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We prove the following results: every recursively enumerable set approximated by finite sets
of some set M of recursively enumerable sets with index set in I, is an element of M, provided
that the finite sets in M are canonically enumerable. If both the finite sets in M and in M are
canonically enumerable, then the index set of M is in X, N IT, if and only if M consists exactly
of the sets approximated by finite sets of M and the complement M consists exactly of the sets
approximated by finite sets of M. Under the same condition M or M has a non-empty subset
with recursively enumerable index set, if the index set of M is in 2, N IT,.

If the finite sets in M are canonically enumerable, then the following three statements are
equivalent: (i) the index set of M is in Z,\IT,, (ii) the index set of M is X,-complete, (iii) the
index set of M is in X, and some sequence of finite sets in M approximate a set in M.

Finally, for every n =2, an index set in Z,\II, is presented which is not ,-complete.

Introduction

The well known theorems of Rice and Rice—Shapiro [9] characterize sets of
indices (index sets) of sets of partial recursive (p.r.) functions located in X, and
2. An index set is the set of all ‘programs’ computing the functions of the given
set. Up to now there has been no such characterization for higher steps in the
arithmetical hierarchy. The interest in studying index sets located on higher steps
of the hierarchy — especially between 23N IT; and X, N IT,—is motivated by
results related to the inductive inference problem. It can be shown that any
identifiable function set is included in an identifiable function set with index set in
23N II; [2], [3]. Thus, there is an obvious desire to get more informations about
function sets with index sets in 25 N IT;. None of the identifiable sets can include
the whole set of recursive functions (Gold [4]). Moreover with the help of Gold’s
result and the Rice—Shapiro theorem it can be shown that no identifiable set can
include a non-empty subset with index set in X;; hence no non-empty function set
with index set in 2 is identifiable [3].

We want to present three results on this topic: every recursively enumerable
(r.e.) set approximated by finite sets of some set M of r.e. sets with index set in
IT, is an element of M, provided that the finite sets in M are canonically
enumerable. If both the finite sets in M and in M are canonically enumerable,
then the index set of M is in 2, N IT, if and only if M consists exactly of the sets
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approximated by finite sets of M and the complement M consists exactly of the
sets approximated by finite sets of M. Under the same condition M or M has a
non-empty subset with r.e. index set, if the index set of M is in X, N IT,.

Furthermore we investigate X,-completeness of index sets. The relation
between intuitive simplicity of definition and completeness or non-completeness
of arithmetical sets is a problem not fully understood [9, p. 330]. Almost all index
sets studied in the past have been proved to be Z,-complete or II,-complete. The
question of completeness of index sets has been further discussed by D. E. Miller.
He shows in [8] that every naturally defined class of sets includes an index set
which is 1-complete for that class and that every index set is 1-complete for some
naturally defined class, where ‘naturally defined’ is formalized as ‘effective
Boolean’.

According to Rice’s theorem (or, more precisely, its proof as given in Rogers
[9]) every non-trivial index set in X is X;-complete. Assuming that the finite sets
in M are canonically r.e., we shall show, that the following three statements are
equivalent:

(i) The index set of M is in 2,\IT,.
(ii) The index set of M is 2,-complete.

(iii) The index set of M is in X, and some sequence of finite sets in M
approximate a set in M.

If we drop the assumption that the finite sets in M are canonically r.e., then
such a characterization seems to be rather difficult. This is indicated by the fact
that there are index sets in 3,\IT, which are not complete on that level of the
arithmetical hierarchy. Using the result of Yates [10] that {z | W,=1A} is
>4-complete, Rogers [9] presents an index set in X,\II, which is not X,-
complete, choosing an appropriate A. This example is easily modified to provide
for all n > 1 examples of index sets in 2, \ IT, which are not X,-complete: let A be
the well-known example (due to Lachlan and Sacks, see e.g. Theorem 13-XXVI
of [9]) of an r.e. set satisfying ™ <; A® < @"*V for all n. As remarked in
Theorem 5.2 of [5] {i | W;N B’ #@} is ZF-complete for all sets B; hence for all
n=1, C,={i| W,NA®+@} =, A® is an example of an index set which is in
2,+1\IT,,, but not X, ,;-complete.

In the last part of this paper we provide other examples of index sets on every
level >1 of the arithmetical hierarchy which are not complete on that level. The
examples are ‘complementary’ to the examples above in that they have the form
{i | W; = S} while the above examples have form {i | W, & S}.

