- nuclear deformation
- nucleon correlations:

 α clustering, *np* pairing, tensor correlation,...

Decay

- pre-equilibrium decay process
- isospin selection rule in the decay process

Why are the available data so inaccurate?

• continuous energy spectrum of Bremsstrahlung gamma-rays

large systematic uncertainty to taking **difference with changing the electron beam energy** gamma-decay measurement only detects transitions to the ground state

- positron annihilation in flight
 needs to take difference between e+ and e- for cancelling atomic process gamma-rays
 flat *n* detection efficiency in energy is assumed in the neutron counting
 - charged particle decay measurement is difficult due to low gamma intensity and thick target
- **bad energy resolution** ≈ 500 keV

Modern Experimental Methods

 virtual photon excitation (proton Coulex) at RCNP and iThemba LABS Tag of excitation energy by scattered proton. Sensitive to total photo-absorption c.s. Good energy resolution of ~30 keV

C.S. is large, applicable to **isotopically enriched target** and **charged particle decays**. Spin-M1 and SDR are observed simultaneously.

• real photon excitation by LCS gamma at ELI-NP

high-intensity, applicable to **isotopically enriched target** and **charged particle decays** Good energy resolution of ~50 keV by **quasi-mono-energetic** LCS beam **Precise absolute c.s.** and **n decay**

distribution

absolute c.s.

Photo-Nuclear Reactions of Light Nuclei What we wan to do

Prediction of photo-nuclear reactions from very light to Fe-Ni nuclei

What are the problems?

Data are very scarce, especially for charged particle decays Serious inconsistencies among the existing data.

There are no "good" predictions by theoretical models (developments in AMD, Shell-Model, RPA, Ab-Initio,...)

Decay process is not described well by theoretical models. Direct and pre equilibrium decays are also important. Statistical decay calculations are inacurate to light nuclei

Photo-disintegration Pass of ⁵⁶Fe

Photo-disintegration Pass of ⁵⁶Fe

Also (γ ,xn), (γ , α) are important

Unstable nuclei are also relevant up to $T_{1/2} \sim 1 \text{ min}$

Photo-disintegration Pass of ⁵⁶Fe

PANDORA Project: Collaboration

Nuclear Experiments_{Osaka Univ.}

and production

		Obuku anto.					
	RCNP	A. Tamii, N. Kobayashi, T. Sudo, M. Murata, A. Inoue, R. Niina , T. Kawabata, T.					
		Furuno, S. Adachi, K. Sakanashi, K. Inaba, Y. Fujikawa, S. Okamoto, Y. Fujita, H. Fujit ELI-NP					
	ELI-NP	PA. Söderström , D. Balabanski,	PA. Söderström , D. Balabanski, L. Capponi, A. Dhal, T. Petruse, D. Nichita, Y. Xu				
	iThemba LABS	iThemba LABS, Univ. Witwatersland, Stellenbosh Univ.					
		Wiedeking, P. Adsley, L.M. Dona	ldson, E. Side	eras-Had	ldado, K.L. I	Malatji, S. Jongile,	
	TU-Darmstadt	A. Netshiya P. von Neumann-Cosel, N. Pietra	ılla, J. Isaak, J	. Kleema	nn, M. Spall		
	U. Milano/INFN	A. Bracco, F. Camera, F. Crespi, C). Wieland		•		
	Shanghai	H. Utsunomiya				1	
Nu	U. Oslo I clear Theory	K.C.W. Li, S. Siem,	SLEGS	ŀ	IIgS	NEPTUN	
	AMD	M. Kimura, Y. Taniguchi , H. Mo	otoki	_		ELPH	
	NRFT	E. Litvinova , P. Ring, H. Wibowo	0	Large	e Scale		
				Shell	Model		
	RPA/DFT	RPA by T. Inakura, QPM by N. 7	I soneva	Y. Utsu	no, N. Shim	izu	
	TALYS	S. Goriely, E. Khan			PANDO	RA white paper	
UI	HECR Theory				published	d in EPJA (2023)	
	Propagation	D. Allard , B. Baret, I. Deloncle, J	. Kiener, E. P	arizot, V.	Tatischeff		
	and production	S. Nagataki, E. Kido , J. Oliver, H	I. Haoning			50	

