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Number Representations and Registers™)

By Ulrike Brandt

Abstract: We investigate the following question: Are the usual geometric bases the best possible choice
with respect to additive number representation in registers? The answer depends obviously on an
appropriate measure. We choose a product measure taking into account the necessary register length
as well as the energy performance caused by certain standard operations. Using special results from
additive number theory and upper bounds for continuants we can show that the Fibonacci numbers
with even respectively with odd index are optimal infinite bases with respect to our measure. This result is
achieved under the additional assumption that only number representations are used, which can be
created by Euclid’s algorithm.

1. Introduction

Nearly all current architectures of computers are based on von Neumann’s architecture,
that means we meet an arithmetical-logical unit, memories of different kind, peripheral
units and so on. The artihmetical-logical unit performs the arithmetical and boolean
operations. Usually it has a memory of registers with rapid access time. Mostly, these
registers contain numbers in binary representation or in a related representation to another
basis than two. Our question is, if this kind of “geometric” number representation is the best
possible choice. Clearly, with respect to human purposes it seems to be natural to use such
systems, especially the decimal system. However, even if these systems may be unavoidable
for the man-machine communication, faced with modern technologies, like VLSI, it could
be much better to use exotic basis systems for number representation, for example looking
at machine-machine communication.

Asking this question, we are faced at least with three different approaches. First, leave
the architecture of registers at all, secondly cancel the additive representation of numbers,
thirdly accept standard architectures and use non-geometric representations. It is well
known, that the second approach has been used at least in theory [8]. We shall attempt
the third approach, which is the modest one of these three. This means, we extend the
usual way to get the represented number multiplying the content of the register cells with
the powers of two (or another basis number), allowing squares, cubes, primes, faculty and
so on. To be more precise, we introduce the notion of a minimal additive representation
of a number with respect to a basis A.

A basis is simply a subset 4 = {a;,a,,...} < N with 1€ 4. This set can be finite or
infinite. For convenience we assume 1 = a, < a, < a3 < ... Given a basis, every xe N

has a representation x = ), n,a;. In the set of these representations we distinguish so called
aicA
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minimal representations containing the least possible number of terms, more precisely,
where Y n; is minimal. Accordingly, x is represented in a given register R, if the i-th cell

aicA

contains the “digit™ n;, where x = Y, ma; is a minimal representation. Note that in general
aieA

n; cannot be interpreted as a digit in the usual way, because the n;’s may be unbounded.

Our attempt is now to study the effect for standard operations, if the basis is changed
for example from {2'|i = 0} to some exotic subset of N. Every effort in this direction
depends obviously on the choice of an appropriate measure. Let us take a brief look on
the question how to fix it.

The first criterion should be the length of a register, if you want to represent all numbers
of an intervall [1..x] = {y e N | y £ x}. Representing a number x in our way, elements q;
of A are useless if a; > x. Hence, the register needs at most as many cells as there are
a; € A with g; < x. This number is denoted by A(x). Now, looking at 4 = {1}, a possible
base, we get obviously A(x) = 1 for every x. With respect to the length of the register we
can’t do better. But this choice of A4 is absurd, because the one necessary register cell replaces
a whole register alone, if we look at the internal representation of the “digit”. Thus, A(x)
doesn’t suffice as a single criterion, i.e. we need at least one more different measure.

To this purpose we choose an energetic measure concerning standard operations. To
make things easier, we skip at this time the quite complicated arithmetical operations and
restrict ourselves to load operations and comparisons. For these operations we can assume
that the amount of energy is proportional to the amount of destroying, conserving and
building up the necessary energy profile of one register. Typical operations are: load zero
(reset), compare with zero, load a number into an empty register.

Considering again an intervall [1..x] we set this amount proportional to T (x, 4), that
is the number of terms from A appearing in worst case in a minimal representation of
some y€[l..x]. Thereby we assume that preserving zero costs no energy at all. Now,
looking at 4 = N, we get T(x, A) = 1 because every y€[l..x] is representable by the
single term y € A. But now A(x) = x for all x. Hence, T(x, A) alone is an unfair measure
again. Looking back to the choice A = {1} we observe that both choices are characterised
by the fact, that the whole information is contained in one cell. This parallel is captured, if
we consider the product measure A(x) - T(x, A), since T(x, N) - N(x) = T (x, {1}) - {1} (x)
= x. Using 4 = {2Yi = 0}, we get T(x, A)- A (x) = log3(x + 1) (provided x + 1 is a
power of 2), which is better than the value for the extremal choices. In conclusion, the
examples show that there is a trade-off between T'(x, 4) and A(x).