Basic notations and definitions

We assume that the reader is familiar with the basic concepts and results of
recursion theory [9]. We adopt the notations of [9]; in particular an acceptable
enumeration of the unary p.r. functions is denoted by (¢;);=o. For any given ¢;, W,
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is the domain of ¢; (dom(¢;) = W;). W7 is the set of all x (with respect to a fixed
dovetailing procedure) occurring within the first n steps of the enumeration of W,
(depending on the index i). The notation transfers to the relativized theory by
indexing with the oracle (¢2, WZ, WP2™). If M is a set of r.e. sets, then
Ind(M) = {i | ¢; € M} is the index set of M.

The finite set with canonical index x is D, [9]. Suppose a set M of r.e. sets is
given. The finite sets in M are canonically enumerable (c.e.) if and only if there is
a recursive function f with {D,,|x e N} = {W | W € M and W finite}. M is called
canonical if and only if the finite sets in M are canonically enumerable.

The next definition deals with the concept of approximating r.e. sets by finite
sets. A r.e. set A is called approximable by finite sets in M if and only if for every
D, c A there exists a D, e M with D, c D, c A. By Approx(M) we denote the set
of all r.e. sets A which are approximable by finite sets in M. According to the
definition any finite set is in M if and only if it is an element of Approx(M).

Consider for example the set M ={J|3neN:J=[0:n]}. Then there exists
exactly one infinite set approximated by finite sets in M, namely the set N. We
get Approx(M) =M U {N}.

In the following let E denote the set of all finite subsets of N.

Index sets in X, and X, N I1,

We fix a set M of r.e. sets. We want to show first that Approx(M) is a subset of
M, provided that M is canonical and Ind(M) € IT,.

Example. Consider M={A|A r.e.A((x=py:yeA)=>D,cA)}. M includes
every nonempty r.e. set A whose minimal element is a canonical index for a finite
set included in A, therefore

M={A|Are. AVx,y[xeAA(y<x>y¢A)>D,cA]}
={Are.|Ix(xeAAD,cAAVy(yeA>y=x))vVx(x¢A)}.
With the help of the Tarski-Kuratowski algorithm [9] we get
Ind(M)
={i|Vx, y[@n(x e Wi A (y <x=>Vm (y ¢ W")))>3 (D, c W)]}
={i|Vx,y,n3Im, I [(xe W} A (y<x>y ¢ W")>D,c Wi}
as well as
Ind(M)={i|3x, n, IVy, m, k
[(xeW?AD, cWin(yeWr>y=x))v Wi=g]}.

Hence Ind(M) € 2, N IT,.
The finite sets in M are c.e., even recursive since there are algorithms which



104 U. Brand:

compute for any x the cardinality of D, and the elements of D, and decide for any
x and y whether D, is contained in D, or not, hence the characteristic function

_[1, if(y=wz:zeD,)>D,cD,
X&) = {0, otherwise

2

is recursive. Therefore there exists recursive functions f and & with f(N) = x~'(1)
and A(N) = x'(0). By this

{Df(x)|xeN}=MnE and {D,,(x)lxeN}=MnE,

i.e., M and M are both canonical.

We shall prove a lemma asserting that Approx(M) < M. Consider again the
example and a set A € M with minimal element z. By definition D, ¢A, ie.,
D, ¢ D, for every D, c A. Hence we can state for every D, c A containing the
element z that z is the minimal element in D, and D, ¢ D,, which means D, € M.
Thus A ¢ Approx(M).

Lemma 1. Every canonical set M has the following properties:
(i) If Approx(M) ¢ M, then Ind(E) <,, Ind(M).
(ii) If M & Approx(M), then Ind(E) <,, Ind(M).

Proof. Consider a canonical set M and a recursive function f enumerating the
finite sets of M.

(i) If Approx(M)¢ M, there exists an A € Approx(M)\M such that A is
infinite since Approx(M)NE < M. Fix a recursive function g with g(N)=A.
Define

A9={g(0)}, ATTV=AMU{g(n+1)}

and
p(0)=f(uy:3k (A® c Dy, c AWY),
p(n+1)=f(uy:3k (A” U Dyey < Dyy < AY)).

