# The Cocke-Younger-Kasami Algorithm - Revised -

Ulrike Brandt and Hermann K.-G. Walter

University of Technology, Darmstadt
Department of Computer Science
[brandt,walter]@iti.informatik.tu-darmstadt.de
Fax:+49(0)6151-16-6185

#### Abstract

The wellknown algorithm of Cocke-Younger-Kasami, solving the wordproblem for contextfree grammars in Chomsky-Normalform in time  $O(|w|^3)$  with the help of the recognition matrix can be extended to arbitrary contextfree grammars. The resulting time bound is  $O(|w|^{2+(||G||-1)})$  where ||G|| is a very natural number associated to G. Moreover for linear grammars we get time  $O(|w|^2)$ , the bound from Earley's algorithm, and with small variations O(|w|) for one-sided-linear grammars.

Keywords: wordproblem, contextfree grammars, recognition matrix, time-complexity

## Introduction

The starting point for this note is the simple observation

$$w \in L(G) \iff \{w\} \cap L(G) \neq \emptyset$$

(G a (contextfree) grammar and L(G) the generated language).

This is the reduction from the wordproblem to the emptiness-problem.

Since  $\{w\}$  is a regular set with a very special minimal Rabin-Scott-acceptor, one can use the wellknown triple construction for the intersection-theorem.

Rewriting this triple construction into the recognition-matrix, we can avoid under special circumstances both the construction via the intersection-theorem and the design of a good algorithm for the emptiness problem.

Furthermore we can avoid the transformation of the original grammar into some normalform, especially we need not prepare for erasing and chaining. A reasonable timebound results, giving the timebound of Cocke-Younger-Kasami in the case of Chomsky-Normalform.

Moreover, for linear grammars the quadratic timebound of Earley's algorithm results. With a small variation of the basic algorithm we get for one-sided linear grammars (regular grammars) a linear timebound, as it should be.

Besides the knowledge, that by different approach we get the timebound  $O(|w|^3)$ , our result may be of didactic value due to the simplicity of the argument.

## 1 Notations

If X is an alphabet, then  $X^*$  is the free monoid with the empty word  $\square$ . Consider  $X' \subseteq X$ . Let  $w \in X^*$ , then w has a unique decomposition

$$w = w_o x_1' w_1 \cdots x_r' w_r \text{ with}$$
  
$$x_i' \in X' (1 \le i \le r) \text{ and } w_i \in (X \setminus X')^* (0 \le i \le r).$$

We call it the X'-decompostion.

Denote by  $|w|_{X'} = r$  the length with respect to X'. Obviously,  $|w|_X = |w|$  is the length of w.

If  $w = x_1 \dots x_n$  with  $x_m \in X$  for  $1 \le m \le n$  and  $0 \le i \le j \le n$  denote by w[i,j] the word

$$w[i,j] = x_{i+1} \dots x_n$$
 if  $0 < i < j$  and  $w[i,i] = \square$ .

For j < i w[i, j] is undefined.

Note:  $w[i-1,i] = x_i$   $1 \le i \le n$ .

A grammar G is a quadruple  $G = (\sigma, Z, T, P)$ , where

- Z is the alphabet of variables
- T is the alphabet of terminals
- $-\sigma \in Z$  is the startsymbol
- $P \subseteq Z \times (Z \cup T)^*$  is the (finite) set of productions.

A rule  $r \in P$  is usually written in the form  $r = (p \rightarrow q)$ .

By  $u \vdash v$  we denote the direct-derivation from u to v,  $u \vdash v$  is the transitiv and reflexive closure of  $\vdash$ .

The generated language of G is therefore defined by

$$L(G) = \{ w \in T^* | \sigma \stackrel{*}{\vdash} w \}.$$

In this paper we are interested only in contextfree grammars and contextfree languages, just defined by contextfree grammars, i.e. for all  $p \to q \in P$   $p \in Z$  holds.