We are now in the position to establish our problem in a precise way: determine to any
x M(x) = Min{T(x, A) - A(x)/4A = N, 1 € 4} and all 4 with M(x) = T (x, 4) - A(x). In the
following we shall refer to this problem as the M (x)-problem. Clearly, it is possible to use
further criterions, for example other energetic measures or complexity measures for
arithmetical operations. But by solving the M (x)-problem we shall get at least an overview
over all reasonable choices of bases 4.

2. Rohrbach’s reach-problem

It seems that the M(x)-problem is currently to hard to be solved. The reason is that it
is completely equivalent to an unsolved problem in additive number theory. Consider a
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finite base 4 < N and h e N. Let n(h, A) = Max{xe N/T (y, 4) < h for-all 1 <y < x}.
This number is called the h-reach of A. Choosing 4 = {1, 4, 9, 31, 51}, every x € [1..126]
is representable by less than 6 terms. For example 125 = 4-31 + 1+ 1 and 126 = 1 - 51
+ 231 +1-9+ 1-4. By testing we get that 127 needs at least & terms. Hence
n(5, A) = 126.

The reach-problem of Rohrbach [7] is now to compute to a given h, keIN the
number n(h, k), which is the maximal h-reach of all bases 4 with cardinality k, and
moreover to determine all those A with n(h, k) = n(h, A). These bases 4 are called
extremal section bases. The finite set A = {1, 4, 9, 31, 51} fromthe above example is an
extremal section base for & = k = 5, because there is no base of cardinality 5, such that
every x < 127 is representable by at most 5 terms. Thus #(5,5) = 126. See [5] for further
details.

The connection to the M (x)-problem is easily seen observing that the two problems, to
minimize T(x, A) - A(x) for A < N and to determine all pairs (h, k) with n(h, k) = x, such
that h - k is minimal, are equivalent. Hence, M(x) = Min{hk/n(h, k) = x}. Unfortunately,
only few values of n(h, k) are known.

To overcome this difficulty, one can proceed in two different ways. The first way is to
restrict the set of admissible bases to certain subclasses, for example to geometric bases of
type {p'|i = 0} with p = 2, while the second way is to allow not all representations but
only some canonical ones. We take the second approach restricting the set of admissible
representations to those, which we get by applying Euklid’s algorithm, this means we use
every element a; € A in descending order as often as possible. This algorithm leads for every
x € N to a unique representation of the form

x= Y ma; with Y na <a;,, forallj.

aicA 15isj

Following Hofmeister [4] we call these representations regular. If we look at our running
example, we get2-51 + 2-9 + 1-4 + 21 as regular representation of 126. Observe that
the number of terms is 7, which is greater than the best possible number 5.

In general, the minimal representation is not unique so that even testing equality
is a harmful task. Moreover, the coefficients can by no means be interpreted as
digits in the usual way. Looking at applications, the useful representations should
possess at least these two properties, so that the restriction to regular representations is
reasonable.

Now, we rephrase our problem. Define S(x, 4) in the same way as T'(x, A), but use only
regular representations. Then the m(x)-problem is to minimise S(x, 4)- 4(x) and to
determine all m(x)-optimal bases A, that means all 4 with m(x) = S(x, 4) - A(x). Again,
the m(x)-problem is equivalent to a problem of additive number theory, indroduced by
Hofmeister [4] as an analog of Rohrbach’s problem. This problem is called the regular
reach-problem, which differs from the general version by using exclusively regular representa-
tions. Analogously, we are speaking of regular h-reach and extremal regular section bases.
In this case the numbers n(h, 4) and n(h, k) are replaced by g(h, A) and g(h, k). As before,
we get m(x) = Min{hk/g(h, k) = x}.

We are now in a better position, because Mrose has solved the regular reach-
problem in 1969 [6]. Using Mrose’s results we can determine m(x) and the m(x)-optimal
bases A.
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3. Mrose’s results

A first step to determine m(x) is to find those pairs (h, k) with m(x) = hk for some x.
Hofmeister [4] has shown that g(h, k) = g(k, h) holds, hence, it is enough to consider all
pairs (h, k) with h > k.

