Cores in Promise and Classification Problems

Ulrike Brandt

Department of Computer Science

Technical University Darmstadt

brandt@dekanat.informatik.tu-darmstadt.de

Hermann K.-G.Walter

Department of Computer Science

Technical University Darmstadt

hwalter@informatik.tu-darmstadt.de

CCA Nancy 2013

Promise and Classification Problems - Background

S.Even, A.L.Selman and Y.Yacobi (1985): promise problems as a generalization of decision problems, numerous applications

K.Ambos-Spies, U.Brandt, M.Ziegler (2013): exploration of the impact of constant-size advices on the complexity of classification problems

Subject: solvability and unsolvability of classification problems

Classification Problems

General approach: Basic set S and k > 1.

 $\mathbf{A} = (A_1, ..., A_k)$ is a (straight) k-classification problem if and only if $A_i \subseteq S$, A_i infinite, $A_i \cap A_j = \emptyset$ $(1 \le i \le j \le k)$.

Special cases:

- (1) k = 2: promise problem.
- (2) $\mathbf{A} = (A, B)$ and $\mathbf{B} = \mathbf{A}^{\mathbf{C}}$ (complement): decision problem.

Solvability of Classification Problems

Solvability of classification problems is defined with respect to a set family $\mathscr{F} \subseteq \mathbf{2}^S$. For such families we assume, that \mathscr{F} contains all finite and cofinite subsets of S and is closed under finite variation, and associate the families

$$\mathscr{F}^{co} = \{A^c \mid A \in \mathscr{F}\}\ (cofamily) \ and \ \mathscr{F}^{cc} = \mathscr{F} \cup \mathscr{F}^{co}\ (complement\ closure).$$

Definition: Let $A = (A_1, ..., A_k)$ be a k-classification problem and $\mathscr{F} \subseteq \mathbf{2}^S$ a set family.

A is solvable for $\mathscr{F} \Leftrightarrow A \in class_k(\mathscr{F}) \Leftrightarrow$

$$\exists \ \mathbf{Q} = (Q_1, \dots, Q_k) : A_i \subseteq Q_i, Q_i \in \mathscr{F}, Q_i \cap Q_j = \emptyset \ (1 \le i < j \le k) \ \text{and} \ Q_1 \cup \dots \cup Q_k = S$$
 (i.e. \mathbf{Q} is a partition with blocks from \mathscr{F}).

Lemma : Let \mathcal{F} be closed under union and intersection. Then

$$\begin{aligned} \mathbf{A} &= (\mathbf{A}_1, \, \dots, \, \mathbf{A}_k) \in \mathit{class}_k(\mathscr{F}) \Leftrightarrow (\mathbf{A}_i, \, (\mathbf{A}_1 \cup \dots \cup \mathbf{A}_k) \setminus \mathbf{A}_i) \in \mathit{class}_2(\mathscr{F}) \, (1 \leq i \leq k) \\ & \Leftrightarrow (\mathbf{A}_i, \, \mathbf{A}_j) \in \mathit{class}_2(\mathscr{F}) \, (1 \leq i \leq j \leq k). \end{aligned}$$

Unsolvability of Classification Problems

We investigate the unsolvability (with respect to \mathscr{F}), especially in a strong sense, i.e. unsolvable classification problems such that all subproblems are unsolvable, too - so called **cores** of unsolvability. Cores are defined similarly to complexity cores.

Subjects of our results:

- (1) characterization of cores,
- (2) existence of cores and
- (3) connections to complexity cores.

Applications: language families and complexity classes.

Key to the results : characterization by cohesiveness.

Examples for solvable and unsolvable promise problems

Basic set is $S = X^*$, where X is a finite alphabet. The families used in examples are $\mathscr{L}_{reg}(X)$ family of regular, $\mathscr{L}_{cf}(X)$ family of contextfree and $\mathscr{L}_{r.e}(X)$ family of recursively enumerable languages.