More details on grammars and languages can be found in standard textbooks like [1] & [2] for example.

We introduce a measure for grammars G by

$$||G||=Max\{|q|_z\,|\quad \exists\quad p\to q\in P\}.$$

For example, a linear grammar G is a contextfree grammar with  $||G|| \leq 1$ .

# 2 Preparations

The basic idea is the following connection between languages  $L \subseteq X^*$  and  $w \in X^*$ :

$$w \in L \iff L \cap \{w\} \neq \emptyset.$$

 $\{w\}$  is a regular set (see [1], [2]). The minimal Rabin-Scott-acceptor is given by the following picture, provided  $w = x_1 \dots x_n (x_i \in X, 1 \le i \le n)$ :



where 0 is the initial state, n is the accepting state and n+1 is the fault state.

If  $\delta$  is the transition-function and  $\delta^*$  the extension of  $\delta$  to words we immediately see:

$$\delta^*(u,i) = j \iff u = w[i,j] \qquad (0 \le i \le j \le n).$$

Consider a contextfree grammar G and a word  $w \in T^*$ . Now we can use a modified triple-construction to create a grammar  $G_w$  with

$$L(G_w) = L(G) \cap \{w\},\$$

hence we have reduced the wordproblem to the emptiness-problem for contextfree grammars (see [1] for details). The modifications are elaborated in the way that terminal parts of the right-hand-side of a rule are processed directly.

The Rabin-Scott-acceptor for  $\{w\}$  has special properties (some kind of monotonicity for example). Therefore it is not necessary to construct  $G_w$  explicitly.

We make use of the recognition-matrix  $T_{w,G}$  (see [1]).

This is a matrix of format(n+1,n+1), where numeration of columns and rows start with 0 instead of the usual 1. It is defined for arbitrary grammars by

$$T_{w,G}[i,j] = \{ \xi \in Z \mid \xi \stackrel{*}{\vdash} w[i,j] \} \qquad (0 \le i,j \le n).$$

 $T_{w,G}$  is an upper triangular matrix.

The criterium for " $w \in L(G)$ ?" can be rewritten in the form  $\sigma \in T[0, n]$ .

Since we use a modified version of the triple-construction we need a preprepared table of state transitions for the terminal parts of the grammar G.

Let  $r = (p \rightarrow q) \in P$  and  $q = u_0 \xi_1 \dots \xi_s u_s$  be the Z-decomposion of q, then

$$Terminal(r) = \{u_i \mid 0 \le i \le s\}$$
  
and  
 $Terminal(G) = \bigcup_{r \in P} Terminal(r)$ 

We prepare a table  $\triangle$  for all transitions

$$\delta^*(u,i) = j \quad (u \in Terminal(G), 0 \le i, j \le n+1).$$

This table is of format  $(n+2,(||G||+1)\cdot\sharp(P))$ .

On a Random-Access-Machine (see[1]), the length of w(=n) must be part of the input, hence addressing an entry of  $\triangle$  takes constant time. Given w, |w| and G the preparation of  $\triangle$  needs linear time on a RAM.

### Example:

$$G: \sigma \to (\sigma)\sigma|()|\Box$$

generating the Dyck-language  $D_1$  (see [1]). Let w = (()())(), we get |w| = 8 and  $\Delta$  is given by

|    | 0 | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 |  |
|----|---|---|---|---|----|---|---|---|---|---|--|
|    | 0 | 1 |   | 3 |    | 5 |   | 7 |   | 9 |  |
| (  | 1 | 2 | 9 | 4 | 9  | 9 | 9 | 9 | 9 | 9 |  |
| )  | 9 | 9 | 3 | 9 | 5. | 6 | 9 | 8 | 9 | 9 |  |
| () | 9 | 9 | 4 | 9 | 6  | 9 | 8 | 9 | 9 | 9 |  |

Special treatment has to be given to the processes of erasing and chaining in contextfree grammars.