So, our discussion starts in solving the following problem: determine all (4, k) € N? with
h = k, fulfilling the following property: if (1, k') e N? with g(k', k') = g(h, k) then h'k’ > hk.
Such pairs are called r-optimal. The stated problem can be solved with the help of an
algorithm due to Mrose, which computes g(h, k).

To do this, we need the notion of a continuant. A finite sequence p of real numbers
Xy, ..., X, Willbe writtenin theform u = (x,, ..., x,>.If6 = <{y,, ..., y,.» isanother sequence,
we denote the concatenation of sequences by uo o = {xy, ..., X, V1, ..., Vmy- As usual, we
define exponentiation of sequences by u® = (> and p'** = p'o p (i = 0). A continuant is
a special determinant, usually used in developing continued fractions. For k = 1 and
Xy, ..., X, € R continuants can be defined recursively by the functional equations

C(xy, ooy X)) = X1 C(KXgy vy X1 0) — C({X3, ovny X))
or equivalently

C(xg ooy X)) = X C(KX gy vy X 10) — C({X gy ovvy X))
with the initial conditions

1, if s=r—-1
0, if s<r—1.

C({Xyy ooy xs>) = {

Mrose has shown in his dissertation [6] the following two results:

(1) g(h k) = Max{C({(xy, ..., x;D)/x; e N, x; 2 2(1 £ i < k) and
Y xi=h+2k—1} -1

15isk

(2) @) gh k) = C({xyy ooy X)) — 1 = C(KYyy -5 o) — 1, where

(. lin| |G-1Dh
2+—— B .
k k if 1<i<k

<{

h+1_[(k—1)hJ’ if i=k
‘ k
'1+m
B k| if i=1
Yi= "ih‘| "(i—l)h‘| if 1<i<k.

2+ — | — s
\ k k

(i1) If the sequences {x, ..., x;,» and {y, ..., y,» are determined with respect to (2) (i),
they are reversed to each other, moreover, .

A={C(<x19ax:>)|_1§l<k} and B={C(<y1”yz>)|_1§l<k}

are the two uniquely determined extremal section bases with g(h, k) = g(h, A) = g(h, B).
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4. r-optimal pairs

To determine all r-optimal pairs, we need the values g(z, z — 1) and g(z, z). By Mrose’s
result we get

gzz— 1) =CK3)*" ) —1 and gz,z) = C((3)*7'=<2)) — 1.

Using the well known approach to solve linear difference equations with initial conditions
we obtain

Lemma 1: Let o = [ﬁ'l, =303+ [ﬁ) and 1, = (3 — 1/5), then g(z,z — 1) =
(A — A3) — land g(z,z) = a(A3*Y — 23%Y) — a(AZ3 — 23) — 1.

We combine this lemma and Mrose’s results with the following theorem.

Theorem 1: If {x;, ..., e N* with x;, 22 for all 1 i<k and s = ), x, the
Sfollowing holds: 15isk

(i) C(xpr o)) S C (<%>> if's = 3k,
(i) C(Kxyy -0 x0) = A + ﬂ)s““’d"/l"”, if smod k < V;J,

where the constants are given by

B=(b*—4"", l=%(b+]/b2—4) and b={%J.

The proof of Theorem 1 is difficult, lengthy and rather technical. A detailed version is
given in [1].
Combining Mrose’s results with Theorem 1 we get

Theorem 2:
() If k < h then g(h, k) < a(AX*! — A1) — 1, where

1 1 h
a= (= =S b VB k= - B andb =2+
() Ifk < h < 3ktheng(h k) £ B + P *"1J%*1 — 1, where

B=15"tand =143+ )5

Using this theorem we determine all r-optimal pairs.
Lemma 2: If (h, k) is r-optimal and h = 90, then h < 3 k.

Proof': Let (4, k) r-optimal with # > 90. Suppose in contradiction to the statement, that
h = 3 k holds. Discussing functions in the well-known way yields

(1) F(c) = 2.576° — (2 + ¢ + /(2 + ¢})? — 4) is a monotonous function for ¢ = 1,

(2) G(c) = 2.618°°/°°%) — L (2 4 ¢ + /(2 + ¢?)? — 4) 2 0, if c e [|/1.5, 1/90].



202 U. Brandt

Determine o, 4, 4, as in Lemma 1. Let y = (|/b*> — 47", 1 = §(b + |/b> — 4) with
h
b=2+ - If k > 60 then A§**Y > 2.576. Hence we get by (1)

- - h
AYPHEED g = e OVER _ g > F (]/;) > F(/15) 2 0.