Then p is recursive, D,y S Dp+1y S A for all n, and 3n (x € D,,)) iff x € A;
hence U, D,(») = A. Define by the s7'-theorem a recursive function B(i) to be the
index of an r.e. set defined by
ng(,')= U Dp(y)-——'{X|3y 3z ?)’(ZEW/\XEDP(),))}.
Az=y (zeW)

If W, is finite and m = max{y |y € W}, then Wy, =D,y € M. If W, is infinite,
then Wy =, Dpny = A ¢ M. Hence W, is finite iff (i) € Ind(M). In conclusion
Ind(E) <,, Ind(M).

(i) If M ¢ Approx(M) there exists an A € M\ Approx(M), i.e., there is an
D, c A such that Vy (D, c Dy(,y)= D,,)¢ A). By this every finite subset of A
properly including D, is an element of M. As in the first part of the proof let
A9 ={g(0)}, A" V=A™ U {g(n +1)}. Define by the s7-theorem a recursive
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function B(i) to be the index of an r.e. set defined by

Wﬁ(i) = U Dx U A(n).
. neW;

is finite and hence € M. In conclusion Ind(E)<,,M. O

If W, is infinite, Wy, =A € M. If W, is finite, we get D, € Wy, = A where Wy,

As an immediate consequence of Lemma 1 we get

Lemma 2. Every canonical set M has the following properties:
(i) If Ind(M) € II,, then Approx(M) c M.
(ii) If Ind(M) € X, then M < Approx(M).

Look at the running example, for which we know Ind(M) € 3, N IT,. We have
shown Approx(M)c M. Now consider A € M with minimal element z so that
D, c A. Now, any D, with {z} UD, c D, c A has to be an element of M since z
is its minimal element and D, c D,. To every D, c A such a D, containing D, can

be found (namely D, U{z} U D,). Thus A € Approx(M). In conclusion we get
Approx(M) = M.

We can now characterize the sets with Ind(M) € 2, N IT, as those sets with
Approx(M) = M and Approx(M) = M provided that M and M are canonical.

Lemma 3. If M is canonical and M = Approx(M), then Ind(M) € II,.
Proof. Choose a recursive function f enumerating the canonical indices of the
finite sets in M. If

M = Approx(M)={A|Ar.e. AVD,cA3D,e M:D,c D, c A}
we get

M={A|re. AVx 3y (D,cA> D, c Ds, c A)}.
Thus

Ind(M) = {i | Vx 3y (D, c W;=> D, c Dy(,) = W)}

={i|Vx,n3y,m (D, c W}>D, c Ds,yc W)} € IT,. a

Theorem 4. If M is a set of r.e. sets such that M and M are canonical, then
Ind(M) € 2, N I, if and only if M = Approx(M) and M = Approx(M).

Proof. The only-if-part follows by Lemma 2, while the if-part is an immediate
consequence of Lemma 3. O

If we consider canonical sets M with the property Ind(M) e X, N IT, and M
canonical, then we can show with the help of the Rice—Shapiro theorem that
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there exists a set L # @ such that L ¢ M or L ¢ M, with Ind(L) r.e. In our running
example we can choose

L={A|Are. A{0}UD,cA}.

According to the definition of M, L ¢ M. It is easily seen that Ind(L) is r.e., or
equivalently Ind(L) € ;.

A set L of sets is called a basic open set if L={Ar.e.|D,c A} for some D,
(see also p. 357 of [6]).

Theorem 5. If M and M are canonical and Ind(M) e Z,NII,, then M or M
includes a non-empty basic open set.

Proof. Choose some recursive functions f and A enumerating the canonical
indices of the finite sets in M and M. Now we proceed by contradiction supposing
that neither M nor M include a basic open set, i.c., for every x, {Ar.e.|D, c
A}¢Mand {Ar.e.|D,c A} ¢ M. Hence we can find for every D, e M a D, e M
with D, c D,. Otherwise there is an infinite r.e. B e M N Approx(M)—a
contradiction to Theorem 4. By the same argument there is for every D, e M a
D, e M with D, c D,. The fact that M and M are canonical even allows us to
compute for every D, € M a D, € M with D, c D, using an algorithm computing
y = uz(D, c Dy(,)). The same holds for D, € M: If x = uz(D, < Dy,)) we obtain
D, c D, and D, € M. Now define a function p by

p(0) = uz(z e f(N)),
pQ2n +1) = h(uz(Dp(zny € D))
p(2n +2) =f(uz(Dp@n+1) < Dy()))-

p is recursive. Define A ={J, D,(,. Then A is an infinite r.e. set. By con-
struction A € Approx(M) N Approx(M)— a contradiction to Theorem 4. O

For every basic open set L, Ind(L) € 2,. Thus we get the following

Corollary. If M and M are canonical and Ind(M) e Z,N II,, then there is a
non-empty set L completely included in M or in M with Ind(L) € X,.