Define for any  $Z' \subseteq Z$ 

Chain
$$(Z') = \{\xi \mid \exists \eta \in Z' : \xi \vdash \eta\}.$$

This operation can be done in constant time and can be preprepared.

## Observation 1:

Chain is a closure-operator, i.e.

- (1)  $Z' \subseteq \operatorname{Chain}(Z')$  for  $Z' \subseteq Z$
- (2)  $Z' \subseteq Z'' \subseteq Z \Longrightarrow \operatorname{Chain}(Z') \subseteq \operatorname{Chain}(Z'')$
- (3)  $Z' \subseteq Z \Longrightarrow \operatorname{Chain}(\operatorname{Chain}(Z')) = \operatorname{Chain}(Z')$
- (4) Chain( $\emptyset$ ) =  $\emptyset$
- (5)  $\operatorname{Chain}(Z) = Z$ .

#### Observation 2:

Let 
$$T(w) = \{\xi | \xi \vdash w\}$$
 then

$$Chain(T(w)) = T(w)$$
 and therefore

$$\operatorname{Chain}(T_{w,G}[i,j]) = T_{w,G}[i,j] \text{ for all } 0 \leq i,j \leq n.$$

# 3 The algorithm

To compute  $T_{w,G}$  we start with the initialization.

#### Observation 3:

- (1) For all  $1 \le i \le n$ :  $T_{w,G}[i,i] = T(\square)$
- (2) For all  $0 \le i \le j \le n$ :

$$\operatorname{Chain}(\{\xi \mid \exists u \in T^* : u = w[i,j] \text{ and } \xi \to u \in P\}) \subseteq T_{w,G}[i,j]$$

Therefore we can initialize in the following way:

for 
$$i=0$$
 to  $n$  do  $T_{w,G}[i,i]:=T(\square)$  od  
for  $i=0$  to  $n$  do  
for  $j=i+1$  to  $n$  do  
 $T_{w,G}[i,j]:=\mathrm{Chain}(\{\xi|\exists u\in T^*: u=w[i,j] \text{ and }\xi\to u\in P\})$   
od

The time costs are O(|w|) for the first loop and  $O(|w|^2)$  for the second and the third loop, in summary  $O(|w|^2)$ , since the internal operations take constant time. The complexity is measured on a RAM.

## Example 1:

Consider the grammar G given by

$$\sigma \to (\sigma)\sigma$$
 | ( ) |  $\Box$  and  $w = (()())()$ 

After initialization the current value of  $T_{w,G}$  is

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
|---|---|---|---|---|---|---|---|---|---|--|
| 0 | σ | Ø | Ø |   |   |   |   |   |   |  |
| 1 |   | σ | Ø | σ |   |   |   |   |   |  |
| 2 |   |   | σ | Ø | 0 |   |   |   |   |  |
| 3 |   |   |   | σ | 0 | σ |   |   |   |  |
| 4 |   |   |   |   | σ | 0 | Ø |   |   |  |
| 5 |   |   | - |   |   | σ | Ø | Ø |   |  |
| 6 |   |   |   |   |   |   | σ | 0 | σ |  |
| 7 |   |   |   |   |   |   |   | σ | Ø |  |
| 8 |   |   |   |   |   |   |   |   | σ |  |

All other entries are  $= \emptyset$ .