If k < 60 we use (2) to obtain

/WW“” 1= MVW/(H'I/I() —1>G Q/E) >0.
2 ) 2

h
Observe that in this case n €[1.5,90]. In total we conclude

(3) AHk — prt1 >,
Now, consider z = Max{m e N | hk > m(m — 1)}. By definition hk < (z + 1) z.

First case: z(z — 1) < hk < z2
By Lemma 1 and Theorem 2 we obtain

gz,z — 1) — g(h k) 2 a(4] — 43) — pA**!

[
Y Ay
2 (2 — 24 Z ™ - 2.

By this, together with (3): g(z, z — 1) = g(h, k). Since (h, k) is r-optlmal and hk > z(z — 1),
this is a contradiction.

Second case:z2 < hk £ (z + 1)z

1 2
Now, hk < <z + 5) , and by Lemma 1 and Theorem 2 we get

g(z2) — glh k) 2 a(A{™! — 2571 — a(d] — 25) — y2**!
2 ali(dy — 1) — pa**!

> 'V|:g (/11 _ 1) /11—0.5+1/ﬁ _ lk+l]
Y

> Ay — Ak,

Hence, g(z,z) = g(h, k) by (3). Since z? < hk, we reach again a contradiction to the
r-optimality of (h, k).

Lemma 3: For any r-optimal (h, k) with h £ 3 k the following holds:
Q) h<k+s5,
(i) (h k) e {{(z,z), z+1Lz—-1),(z+2:z-2)} ifzeNandz(z — 1) < hk < 22
’ {+1,2,z+2z-1),(z+3,z—2)},ifzeNandz* <hk < (z+ 1)z
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Proof: If (h, k) is r-optimal with h < 3 k, consider z = Max{me N | hk > m(m — 1)}.
Obviously, hk £ (z + 1)z. Let h = z + x and k = z — y. Consider again the constants o,
Ay, 4, of lemma 1. Then we get

22\?
1) g(z,z — 1) =2 al} <1 - <-i~) ) — 1 and
1

@ g@z2) 2 adi(4, — 1) - L

Furthermore Theorem 2 implies

1+ o\t
@) gz + x,z — y) < aki(l +a)*< ;“) 1

1

First case: z(z — 1) < hk £ 22
If z = 1, we get h = k = z. Thus, without loss of generality, z = 2. It is easy to show

@osy<x<]/15y
Now, on the right hand side of (3), we can use x < ]/1.5y and compare the resulting
expression with the right hand side of (1). Doing this we obtain g(z,z — 1) = g(z + x,z — y)
fory = 5.

Ify<4, (4 impliess0 < x —y = (]/B — 1) y £ 0.9 and therefore x = y. Replacing x
on the right hand side of (3) by (4) and comparing again the right hand sides of (1) and
(3) results in

gzz—1)2gz+x,z—y for ye{34}.

Since (h, k) is r-optimal and z(z — 1) < hk, we obtain g(z,z — 1) < g(z + x,z — y). But
this can only be the case for x = y € {0, 1, 2}.

Second case:z2 <hk < (z + 1)z
Analogously to the first case, we get
G)0=sy<x=)/15y + 051 + )/ L5). ‘
Now, compare the right hand sides of (2) and (3). If we replace x by the upper bound

[/1.5y 4+ 0.5(1 + ]/ 1.5), we obtain g(z,2) = g(z + x,x — y)fory = 7.
If y £ 6, (5) implies

1, if 0<y<3

léx—y§{ .
2, if 4<5y=<6.

Replacing x in the right hand side of (3) by y + 1 respectively y + 2 and comparing again
with the right hand side of (2), we get g(z,z) = g(z + x,z — y), if y = 3 respectively if
4=y=sé.

