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Promise and Classification Problems - Background

S Even, A.L.Selman and Y.Yacobi (1985):
promise problems as a generalization of decision problems,

numerous applications
K.Ambos-Spies, U.Brandt, M.Ziegler (2013):
exploration of the impact of constant-size advices on the complexity

of classification problems

Subject: solvability and unsolvability of classification problems
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Classification Problems

General approach: Basic set S and k > 1.

A= (A, ..., A)is a(straight) k-classification problem if and only if
A, €S, A infinite, A MA = O (1 1<) <Kk).

Special cases :

(1) k=2: promise problem.

(2) A = (A, B) and B = A® (complement) : decision problem.
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Solvability of Classification Problems

Solvability of classification problems is defined with respect to a set family % € 25 For such
families we assume, that . contains all finite and cofinite subsets of S and is closed under finite

variation, and associate the families

FC=(A"| A€ .F (cofamily)and FCC= F U FCO (complement closure).

Definition : Let A= (A , ..., A ) be a k-classification problem and FC2Saset family.
A is solvable for F < A € class (F ) <

3Q=(Q,..,Q):ASQ,Q€E.F,QNQ=0(I<i<j<kandQU..UQ=S
(i.e. Q is a partition with blocks from % ).

Lemma : Let .# be closed under union and intersection. Then

A=(A,..,A)Eclass (F) <= (A, (A, U..UA)\A) E class (F) (1 <i<k)
< (A, A) Eclass(F)(1 <i<j=<Kk).
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Unsolvability of Classification Problems
We investigate the unsolvability (with respect to .# ), especially in a strong sense,
1.e. unsolvable classification problems such that all subproblems are unsolvable, too

- so called cores of unsolvability. Cores are defined similarily to complexity cores.

Subjects of our results :

(1) characterization of cores,

(2) existence of cores and

(3) connections to complexity cores.

Applications : language families and complexity classes.

Key to the results : characterization by cohesiveness.
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Examples for solvable and unsolvable promise problems
Basic set 1s S = X*, where X is a finite alphabet. The families used in examples are
Z, o X) family of regular, £ (X) family of contextfree and &£ (X) family of
recursively enumerable languages.
Example :
(1) “Separation Principle”
(a) dA,BeZ (X):ANB= @and(A,B) & class,(<Z _(X)).
(b) VA,BeE Z (X)*,AnB= 0:(A,B) € class,(Z _(X)).
(2) X={a,b}.
A ={a'b*|n>0},B={a"b™|n,m>0andn # mj, A, B € & (X)
(A, B) & class (<, (X)), (A, B) € class (Z_(X)).
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(Un)solvability and Cohesiveness

Definition : Let A € S, A infinite.

A F- cohesive < A € cohesive(F) =V Q,Q° € F: AN Qor AN Q° finite .
Remark : The definition from recursion theory is equivalent to .# €€-cohesiveness.
Lemma : Let 7€ ¥ where .# is closed under union and variation by 7" (i.e. A € F
andQ €7 = ANQ,AN QY€ .¥). Then for all infinite A, B € .F

with A, B & cohesive(?") a Q € 7~ exists with (A N Q, B N QF) € class (F).

Theorem I: Let (A, B) be a promise problem.
A U B € cohesive(F) < A, B € cohesive(.F) and (A, B) & class,(.F).
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Cohesive Sets - Known Results

Theorem of Dekker-Myhill : ¥ denumerable.
Y A c S, Ainfinite J A' € A: A' € cohesive( F).

Theorem of Friedberg :
dLeX* L€ < _(X) N cohesive(Z _(X)C).
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Cohesive Sets - Additional Results

(1) Z (X) N cohesive(ZL e X)) = 9.

(2) VL € Z (X)L < L: L' € cohesive(Z,_ (X)) and L' recursive.
(3)S=IN,, Z_,. = family of semilinear subsets of IN,.

(a) {2"|n> 0} & cohesive(Z . ).
(b) {n! |n> 0} € cohesive(Z . ).
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Cohesiveness and Immunity

Definition : A infinite.

A is Fimmune < A € immune(F) < (VB € F:Bn A"+ 0).
Lemma : If ¥ = _%€0and (A, B) is a promise problem, then
(A, B) & class (F) < B € immune(# (A®)¢0)

(F(AC) = {C|C S AC& C € F)).

Theorem II : A infinite
A € cohesive(F) \ F = A € immune(. F).