X,-completeness of index sets

A set A is Z7-complete if A € Z7 and VC (C € 22> C <, A). IT2-completeness
is defined similarly. According to exercise 14-10 in the book of Rogers [9] every
ZP-complete set forms a 1-degree which is also an m-degree. Hence we get an
equivalent definition replacing one—one reducibility (<,) by many—one re-
ducibility (=<,,).
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Theorem 6. If M is canonical then the following statements are equivalent:
(i) Ind(M) is Z,-complete.
(ii) Ind(M) € 2,\IT,.
(iii) Ind(M) € X, and Approx(M) ¢ M.

Proof. Clearly, (i) implies (ii).

If Ind(M)e 2,\IT,, then M c Approx(M) by Lemma 2(ii) and therefore
Approx(M) ¢ M (otherwise Ind(M) € IT, by Lemma 3). Thus (i) = (iii).

(iii) = (i) follows directly by Lemma 1(i). O

The topic of the last part of this paper is to present index sets in %\ IT? which
are not 7-complete. To do this we need some preparations. For every set M of
re. sets Ind(M)min={i | W;e M AVj<i(W;# W)} is the set of all minimal
indices for sets in M.

The following result is due to M. Blum, probably unpublished. Reference is
made to it in [7].

Lemma 7. If M is infinite, then Ind(M),y;,, is immune.

Proof. According to Theorem 1 in [1] for every recursive function g with infinite
range there exist i, j such that ¢; = ¢, and i <g(j). Supposing that Ind(M),p;, is
not immune we can choose g such that g(N) c Ind(M),,. But then ¢, = ¢,
(i.e., W;=W,;) and i <g(j) for some i and j means that g(j) ¢ Ind(M),;,, —a
contradiction. O

Lemma 8. If Ind(M) € Z2\I12, then
(1) Ind(M)n € ZE\ITZ, and
(ii) Ind(M)in is immune.

Proof. (i) The fact that Ind(M),, € =5 follows directly from the assumption
Ind(M) € 27 by the Tarski—Kuratowski algorithm [9] since

ieInd(M)mn & ieInd(M)AVj<i(W,+W)
where i € Ind(M) € % and

Vi<i(W;#W) & Vj<i3x((er,-/\x¢Vl§)v(er-/\ng_W,-))

which is in X, and hence in =% by standard Tarski—-Kuratowski manipulations.
Similarly

ielnd M) & 3Fj<i(jeInd(M)m, A W,=W)
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where
W=W & Vx(xeW,AaxeW)v(x¢W Arxe¢W))

is in IT, and hence in ITZ.

If Ind(M),€IT5 as well, then Ind(M)e II7 by the Tarski—Kuratowski
algorithm, contradicting the hypothesis that Ind(M) € Z7\IT5.

(ii) Observe that M must be infinite; otherwise Ind(M),y,;, is finite contradicting
the fact that Ind(M),i, € SZ\IT5. Thus Ind(M),,;, is immune by Lemma 7. 0O

In the following let B’ = {x | x € W2} and B" =(B’)’. Furthermore we denote
by Indg(M) = {i | WP € M} the B-index set of M. In the proof of the following
two lemmata we use the fact that Indgz(E) =,, B” and Indz({0})=,, B’. The two
statements can be proved by replacing in the proofs for Ind(E)=,,#" and
Ind({0}) =,,0’' the partial recursive functions by the partial B-recursive func-
tions. We skip the proof here. Finally we define for every set B, Sz = {W | Wr.e.
and W c B} as the set of all r.e. subsets of B and FSgz={W |W finite and
W < B} as the set of all finite subsets of B. It is easily verified that B <,, Ind(Sg)
and B <,, Ind(FS3).

Lemma 9. Ind(S;)=,, B".