Since z2 < hk, the only remaining possibilities are (x, y) € {(1,0), (2,1), (3,2)} to fetch
an r-optimal pair (h, k). W

Lemma 4:

(1) gk + 2,k +2) < gk + 5,k), ifk = 8,
@) gtk + 2,k + 1) < gk + 4, k), if k = 3,
(i) gtk + Lk + 1) < gk + 3,k), ifk = 3,
@iv) gh,k) < gth — L,k + 1),ifh > k + 1.
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Proof: A simple induction proof (see Theorem 1.2 of [6]) shows for all 0 < i < k and
{Xq, ..., X € RF that

(1) Cxps vy 1) = C((xyy oy X)) - C X g 15 005 XiD)

= C({xyp s X 10) - C(Xi 25 - X)) -
By this we get
(2) C(Kxgy s X10) = CX gy eees Xim 1y X3 — 1, Xy 1y oees X))

+ CXgy s X2 10) (X g 05 X)) -

Ifk =2 8,a; = C({3)>*"®)and a, = C({3)*~°), we obtain from (1) and by Mrose’s algorithm
to determine g(h, k) that

gk + 2,k +2) = C(3Y*16<2)) — 1

a;C((3)? 2 (2)) — apC({3)* 2 (2)) — 1

10946a, — 4181a, — 1 < 10981a, — 4030a, — 1
a;C({3,4)% 2 (4,3)%) — a,C(<4,3,4) - <4,3)?) — 1
= CKH P (3,4)20¢4,3)%) — 1

< gk + 5,k)

proving (1).
Turning to (ii) and (iii) we can argue analogously. We show
gk + 2,k +1) = C(BY™) =1 S C(BH*3<4)’) — 1 S glk + 4, k),
respectively,
gk + Lk + 1) = C({3)*=<2)) — IKC((3Y*72<4)?) — 1 < g(k + 3, k).
It remains to show (iv). If h > k + 1 and g(h, k) = C({xy, ..., ,>) — 1, where x,, ..., X, are
determined by Mrose’s algorithm, there exists a b > 3, such that x; e {b,b + 1} for1 i
Sk Letj=Max{i/l Si<kandx; 24}, p=<xy,...,x;_>and & = {x, ..., Xj_ o).
By (1) we obtain first
CluobY7I*h) — Cluo (b))
= C(p) C(KbY 7Y — C(w) - C(KbY )
— Cu) CKBY™) + C() CKbY)7Y)
= C)[(b — 1) CKbY™) — CKbYI™1)
— C() [CKbY ™)) — CKbY*i71)
> C(p) CKbY )
and from this together with (2)
gh— Lk+1)2 Cxy, o0 Xjm, X — 1, X504, .00, %, 2)) — 1
= 2C(po<bY* I — C(uo (b)) — 1
> Cluo by 7" + Cu) CKbY ™)) — 1
=Cluob+ 1Y) =1 =C(xy, .0, ) — 1
=ghk. N
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Lemma 5: If (b k), (r,s) e N?> withk 29, |h — k| £ 5, |r — 5| < 5 and rs < hk, then

g(r,s) < g(h, k).
Proof: Consider such (4, k), (r, s) e N2.

First case:s =k

Then r < h and our statement follows immediately, since g(h, k) is monotonously
increasing in both arguments.

Second case:s =k — jwithj = 1.
Letr=h+j+ithenh —k+2j+i=r—s<5.Since rs < hk, we get

0<hk—rs=—ik+ (h—kj+j2 +i—j= —ik +jir—s) —j*

< —ik+5—-j2<—-ik+6

resulting in i < k, because k = 9. Hence, r < h + j and therefore g(r, s) < g(k — j, h + j)
< g(k, h) by Lemma 4.

Third case:s = k + jwithj = 1.
Letr =k + i Sincer>sandrs<hk,wegeti=>2j=land2=<i+j<h—k=<51In
this case, only three possibilities remain:

— Gj)=(1,1)and h =k + 3,
— Gj)e{(1,1), 2 1)} and h = k + 4,
— Gie{,1), 21),(3,1), 2,2 and h = k + 5.

By the montonicity of g and Lemma 4 we get in all cases g(r,s) < g(h, k). W
Now, we can summarize all the results.

Theorem 3: (h, k) is r-optimal if and only if h — k <5 with (h > 18 or k > 10)
or (h, k) is marked in the following table with “x”.

k 7 8

o

1 10 11 12 13 14 15 16 17 18 19 20 21 22 23

%X %X N
X X X W
% X %X x b
X X X X X W
=
% =
=

X XX XXX
=
x.