## Example 2:

Consider the grammar

$$\sigma \to \xi \sigma \xi \quad |c| \quad \Box$$

$$\xi \to a\xi b$$
 |  $\Box$  and  $w = a^2b^2cab$ 

$$T(\Box) = \{\xi\}, \operatorname{Chain}(\xi) = \{\sigma, \xi\}, \operatorname{Chain}(\sigma) = \{\sigma\}$$

After initialization the current value of  $T_{w,G}$  is

|   | 0             | 1             | 2.            | 3             | 4             | 5             | 6             | 7             |  |
|---|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
| 0 | $\sigma, \xi$ | Ø             |               |               |               |               |               |               |  |
| 1 |               | $\sigma, \xi$ | 0             |               |               |               |               |               |  |
| 2 |               |               | $\sigma, \xi$ | 0             |               |               |               |               |  |
| 3 |               |               |               | $\sigma, \xi$ | Ø             |               |               |               |  |
| 4 |               |               |               |               | $\sigma, \xi$ | σ             |               |               |  |
| 5 |               |               |               |               |               | $\sigma, \xi$ | Ø             |               |  |
| 6 |               |               |               |               |               |               | $\sigma, \xi$ | Ø             |  |
| 7 |               |               |               |               |               |               |               | $\sigma, \xi$ |  |

All other entries are  $= \emptyset$ .

The whole computation of  $T_w$  can be easily derived from the following picture



with the following conditions:

- 
$$\xi \to u_0 \xi_1 u_1 \dots \xi_l u_l \in P$$

- 
$$\delta^*(u_0, i) = i_1, \delta^*(u_l, j_l) = j$$

$$- \delta^*(u_{\lambda}, j_{\lambda}) = i_{\lambda+1} \qquad 0 < \lambda < l$$

- 
$$\xi_{\lambda} \in T_{w,G}[i_{\lambda}, j_{\lambda}]$$

$$- i \leq j_1 \leq j_2 \leq \ldots \leq j_{l-1} \leq j_l \leq j$$

$$- \quad l \leq ||G||.$$

Therefore we get the following algorithm after initialization

for 
$$i = 0$$
 to  $n$  do

for 
$$j = i + 2$$
 to  $n$  do

$$T_{w,G}[i,j] := \operatorname{Chain}(T_{w,G}[i,j])$$

$$\cup \{\xi \in Z \mid \exists l \geq 1, i \leq j_1 \leq j_2 \leq \ldots \leq j_l \leq j \text{ and } \xi \to q \in P \}$$
with Z-decomposition  $q = u_0 \xi_1 \ldots \xi_l u_l$ :

$$(1) \exists 1 \leq \lambda \leq l : i < j_{\lambda} < j$$

(2) 
$$l=1 \Longrightarrow u_0u_1 \neq \square$$

(3) 
$$\xi_1 \in T_{w,G}[\delta^*(u_0,i),j_1]$$

$$(4) \delta^*(u_l, j_l) = j$$

(5) 
$$\xi_{\lambda} \in T_{w,G}[\delta^*(u_{\lambda-1},j_{\lambda-1}),j_{\lambda}] \quad (1 < \lambda \le l)\})$$
od

The criterion of success is simply

$$\sigma \in T_{w,G}[0,n].$$

## Example 1:

Consider the grammar  $G: \sigma \to (\sigma)\sigma|()|\Box$  and the word w = (()())().

We compute  $T_{w,G}[1,5], w[1,5] = ()()$ . The only production which can be used is  $\sigma \to (\sigma)\sigma$ . The only choice for the  $j_{\lambda}$  is the following:

$$j_1 = 2$$
, since  $\delta^*((1) = 2)$  and  $\sigma \in T_{w,G}(2,2) = \{\sigma\}$ 

$$j_2 = 5$$
, since  $\delta^*(), 2) = 3$  and  $\sigma \in T_{w,G}(3,5) = {\sigma}$  and

$$\delta^*(\square,5)=5$$

hence  $\sigma \in T_{w,G}[1,5]$ .

The chain operation is useless in this case.