Proof. This is an immediate consequence of the well-known fact that if S is
Ef-complete, then {i | W, cS}is Hf+1-complete (see e.g. the note after Theorem
630of [5]). O

Lemma 10. If C<,, B", then Ind(FSc)<,, B".

Proof. By the above observation C<,, B"=, Indz(E). Hence there exists a
recursive function f with f~'(Indz(E)) = C. Define by the relativized s}-theorem
a recursive function a(i) as the index of the B-recursively enumerable set defined
by

Wg(i)= w,u U w7 !
xef(W)
We show a~!(Indg(E)) =Ind(FSc), i.e., Ind(FSc)<,,Indg(E)=,, B" and the
statement follows immediately.

If i eInd(FSc), then W, is finite and W,c C. Hence f(W,) is finite and
f(W;) cIndg(E), i.e., WZ is finite for every x e f(W;). Since a finite union of
finite sets is a finite set, W5, is finite, i.e., (i) € Indp(E).

If i ¢ Ind(FSc), then (1) W, is infinite or (2) W; ¢ C. Clearly, if W, is infinite,
then W3, is infinite, too, and we get a(i) ¢ Indg(E). In the second case we get
f(W,) ¢ Indp(E). Hence there exists some x € f(W,) such that W2 is infinite, i.e.,
W3, is infinite, and we get «(i) ¢ Indp(E) in this case, too. O
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Now we shall show that B' =,, Ind(S¢) if C is immune. Observe that Sc = FS¢
for every immune set C. This fact will be the key to the proof.

Lemma 11. If C is immune, then B' =,, Ind(S¢).

Proof. We proceed by contradiction. Suppose that there exist an immune set C
and some B c N such that B' =, Ind(Sc). We shall show that the assumption
yields Ind(Sp') <,, Ind(FS5).

Since C<,,Ind(Sc)=,, B’, there exist recursive functions f and g with
fY(B")=C and g~ '(Ind(Sc)) = B'. With the help of the s7-theorem define a
recursive function B(i) to be the index of the r.e. set defined by

w i) — vi .
BG) xe%(Jw,.)f (Wo)
We show B~ '(Ind(FSg.)) = Ind(S5).

If i eInd(Ss:), then W;c B'. Hence g(W;) cInd(Sc), i.e., Uregemy Wi = C.
Since the union of the W, is r.e. and C is immune, the union of the W, must be a
finite set. Thus

Wao=_ U fw)=f( 1) W)
is finite.

Uregemy We < C implies Wy = f(C). Since f(C) = B' we get Wgi, < B’ and
W is finite. Thus B(i) € Ind(FSp.).

If i ¢ Ind(Sp'), then W, ¢ B'. Hence g(W;) ¢ Ind(Sc), i.e., there exists x € g(W))
such that W, ¢ C and therefore f(W,)¢ B'. Thus Wy, ¢ B', ie., B(i)¢
Ind(FSp).

In summary Ind(Sp)<,, Ind(FSz). Applying Lemmas 9 and 10 yields
B"=,,Ind(Sp) <,, Ind(FSz) <,, B"—a contradiction to the fact that B” and B"
are incomparable with respect to many—one reducibility. O

Combining Lemmas 8 and 11 we get

Theorem 12. If Ind(M) € ZZ\I12, then
(i) Ind(Sc) € ZZ\I1%, and
(i) Ind(Sc) is not =3-complete, where C =ind(M)n.

Proof. (i) C is immune and CeXP\IT¥ by Lemma 8. Hence Ind(Sc)=
Ind(FS¢) <,,B"€ X7 by Lemma 10. Furthermore Ind(Sc)¢ IT5 since C=<,,
Ind(S¢) and C ¢ IT%.

(ii) Follows immediately by Lemma 11 (otherwise (B')’' =,,Ind(Sc)). O

By Theorem 12 we get index sets on every level >1 of the arithmetical
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hierarchy which are not complete on that level. To see this fix some n =2 and
define M, = FSyw, where @™ is the n-th jump of @ defined as in [9]. Then
Ind(M,) =,,06" by Lemma 10, i.e., Ind(M,) € Z,\II,. Define B=0""2. Then
Ind(M,) € ZZ\IT3 so that by Theorem 12, {i | W; < Ind(M,),.;i»} is an index set in
32\IT} = 3,\IT, which is not X,-complete. Accordingly the complement
{i | W; ¢ Ind(M,)min} is an index set in IT,\ %, which is not IT,-complete.
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