X XXX XX
X XX X XX
=
X'

\OOO\]O\Lh-hbJNr—‘;
=
=

o= o
MR KX XX R X -
XXX MR-

KRR KR

N R KRR -

—
w
X X R X X =

XXX X X X -

—_
SN
XX XXX X

oo

R R XXX R
R OR R K-
R OR K-
R R -

% %

%

Proof:
“=": Let (h, k) be r-optimal. If h = 90 or h < 3k, we get h — k < 5 by Lemma 3 and 4.
The remaining finitely many cases are checked with a computer program.
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“<=": We check the table with a computer program. It remains to show the r-optimality
of (h, k) under the conditions |k — k| < 5 and h > 18 or k > 10. Suppose, such an (h, k) is
not r-optimal, i.e. there is some r-optimal pair (r, s) with rs < hk and g(r, s) > g(h, k). By
Lemma 5r — s = 6, moreover, the first part of the proof asserts r < 18 and s < 10
contradicting g(r, s) = g(h, k). W

5. m(x)-optimal bases

Once the r-optimal pairs have been found, it is not difficult to determine m(x) and the
m(x)-optimal bases. Consider 4, B = IN. We call B a strict monotonous extension of A if
A =, B and Max(4) < Min(B — A). B is a monotonous extension of A, if either A = B
or B is a strict monotonous extension of 4.

Theorem 4: Let x > 215268, then the following holds:
(i) m(x) = Min{hk/g(h, k) = x and |h — k| £ 5};
(ii) the m(x)-optimal bases can be computed with the help of the following algorithm:
1. z:=Max{me N/g(m,m — 1) < x};
ifx < gl(z,z) thent:=0 else t .= 1;
= Max{je {0, 1,2}/g(z + t +j,2 — ) = x};
h=z+1t+1i; '
k:=z— i
2. Use Mrose’s algorithm to determine the extremal regular section bases A;, B; = N, for
i = 1,2 with |A| = k, |Bj| = h and g(h, k) = g(h, A)) = g(k, B;). Then the m(x)-optimal
bases are exactly the monotonous extensions of A; and B, (i = 1, 2).
Proof:Consider x > 215268 = g(18, 10) and (h, k) e N? with m(x) = hk and g(h, k) = x.
By symmetry of g we can assume h 2 k, i.e. (h, k) is r-optimal. Since g is monotonous, we
get h > 18 or k > 10. Now, Theorem 3 yields h — k < 5 and (i) is proven.

Let z = Max{me N/g(m,m — 1) < x}.

First case: x < g(z,2). Since (z,z — 1) and (h, k) are r-optimal, we get z(z — 1)
< hk < z* and Lemma 3 implies (b, k)e {(z + 1 + j,z — j)/j = 0, 1, 2}.

Second case: g(z,z) < x. In this case x < g(z + 1, z). r-optimality of (z, z) and (h, k)
implies z> < hk < (z + 1)z. Hence (h,k)e {(z + 1 + j, z — j)/j = 0,1,2} by Lemma 3.

Since the values (z +j) (z —j) and (z + 1 +j) (z — j) are strictly decreasing with
increasing j, we obtain in the first case (h, k) = (z + j, z + j) for the maximal j € {0, 1, 2}
with g(z + j, z — j) 2 x and in the second case (h, k) = (z + 1 + j, z — j) for the maximal
je{0,1,2} withg(z + 1 +j,z — j) = x.

Consequently, (h, k) is uniquely determined and the algorithm computes this (k, k). Now,
the rest of the proof follows immediately from the definition of m(x)-optimal sets and the
symmetry of g.

Should the range [1 ... x] be represented optimally with respect to our measure, the above
theorem and Mrose’s algorithm tell us, that the optimal base has to be changed under
complete new recomputations, if x increases. This seems to be not adequate for practical
purposes. Therefore we are interested into infinite bases A,, such that the product
S(x, A,) - A, (x) is asymptotically equal to m(x).
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We can find such bases in the following way. Let FIBG = {a,;/i 2 1} = {1,3,8,21 ...}
and FIBU = {ay;,,|i = 0} = {1,2,5,18 ...} be the sets of Fibonacci numbers with even
respectively with odd index.

Theorem 5:
m(x) ~ S(x, FIBG) - FIBG(x) ~ S(x, FIBU)- FIBU(x) ~ ¢ - In?(x),

where ¢ = [In(3 (3 + 1/3))]_2 = 1.07961 .... Moreover FIBG and FIBU are the only bases,
such that for infinitely many x

m(x) = S(x, FIBG) - FIBG(x) respectively m(x) = S(x, FIBU) - FIBU(x) .

Proof: It is easy to show that
FIBG = {C({3)")|z 2 0) and FIBU = {C({2) > (3)*|z = 0} .