Example:

- (1) "Separation Principle"
 - (a) $\exists A, B \in \mathscr{L}_{\mathbf{r.e.}}(X) : A \cap B = \emptyset \text{ and } (A, B) \notin \mathit{class}_2(\mathscr{L}_{\mathbf{r.e.}}(X)).$
 - (b) $\forall A, B \in \mathscr{L}_{\mathbf{r.e.}}(X)^{\mathbf{co}}, A \cap B = \emptyset : (A, B) \in \mathit{class}_2(\mathscr{L}_{\mathbf{r.e.}}(X)).$
- (2) $X = \{a, b\}.$

A = {
$$a^nb^n \mid n > 0$$
}, B = { $a^nb^m \mid n, m > 0$ and $n \neq m$ }, A, B $\in \mathscr{L}_{\mathbf{cf}}(X)$
(A, B) $\notin class_2(\mathscr{L}_{\mathbf{reg}}(X))$, (A, B) $\in class_2(\mathscr{L}_{\mathbf{cf}}(X))$.

(Un)solvability and Cohesiveness

Definition : Let $A \subseteq S$, A infinite.

A \mathscr{F} -cohesive \Leftrightarrow A \in cohesive $(\mathscr{F}) \Leftrightarrow \forall Q, Q^C \in \mathscr{F}$: A $\cap Q$ or A $\cap Q^C$ finite.

Remark : The definition from recursion theory is equivalent to \mathscr{F}^{cc} -cohesiveness.

Lemma : Let $\mathscr{V} \subseteq \mathscr{F}$, where \mathscr{F} is closed under union and variation by \mathscr{V} (i.e. $A \in \mathscr{F}$ and $Q \in \mathscr{V} \Rightarrow A \cap Q$, $A \cap Q^{c} \in \mathscr{F}$). Then for all infinite $A, B \in \mathscr{F}$ with $A, B \not\in \mathit{cohesive}(\mathscr{V})$ a $Q \in \mathscr{V}$ exists with $(A \cap Q, B \cap Q^{c}) \in \mathit{class}_{2}(\mathscr{F})$.

Theorem I: Let (A, B) be a promise problem.

 $A \cup B \in cohesive(\mathscr{F}) \Leftrightarrow A, B \in cohesive(\mathscr{F}) \text{ and } (A, B) \notin class_2(\mathscr{F}).$

Cohesive Sets - Known Results

Theorem of Dekker-Myhill : F denumerable.

 $\forall A \subseteq S, A \text{ infinite } \exists A' \subseteq A : A' \in cohesive(\mathscr{F}).$

Theorem of Friedberg:

 $\exists \ L \subseteq X^* \colon \ L \in \mathscr{L}_{\mathbf{r.e.}}(X)^{\mathbf{co}} \cap \mathit{cohesive}(\mathscr{L}_{\mathbf{r.e.}}(X)^{\mathbf{cc}}).$

Cohesive Sets - Additional Results

- (1) $\mathcal{L}_{cf}(X) \cap cohesive(\mathcal{L}_{reg}(X)) = \emptyset$.
- (2) $\forall L \in \mathscr{L}_{\mathbf{cf}}(X) \exists L' \subseteq L: L' \in cohesive(\mathscr{L}_{\mathbf{reg}}(X)) \text{ and } L' \text{ recursive.}$
- (3) $S = \mathbb{N}_0$, \mathcal{L}_{s-lin} = family of semilinear subsets of \mathbb{N}_0 .
 - (a) $\{2^n \mid n \geq 0\} \not\in cohesive(\mathscr{L}_{s-lin})$.
 - (b) $\{n! \mid n \ge 0\} \in cohesive(\mathcal{L}_{s-lin}).$

Cohesiveness and Immunity

Definition: A infinite.

A is \mathscr{F} -immune \Leftrightarrow A \in immune(\mathscr{F}) \Leftrightarrow (\forall B \in \mathscr{F} : B \cap A^C \neq Ø).

Lemma : If $\mathscr{F} = \mathscr{F}^{\mathbf{co}}$ and (A, B) is a promise problem, then $(A, B) \not\in class_2(\mathscr{F}) \Leftrightarrow B^c \in immune(\mathscr{F}(A^c)^{\mathbf{co}})$ $(\mathscr{F}(A^c) = \{C \mid C \subseteq A^c \& C \in \mathscr{F}\}).$

Theorem II: A infinite

 $A \in cohesive(\mathcal{F}) \setminus \mathcal{F} \Rightarrow A \in immune(\mathcal{F}).$

Example : $X = \{a, b\}. A = \{a^nb^n | n > 0\}.$

 $A \not\in \textit{cohesive}(\mathscr{L}_{\textbf{reg}}(X)) \text{ and } A \in \textit{immune}(\mathscr{L}_{\textbf{reg}}(X)).$

Cores of Unsolvability

Definition : Let $A = (A_1, ..., A_k)$ be a k-classification problem (k > 1).