PANDORA Project: White Paper

PANDORA Project for the study of photonuclear reactions below A = 60

PANDORA Collaboration Euro. Phys. J. A 59, 208 (2023)

A. Tamii^{1,2,3,a}, L. Pellegri^{4,5}, P.-A. Söderström⁶, D. Allard⁷, S. Goriely⁸, T. Inakura⁹, E. Khan¹⁰, E. Kido¹¹, M. Kimura^{11,12,13}, E. Litvinova¹⁴, S. Nagataki¹¹, P. von Neumann-Cosel¹⁵, N. Pietralla¹⁵, N. Shimizu¹⁶, N. Tsoneva⁶, Y. Utsuno¹⁷, S. Adachi¹⁸, P. Adsley^{19,20}, A. Bahini⁵, D. Balabanski⁶, B. Baret⁷, J. A. C. Bekker^{4,5}, S. D. Binda^{4,5}, E. Boicu^{6,21}, A. Bracco^{22,23}, I. Brandherm¹⁵, M. Brezeanu^{6,21}, J. W. Brummer⁵, F. Camera^{22,23}, F. C. L. Crespi^{22,23}, R. Dalal²⁴, L. M. Donaldson⁵, Y. Fujikawa²⁵, T. Furuno³, H. Haoning¹⁴, R. Higuchi¹¹, Y. Honda³, A. Gavrilescu^{6,26}, A. Inoue¹, J. Isaak¹⁵, H. Jivan^{4,5}, P. Jones⁵, S. Jongile⁵, O. Just^{11,27}, T. Kawabata³, T. Khumalo^{4,5}, J. Kiener¹⁰, J. Kleemann¹⁵, N. Kobayashi¹, Y. Koshio²⁸, A. Kuşoğlu^{6,29}, K. C. W. Li³⁰, K. L. Malatji⁵, R. E. Molaeng^{4,5}, H. Motoki¹², M. Murata¹, A. A. Netshiya^{4,5,31}, R. Neveling⁵, R. Niina¹, S. Okamoto²⁵, S. Ota¹, O. Papst¹⁵, E. Parizot¹⁰, T. Petruse⁶, M. S. Reen³², P. Ring³³, K. Sakanashi³, E. Sideras-Haddad⁴, S. Siem³⁰, M. Spall¹⁵, T. Suda³⁴, T. Sudo¹, Y. Taniguchi³⁵, V. Tatischeff¹⁰, H. Utsunomiya^{36,37}, H. Wang^{36,38,39}, V. Werner¹⁵, H. Wibowo⁴⁰, M. Wiedeking^{4,5}, O. Wieland²³, Y. Xu⁶, Z. H. Yang⁴¹

A part of the visiting collaborators of RCNP-E563, Sep.-Oct., 2023

2nd Proposal Submitted to RCNP

de Santiago de Compostela

Photo-nuclear reactions of ¹⁶O, ²⁶Mg, ⁴⁰Ca and ⁵⁶Fe (PANDORA project)

Spokespersons: A. Tamii, L. Pellegri P.-A. Söderström

EXPERIMENTAL GROUP:

F. Endo	RCNP		
F Furukawa	BCNP	I. Brandherm	IKP, Tech. Univ. Darmstadt
WH Cuo	BCNP Toyonaka	J. Isaak	IKP, Tech. Univ. Darmstadt
A Incure	DCND	I. Jurosevic	IKP, Tech. Univ. Darmstadt
A. moue		J. Kleemann	IKP, Tech. Univ. Darmstadt
R. Iwasaki	RCNP-Toyonaka	P. von Neumann-Cose	el IKP, Tech. Univ. Darmstadt
N. Kobayashi	RCNP	N. Pietralla	IKP, Tech. Univ. Darmstadt
M. Murata	RCNP	O. Papst	IKP, Tech. Univ. Darmstadt
S. Ota	RCNP	M Spall	IKP Tech Univ Darmstadt
Y. Sasagawa	RCNP-Toyonaka	V Werner	IKP Tech Univ Darmstadt
H. Shibakita	RCNP-Toyonaka	A Bracco	Univ. Mileno/INFN
J. Tanaka	RCNP	F. Comoro	Univ. Milano/INFN
T. Furuno	Dep. Phys., Osaka Univ.	F. Camera	Univ. Milano/INFN
Y. Honda	Dep. Phys., Osaka Univ.	r. Crespi	UNEN Milano/INFIN
T. Kawabata	Dep. Phys., Osaka Univ.	A. Glaz	INF N-Milano/Univ. Milano
T. Okamura	Dep. Phys., Osaka Univ.	O. Wieland	INF N-Milano
K. Sakanashi	Dep. Phys., Osaka Univ.	J.K. Dahl	Univ. Oslo
H. Shimoio	Dep. Phys., Osaka Univ.	J.M.W. Finsrud	Univ. Oslo
Y Fujikawa	Kvoto Univ	A. Görgen	Univ. Oslo
S. Okamoto	Kyoto Univ.	VW Ingeherg	Univ Oslo
A. Adachi	CYRIC, Tohoku Univ.	K.C.W. Li	Univ. Oslo
J.A.C. Bekker	Wits and iThemba LABS	E.M. Martinsen	Univ Oslo
S.D. Binda	Wits and iThemba LABS		
J.W. Brummer	iThemba LABS	W. Paulsen	Univ. Oslo
L.M. Donaldson	iThemba LABS	S. Siem	Univ. Oslo
L. Jafta	iThemba LABS and Univ. Western Cape	Cheng Wang	Peking Univ.
P.M. Jones S. Jongila	Themba LABS Themba LABS and Stellenbergh Univ	Zaihong Vang	Peking Univ
T Khumalo	Wits and iThemba LABS		
S. Magagula	Wits and iThemba LABS	Kaijie Zhou	Peking Univ.
K.L. Malatji	iThemba LABS	P. Adsley	Texas A&M Univ.
R. Molaeng	Wits and iThemba LABS	M.S. Reen	Akal Univ.
R. Neveling	iThemba LABS	V Koshio	Okavama Univ
A. Netshiya	Wits and iThemba LABS	T. Carda	ELDIL Teleslas Usia
S. Triambak	Univ. Western Cape	1. Suda	ELPH, IONOKU UNIV
M Wiedeking	Berkeley National Laboratory and Wits	H. Utsunomiya	Shanghai Adv. Res. Inst.
D. Balabanski	ELI-NP	H. Wang	Shanghai Adv. Res. Inst.
E. Boicu	ELI-NP	FYA Limonge	Univ de Santiago de Com
M. Brezeanu	ELI-NP	r.r.A. Lintolige	Univ. de Dantiago de Com
A. Gavrilescu	ELI-NP		
A. Kuşoğlu	ELI-NP		
T. Petruse	ELI-NP		

Nuclear Theory:

R. Dalal	Guru Jambheshwar Univ.
S. Goriely	Univ. Bruxelles
T. Inakura	Tokyo Institute of Technology
E. Khan	IJCLab, Orsay
M. Kimura	RIKEN & Hokkaido Univ.
E. Litvinova	West Michigan Univ.
H. Motoki	Hokkaido Univ.
P. Ring	TU-Munich
N. Shimizu	Tsukuba Univ.
Y. Taniguchi	Kagawa College
N. Tsoneva	ELI-NP
Y. Utsuno	Japan Atomic Energy Agency
H. Wibowo	Univ. York
Y. Xu	ELI-NP
UHECR:	