Example : X = {a, b}. A = {a"b"| n> 0}.
A & cohesive(Z,_ (X)) and A € immune(Z,_,(X)).
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Cores of Unsolvability
Definition : Let A= (A , ..., A ) be a k-classification problem (k > 1).

Aisak-core of & & A € core(F) &
For every m-classification problem B, which is a subproblem of A: B & classm(f ).

(B=(B,, ..., B ) m-classification problem, I <m < k: B 1s a subproblem of A <

F1<i<.<i,<kBCA (<j<m)
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Cores of Unsolvability and Cohesive sets

Theorem III : Let (A, B) be a promise problem
(A, B) € core (F) < A U B € cohesive(F).

Theorem IV :

If & is closed under union and A = (A, ..., A ) a k-classification problem (k > 1), then
A €core(F )= A U..UA_ E cohesive(F).
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Existence of Cores in Promise Problems
Theorem V : Lect 4 bedenumerable and closed under union and intersection.
If (A, B) & class (%) then a subproblem (A', B') of (A, B) exists with
(A", B") € core (F).
Dekker-Myhill-type “construction: Givene _:IN — 2S with e SIN)=F
(A,,B) =(A,B) (€& classz(fr )
(A, »B, ) =if(A ne_(n),B ne_(n)& classz(f )
then (A ne_(n), B ne_(n)) else (A ne_(n)Bne_(n°)fi
Fact : There exists g: IN, = IN  with
A CA,,AnEA,B

g(n+1) g(n)?
Choose a € A

s+ © By aWd B, S B, (0= 0)

o \ By andd €8, JA\B (n=0). Then
A'={a |n=0},B'={b, [n=0}.

Basic Lemma : If (A, B) & class,(.F), then for all Q, Q* € .

(ANQ,BNQ) & class,(F) or (A N Q", B N Q) & class,(F).

12117



Cores in Promise and Classification Problems U.Brandt-H.K.-G. Walter

The closure properties are necessary for th V.

Example : Let X = {a, b, c}. [w| = number of occurences of x in w.
Forx#y€X:L_ = {w € X*||w|_#[w| }. ThenL ,L ¢ € Z (X).

Consider L=L UL, UL andL¢={we€X* |w| =|w=|w}=L ¢nL °NL_°

Observe L € £ (X) and L¢ € £ (X)®0\ & (X).
Then the promise problem (L, L€) & class (£ (X)), but contains

no core

with respect to &£ (X).
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“k =2” is necessary for th.V

Example : (M.Ziegler). Let X = {a, b, c}.
Consider & < 2X™ | closed under setting and erasing of leftmarkers and union.
For A € X* with A & £ or A & & define

AA)=(A,A,A)=(aA U bAC bA U cA€, cA U aA").
Then A(A) € class () and for all 3-classification problems A', which are
subproblems of A(A) : A' & core (X).
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Connection to complexity cores - “semicores”

Definition : Let A, B € S with B infinite.
Bisa .F-core of A < B € core(A, F) < V B' B, B'infinite: (A, B') ¢ class (F).

Corollary : If ¥ isdenumerable and closed under union and intersection, then for all

infinite A with A or A® & & : core(A, F) + Q.
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Connection to complexity cores - Hardcores (Book-Du 1987)

Definition :

B C A is a proper #-hardcore of A if and only if B is infinite and for all C € &
C €A: B n C s finite.

Theorem : (Book-Du) Let .¥ be denumerable. A proper .#-hardcore of A exists if

and only if A is not a finite union of elements of .# (A) with a finite set.

Lemma : If $=_¢_ A N B=0 and B infinite then
B is a .#-core of A if and only if B is a proper .#-hardcore of A€.
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Connection to complexity cores - Application

Theorem : (Book-Du) If & < 2X*is recursive and closed under union then for all

recursive A € X* with A &€ & a recursive proper hardcore B of A exists.

Theorem VI ; If &< 2X™is recursive and closed under boolean operations, then for all

recursive A € X* with A€ & ¥ a recursive Z-core B of A exists.

# < 2X%s called recursive if and only 1if a recursively enumerable representation of & exists,
such that the word-problem is uniformly decidable in this representation, or more formally,
there exists e : N, — 2X™ such that e (IN)= < and

AL ). 8(1 )) = if lex,(j) € e (1) then 1 else O fi

is recursive, where lex_ is the lexical enumeration of X*,
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