A is a k-core of $\mathscr{F} \Leftrightarrow A \in core_{k}(\mathscr{F}) \Leftrightarrow$

For every m-classification problem **B**, which is a subproblem of **A**: $\mathbf{B} \not\in class_{\mathbf{m}}(\mathcal{F})$.

$$(\mathbf{B} = (\mathbf{B}_1, ..., \mathbf{B}_m) \text{ m-classification problem, } 1 < m \le k : \mathbf{B} \text{ is a subproblem of } \mathbf{A} \Leftrightarrow \exists 1 \le i_1 < ... < i_m \le k : \mathbf{B}_j \subseteq \mathbf{A}_{\dot{\mathbf{I}}_j} (1 \le j \le m))$$

Cores of Unsolvability and Cohesive sets

Theorem III: Let (A, B) be a promise problem.

$$(A, B) \in core_2(\mathscr{F}) \Leftrightarrow A \cup B \in cohesive(\mathscr{F}).$$

Theorem IV:

If \mathscr{F} is closed under union and $\mathbf{A} = (A_1, \dots, A_k)$ a k-classification problem (k > 1), then

$$A \in core_k(\mathscr{F}) \Leftrightarrow A_1 \cup ... \cup A_k \in cohesive(\mathscr{F}).$$

Existence of Cores in Promise Problems

Theorem V: Let \mathscr{F} be denumerable and closed under union and intersection.

If $(A, B) \notin class_2(\mathscr{F})$ then a subproblem (A', B') of (A, B) exists with $(A', B') \in core_2(\mathscr{F})$.

Dekker-Myhill-type "construction": Given $\mathbf{e}_{\mathscr{S}} : \mathbb{N}_0 \to \mathbf{2}^{\mathbf{S}}$ with $\mathbf{e}_{\mathscr{S}}(\mathbb{N}_0) = \mathscr{F}$. $(\mathbf{A}_0, \mathbf{B}_0) := (\mathbf{A}, \mathbf{B}) \ (\not\in class_2(\mathscr{F}))$

$$\begin{split} (A_{n+1},B_{n+1}) := & \underline{\textbf{if}} \ (A_n \cap e_{\mathscr{J}}(n),B_n \cap e_{\mathscr{J}}(n)) \not \in \textit{class}_2(\mathscr{F}) \\ & \underline{\textbf{then}} \ (A_n \cap e_{\mathscr{J}}(n),B_n \cap e_{\mathscr{J}}(n)) \ \underline{\textbf{else}} \ (A_n \cap e_{\mathscr{J}}(n)^{\textbf{c}},B_n \cap e_{\mathscr{J}}(n)^{\textbf{c}}) \ \underline{\textbf{fi}} \end{split}$$

Fact : There exists $g : \mathbb{N}_0 \to \mathbb{N}_0$ with

$$A_{g(n+1)} \subset A_{g(n)}, A_{g(n)} \subseteq A_n, B_{g(n+1)} \subset B_{g(n)} \text{ and } B_{g(n)} \subseteq B_n \text{ } (n \ge 0)$$

Choose $a_n \in A_{g(n+1)} \setminus A_{g(n)}$ and $b_n \in B_{g(n+1)} \setminus B_{g(n)}$ $(n \ge 0)$. Then $A' = \{a_n \mid n \ge 0\}, B' = \{b_n \mid n \ge 0\}.$

Basic Lemma : If $(A, B) \notin class_2(\mathscr{F})$, then for all $Q, Q^C \in \mathscr{F}$:

 $(A \cap Q, B \cap Q) \notin class_2(\mathscr{F}) \text{ or } (A \cap Q^C, B \cap Q^C) \notin class_2(\mathscr{F}).$

The closure properties are necessary for th V.

Example: Let $X = \{a, b, c\}$. $|w|_x =$ number of occurrences of x in w.

For $x \neq y \in X$: $L_{x,y} = \{w \in X^* | |w|_x \neq |w|_y\}$. Then $L_{x,y}$, $L_{x,y}$ $\in \mathscr{L}_{\mathbf{cf}}(X)$.