By Mrose’s algorithm we get g(z,z — 1) = C((3)*"!) — 1 and
g(z,2) = C({2) - (3»*71) — L.
Let x = g(z,z — 1) and y = g(z, z), then m(x) = z(z — 1) = S(x, FIBG)- FIBG(x) and
m(y) = z2 = S(y, FIBU) - FIBU(y). Hence, FIBG and FIBU are m(x)-optimal bases for
infinitely many x.

Consider o and 4, from Lemma 1, then:

m(x) < S(x, FIBU) - FIBU(x) £ Min{z%/g(z, z) = x}
< Min{z/at3(h, — 1) = 1 2 x})> <[c-In(x + 1) + &7,

=)

m(x) = Min{(z + t + j) (z — j)/te{0,1},je {0, 1,2} and g(z + t + j,z — j) = x}
> Min{z?> — 4/g(z + 1,z) 2 x} 2 [c-In(x + 1) + ¢ — 17> — 4.

On the other hand by Theorem 4

Since lower and upper bound of m(x) are asymtotically equal to ¢ - In*(x), we get
m(x) ~ S(x, FIBU) - FIBU(x) ~ ¢ - In*(x).

Analogously (again by Lemma 1),
S(x, FIBG) - FIBG(x) < Min{z(z — 1)| g(z,z — 1) = x},

implies
S(x, FIBG) - FIBG(x) ~ c - In?(x).

Now, consider a base A with m(x) = S(x, A) - A(x) for infinitely many x.

By Theorem 4, there is an me[—5 ... 5] and an infinite sequence of extremal regular
section bases A4, A, ... with |[4; — {0}| = k; (i = 1), such that foralli = 1
- U A; — {0} =4,
ieN
— A;4, Is a strictly monotonous extension of A; and
— glk; + m k) = g(k; + m, A).
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By Mrose’s algorithm to compute g(h, k), there must exist a sequence X1, X5, ... of natural
numbers, such that for all i > 1 the following holds:
(i) {C(Xpr s X))/ — 1 S 4 < k} = 4, and

(ii) either x; = 2 + [MJ - [wJ for 1 < 4 < k,

k; K,
ki +
1+[ km], ifa=1
or x; = !
Ak, A= 1) (k,
2+((‘+"ﬂ—{( )k(‘+m)—‘, if 1<2<k,

By (i) x, € {2,3} and x, = 3 for 4 > 2, since for any i there exists a Jj > i such that

A

M tfor1 <A<k,
kj

Therefore

A= |J A, — {0} e {FIBG, FIBU} ,
ieN

which shows, that there is no other infinite base A, than FIBG and FIBU such that
m(x) = S(x, A,) - Ao (x) for infinitely many x. W

We compare this result with the geometric bases GEO, = {a'|ie Ny} for a = 2. One
easily checks that

—1
S(x, GEO,) - GEO,(x) ~ &

-In?x,

In®a

1
adopts the following values for ae[2 ... 10]:
a

a—
where the constant ¢, = 5
In

a 2 3 4 5 6 7 8 9 10

C, 208.../1.65...| 1.56...| 1.54 ...| 1.55 ...| 1.58 ... [ 1.61 ...| 1.65...| 1.69 ..

One can show, that c, is strictly increasing for ¢, = 10, so that c, is minimal for a = 5.

6 Concluding remarks

We discuss shortly arithmetical and logical operations. The main property in using
m(x) optimal bases, is the fact, that indeed the coefficients in the representation of a
number are digits. Using for example FIBG of FIBU these digits are 0, 1, 2. Consequently,
the logical operations <, <, >, =, =, % can be performed in the usual way.

Things are different with arithmetical operations. Consider FIBG and addition. In
contrast to GEO, the carry will be transfered both to the left and right. The digit
addition of 2 and 1 respectively 2 results in the digit O respectively 1, where the carry
1 wents in both cases to the left as well as to the right.