T

D. Allard	CNRS, Univ. Paris
B. Baret	CNRS, Univ. Paris
I. Deloncle	IJCLab, Orsay
H. Haoning	RIKEN
R. Higuchi	RIKEN
O. Just	RIKEN
E. Kido	RIKEN
J. Kiener	IJCLab, Orsay
S. Nagataki	RIKEN
J. Oliver	RIKEN
E. Parizot	IJCLab, Orsay
V. Tatischeff	IJCLab. Orsav

PANDORA project: experimental facilities

Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics White paper: AT et al., Euro. Phys. J. A 59, 208 (2023)

Experiment combining three complementary facilities

Virtual Photon Exp.

<u>iThemba LABS</u> 2024- ${}^{12}C$ and ${}^{27}A1$ Total strength distribution up 24 MeV p, α , γ -decays

multipole decomp. analysis

<u>RCNP</u> 2023- (^{10,11}B), ^{12,13}C, ^{24,26}Mg, ²⁷Al Total strength distribution up 32 MeV p,α,γ -decays multipole decomp. analysis

Real Photon Exp.

ELI-NP 2025-

iThemba LABS, Univ. Witwatersland, Stellenbosh Univ.

L. Pellegri, R. γ, F.D. Smit, J.A.C. Bekker, S. Binda, H, Jivan, T. Khumal, M. Wiedeking, K.C.W. Li, P. Adsley, L.M. Donaldson, E. Sideras-Haddado, K.L. Malatji, S. Jongile, A. Netshiya

Osaka Univ.

A. Tamii, N. Kobayashi, T. Sudo, M. Murata, A. Inoue, **R. Niina**, T. Kawabata, T. Furuno, S. Adachi, K. Sakanashi, K. Inaba, Y. Fujikawa, S. Okamoto, Y. Fujita, H. Fujita

ELI-NP **P.-A. Söderström**, D. Balabanski, L. Capponi, A. Dhal, T. Petruse, D. Nichita, Y. Xu

absolute c.s. model independent separation of E1 and M1 n,p, α , γ -decays up to 20 MeV

Probes for the Electric Dipole Response of Nuclei

- 1. Virtual photon excitation (Coulomb excitation)
 - proton inelastic scattering at 0 deg.

Proton beams at RCNP and iThemba LABS E_x distribution in one shot measurement total photo-absorption c.s. up to 32 (24) MeV at RCNP (iThemba)

- 2. Real photon absorption
 - (γ,γ') Nuclear Resonance Fluorescence
 - $(\gamma,n), (\gamma,2n), (\gamma,p), \dots$ photodisintegrations

Real γ-beam at ELI-NP

pure EM probe precise absolute c.s. partial strength including *n* up to 20 MeV at ELI-NP

Experimental Setup (established in E563)

proton beam at 392 MeV

30 mg/cm² targets for inclusive cross sections (σ_{abs})

1 mg/cm² targets for charged particle decay coincidence

Decay Particle Detectors

5 pairs of DSSSD detectors (SAKRA) for decay charged particles 8 large volume LaBr3 detectors from Milano for decay gamma-rays

Design&Slide by R. Niina

Experimental setup, E563, September-October, 2023

SCγLLA

Milano-LaBr3

SAKRA DSSSDs

51 visiting collaborators: 36 (abroad) + 15 (Japan)

60

Preliminary data from E563

Sakra Front Energy (MeV)

Predictions

AMD + Laplace Expansion (M. Kimura et al.,)

62

Theoretical Model Developments

AMD + Laplace Expansion (M. Kimura et al.,)

Isospin mixing and selection rule

M. Kimura et al., arXiv:2108.07592 (2021)

RPA by T. Inakura

N. Shimizu, Y. Utsuno, et al.,

Development of theoretical models is inevitable to make predictions for all the relevant nuclei.

It is important to evaluate the uncertainty of the model predictions.