Consider $L = L_{a,b} \cup L_{b,c} \cup L_{c,a}$ and $L^{c} = \{w \in X^{*} | |w|_{a} = |w|_{b} = |w|_{c}\} = L_{a,b}^{c} \cap L_{b,c}^{c} \cap L_{c,a}^{c}$.

Observe $L \in \mathscr{L}_{\mathbf{cf}}(X)$ and $L^{\mathbf{c}} \in \mathscr{L}_{\mathbf{cf}}(X)^{\mathbf{co}} \setminus \mathscr{L}_{\mathbf{cf}}(X)$.

Then the promise problem $(L, L^c) \notin class_2(\mathscr{L}_{\mathbf{cf}}(X))$, but contains

no core

with respect to $\mathscr{L}_{\mathbf{cf}}(X)$.

"k = 2" is necessary for th.V

Example : (M.Ziegler). Let $X = \{a, b, c\}$.

Consider $\mathcal{L} \subseteq \mathbf{2}^{X^*}$, closed under setting and erasing of leftmarkers and union.

For $A \subseteq X^*$ with $A \notin \mathscr{L}$ or $A^{\mathfrak{c}} \notin \mathscr{L}$ define

$$\mathbf{A}(\mathbf{A}) = (\mathbf{A}_{a}, \mathbf{A}_{b}, \mathbf{A}_{c}) = (\mathbf{a}\mathbf{A} \cup \mathbf{b}\mathbf{A}^{\mathbf{c}}, \mathbf{b}\mathbf{A} \cup \mathbf{c}\mathbf{A}^{\mathbf{c}}, \mathbf{c}\mathbf{A} \cup \mathbf{a}\mathbf{A}^{\mathbf{c}}).$$

Then $A(A) \notin class_3(\mathcal{L})$ and for all 3-classification problems A', which are subproblems of $A(A) : A' \notin core_3(\mathcal{L})$.

Connection to complexity cores - "semicores"

Definition: Let A, B \subseteq S with B infinite.

B is a \mathscr{F} -core of $A \Leftrightarrow B \in core(A, \mathscr{F}) \Leftrightarrow \forall B' \subseteq B, B' infinite: <math>(A, B') \notin class_{2}(\mathscr{F})$.

Corollary : If \mathscr{F} is denumerable and closed under union and intersection, then for all infinite A with A or $A^C \not\in \mathscr{F}$: $core(A, \mathscr{F}) \neq \emptyset$.

Connection to complexity cores - Hardcores (Book-Du 1987)

Definition:

 $B \subseteq A$ is a *proper* \mathscr{F} -hardcore of A if and only if B is infinite and for all $C \in \mathscr{F}$, $C \subseteq A$: $B \cap C$ is finite.

Theorem : (Book-Du) Let \mathscr{F} be denumerable. A proper \mathscr{F} -hardcore of A exists if and only if A is not a finite union of elements of $\mathscr{F}(A)$ with a finite set.

Lemma : If $\mathscr{F} = \mathscr{F}^{co}$, $A \cap B = \emptyset$ and B infinite then B is a \mathscr{F} -core of A if and only if B is a proper \mathscr{F} -hardcore of A^c .

Connection to complexity cores - Application

Theorem: (Book-Du) If $\mathscr{L} \subseteq \mathbf{2}^{X^*}$ is recursive and closed under union then for all recursive $A \subseteq X^*$ with $A \notin \mathscr{L}$ a recursive proper hardcore B of A exists.

Theorem VI: If $\mathscr{L} \subseteq 2^{X^*}$ is recursive and closed under boolean operations, then for all recursive $A \subseteq X^*$ with $A^c \notin \mathscr{L}$ a recursive \mathscr{L} -core B of A exists.

 $\mathscr{L} \subseteq \mathbf{2}^{X^*}$ is called *recursive* if and only if a recursively enumerable representation of \mathscr{L} exists, such that the word-problem is uniformly decidable in this representation, or more formally, there exists $\mathbf{e}_{\mathscr{L}} \colon \mathbf{N}_0 \to \mathbf{2}^{X^*}$ such that $\mathbf{e}_{\mathscr{L}}(\mathbf{N}_0) = \mathscr{L}$ and

$$\lambda i, j. \delta(i, j) = \text{if } lex_x(j) \in e_{\mathscr{C}}(i) \text{ then } 1 \text{ else } 0 \text{ fi}$$

is recursive, where lex_X is the lexical enumeration of X^* .