The resulting recognition-matrix is

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8                |   |
|---|---|---|---|---|---|---|---|---|------------------|---|
| 0 | σ | Ø |   |   |   |   | σ |   | σ                |   |
| 1 |   | σ | 0 | σ |   | σ |   |   |                  |   |
| 2 |   |   | σ | 0 | Ø |   |   |   |                  | Γ |
| 3 |   |   |   | σ | Ø | σ |   |   |                  |   |
| 4 |   |   |   |   | σ | Ø | Ø |   |                  |   |
| 5 |   |   |   |   |   | σ | Ø | Ø |                  |   |
| 6 |   |   |   |   |   |   | σ | Ø | $\sigma_{\cdot}$ |   |
| 7 |   |   |   |   |   |   |   | σ | Ø                |   |
| 8 |   |   |   |   |   |   |   |   | σ                |   |

The other entries are  $= \emptyset$ .

Therefore  $(()())() \in L(G)$ 

## Example 2:

Consider  $G: \sigma \to \xi \sigma \xi \mid c \mid \Box$  and  $\xi \to a \xi b \mid \Box$  and  $a^2 b^2 c a b$ 

- $T_{w,G}[0,2]$ . We have two possible rules
  - (1)  $\sigma \to \xi \sigma \xi$  i.e.  $l = 3, u_0 = u_1 = u_2 = u_3 = \square \Longrightarrow j_3 = 2$ . By definition(1) either  $j_1 = 1$  or  $j_2 = 1$ . If  $j_1 = 1$  then  $\xi \in T_{w,G}[0,1] = \emptyset$ , a contradiction. If  $j_2 = 1$  then  $\xi \in T_{w,G}[1,2] = \emptyset$ , again a contradiction.
  - (2)  $\xi \to a\xi b$ , i.e. l = 1,  $u_o = a$ ,  $u_1 = b \Longrightarrow j_1 = 2$ , but  $\delta^*(2, b) = 3$  a contradiction In summary  $T_{w,G}[0,2] = \emptyset$ .
- $T_{w,G}[1,3]$ . Again two possible rules
  - (1)  $\sigma \to \xi \sigma \xi$ , i.e. l = 3,  $u_0 = u_1 = u_2 = u_3 = \square$   $\implies j_3 = 3$ , again either  $j_1 = 2$  or  $j_2 = 2$ . In both cases we get a contradiction.
  - (2)  $\xi \to a\xi b$ , i.e.  $l = 1, u_0 = a, u_1 = b, j_1 = 2$  and  $\xi \in T_{w,G}[2,2]$  hence  $\xi \in T_{w,G}[1,3]$ .

By Chain we get  $T_{w,G}[1,3] = \{\sigma,\xi\}$ -  $T_{w,G}[0,4]$ . Again two possible rules

(1) 
$$\sigma \rightarrow \xi \sigma \xi$$
, i.e.  $l = 3$ ,  $u_0 = u_1 = u_2 = u_3 = \square \Longrightarrow j_3 = 4$ 

- (i)  $j_1 = 1$  impossible
- (ii)  $j_1 = 2$  impossible
- (iii)  $j_1 = 3 \Longrightarrow j_2 = 3$  or  $j_2 = 4$ In the first case  $\xi \in T_{w,G}[3,4]$ , in the second case  $\sigma \in T_{w,G}[3,4]$ .
- (iv)  $j_2 = 2$  or  $j_2 = 1$  or  $j_2 = 3$  analogously.

(2) 
$$\xi \to a\xi b, i.e. \ l = 1, u_0 = a, u_1 = b, j_1 = 3, \\ \xi \in T_{w,G}[1,3] = \{\sigma,\xi\} \Longrightarrow \xi \in T_{w,G}[0,4]$$

By Chain we get  $T_{w,G}[0,4] = {\sigma,\xi}$ .

#### Remarks:

- The exclusion of chain-rules by condition (2) is compensated by the Chain-operation.
- By condition (1) we get  $j_{\lambda} j_{\lambda-1} < j-i$   $(2 \le i \le l)$ , together with condition  $T_{w,G}[i,i] = T(\square)$  for all  $0 \le i \le n$ , we can organize the algorithm in an ON-LINE-mode. Our version is OFF-LINE.
- Knowing the recognition-matrix it should be easy to construct a parser without increasing time-complexity.