Table of the first values of g(h, k)

k/h: 1 2 3 4 h) 6 7 8 9 10 11 12 13
1. 1 2 3 4 5 6 7 8 9 10 11 12 13
2: 4 7 10 14 18 23 28 34 40 47 54 62
3: 12 20 29 40 55 71 90 114 139 168 203
4: 33 54 78 111 152 208 286 344 435 550
5: 88 143 207 296 417 570 779 1004 1291
6: 232 376 544 781 1108 1559 2130 2910
7: 609 986 1427 2058 2939 4140 5821
8: 1596 2583 3738 5399 7740 10980
9: 4180 6764 9789 14148 20381
10: 10945 17710 25630 37072
11: 28656 46367 67103
12: 75024 121392
13: 196417
14:

The values of r-optimal pairs (h, k) are bold.
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Table of the first values of g(h, k) (continued)

kih: 14 15 16 17 18 19 20 21 22 23
1: 14 15 16 17 18 19 20 21 22 23
2: 70 79 88 98 108 119 130 142 154 167
3: 239 280 328 377 432 495 559 630 710 791
4: 670 815 984 1188 1398 1644 1925 2254 2590 2975
5: 1652 2088 2639 3215 3914 4755 5740 6929 8154 9593
6: 3750 4826 6190 7919 10008 12648 15408 18763 22818 27719
7: 7952 10863 13999 18033 23183 29665 37946 47955 60604 73829
8: 15454 21727 29680 40544 52248 67319 86616 111096 142138 181814
9: 29102 41002 57680 81089 110770 151315 194996 251260 323606 416019
10: 53454 76627 108700 153104 215268 302631 413402 564718 727738 937790
11: 97082 140191 201760 288089 405999 571427 803396 1129437 1542840 2107559
12: 175680 254196 367328 529154 758538 1076031 1516001 2132677 2998318 4215119
13: 317810 459939 665575 962469 1387778 1997227 2851796 4019015 5660743 7959559
14: 514228 832039 1204138 1742564 2520418 3639591 5238094 7508761 10651618 15011018
15: 1346268 2178308 3152477 4562173 6600215 9536404 13737726 19770518 28229879
16: 3524577 5702886 8253294 11944134 17281656 24987146 36028798 51851799
17: 9227464 14930351 21607407 31270319 45249377 65433823 94489199
18: 24157816 39088168 56568928 81866968 118468788 171351439
19: 63245985 102334154 148099379 214331052 310166779
20: 165580140 267914295 387729210 561126422
21: 433494436 701408732 1015088253
22: 1134903169 1836311902
23: 2971215072

The values of r-optimal pairs (h, k) are bold.
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A more serious problem as the behaviour of the carry stems from the fact, that in
regular representations there must be always a 0 between two 2’s. It is not difficult to
get results containing only the digits 0, 1, 2 when adding in FIBG in a serial manner, but
these results may not be regular. Therefore we are unable to present a real-time serial
algorithm for addition. C. Frougny [3] investigates addition and conversion into regular
representation by finite state transducers when numbers are represented to bases related
to the Fibonacci numbers. In particular she gives a linear-time serial algorithm for
FIBG (see Example 6.9 in [3]).

But with respect to computer design parallel algorithms are of more interest. Look
at a von Neumann design, where digits and carries are treated simultaneously as long
as there is still a carry. If we assume the usual binary system, it is well-known, that the
expected time (counted in steps) is less or equal to log, n + 1, where n is the operand length,
if all data cases are of equal probability (see [2]). It is possible to do the same in the case
FIBG, but the resulting representation may not be regular again, i.e. the condition that
between two 2’s there is always a 0 is not fulfilled necessarily.

Things are different looking at subtraction. Performing x — y, we get a regular
representation even if we start with a non-regular representation of y. Many computers
use complementation to reduce subtraction to addition. The complement of a number
z represented in a register of length n to a geometric base A is obtained by subtracting
z from the (n + 1)-th element of A. Instead of subtracting z all can be done by addition
of the complement. In the case of FIBG it seems reasonable to use the converse way
reducing addition to substraction. This procedure will work, however, providing the
complement still needs, as far as it is known, a full subtraction.

Appendix:

Table of the first values of g(h, k). Values of r-optimal pairs (h, k) are bold.
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Zusammenfassung

Es stellt sich die Frage, ob die in der Regel verwendeten geometrischen Zahlensysteme am besten
geeignet sind, um Zahlen additiv in Registern darzustellen. Die Antwort hingt selbstverstindlich
vom Beurteilungskriterium ab. In dieser Arbeit wird ein ProduktmaB gewihlt, das sowohl die
vorzusehende Registerlinge als auch den Energieumsatz bei bestimmten Standardoperationen be-
riicksichtigt. Man erhiélt dann die Fibonacci-Zahlen mit geradem bzw. ungeradem Index als optimale
unendliche Basen. Dabei werden spezielle Ergebnisse aus der additiven Zahlentheorie sowie Majoranten-
theoreme fiir Kontinuanten verwendet.
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