We now turn our interest to time-complexity. Observe, that  $j_l$  - if existent - is uniquely determined by j and  $u_l$  (Condition(4)).

Hence, we have "free" choices for  $j_1, j_2, \ldots, j_{l-1}$ . These leads to l-1 loops. The crucial condition (1) can be checked by a boolean variable in the body of the loops.

Worst-case-bounds are  $0 \le j_{\lambda} \le n$   $(1 \le \lambda \le l - 1)$ ,

 $l \leq ||G||$  and  $0 \leq i, j \leq n$ .

Hence, we get

$$O(n^2 \cdot n^{l-1}) = O(n^{2+(||G||-1)})$$

as the overall worst-case-time-bound, provided  $||G|| \neq 0$ .

Since prepreparation and initialization have time-bounds O(n) and  $O(n^2)$  resp., we get in whole the time-bound

$$O(|w|^{2+(||G||-1)}).$$

# 4 Special cases

#### I. Normalforms:

For a grammar G in Chomsky-normalform all productions are of the form

$$\xi_0 \to \xi_1 \xi_2 \quad (\xi_{0,1,2} \in Z)$$
 or  $\xi_0 \to t \quad (\xi_0 \in Z, t \in T)$ , hence

||G|| = 2 and therefore time-complexity is  $0(|w|^3)$ . Indeed, in this case the Cocke-Younger-Kasami-algorithm results.

For a grammar G in 2-Greibach-normalform all productions are of the form

$$\xi_0 \to t \xi_1 \xi_2 \quad (\xi_{0,1,2} \in Z, t \in T) \text{ or }$$

$$\xi_0 \to t\xi_1 \quad (\xi_{0,1} \in Z, t \in T) \text{ or }$$

$$\xi_0 \to t \quad (\xi_0 \in Z, t \in T), \text{ hence}$$

||G|| = 2 and therefore time-complexity is  $O(|w|^3)$ , giving the same result as in the Chomsky-normalform-case.

#### II. Linear grammars

Recall, a contextfree grammar is linear iff  $||G|| \le 1$ , hence we get the time-complexity  $O(|w|^2)$ , which is the bound of Earley's algorithm, and is not reached by the Cocke-Younger-Kasami-algorithm, without altering the algorithm.

#### III. One-sided linear grammars

In a rightlinear grammar all productions are of the form  $\xi_0 \to u \xi_1$  with

$$\xi_0 \in Z, \xi_1 \in Z \cup \square \text{ and } u \in T^*$$
.

In this case  $j_1 = n$ , the "target" state. Therefore we only have to compute  $T_{w,G}[n,n],\ldots,T_{w,G}[0,n]$ , knowing that  $T_{w,G}[n,n] = T(\square)$ .

Therefore, both phases -initialization and computation - can be simplified drastically.

The resulting algorithm is:

Initialization:

for 
$$i = n$$
 downto 0 do

$$T_{w,G}[i,n] := \operatorname{Chain}(\{\xi \in Z \mid \exists \xi \to u \in P \text{ with } u = w[i,n]\})$$
 od

#### Computation:

for 
$$i = 0$$
 to  $n$  do

$$T_{w,G}[i,n] := \operatorname{Chain}(\{\xi \in Z \mid \exists u \in T^*, \eta \in Z : \eta \in T_{w,G}[\delta^*(u,i),n] \text{ and } \xi \to u\eta \in P\})$$

od

Obviously, the time-complexity is O(|w|) - as it should be.

The same kind of simplification can be used for leftlinear grammars, where all productions are of the form

$$\xi_0 \to \xi_1 u$$
 with  $\xi_0 \in Z, \xi_1 \in Z \cup \square$  and  $u \in T^*$ .

In this case the "source" state 0 is fixed, hence we only have to compute  $T_{w,G}[0,0],\ldots,T_{w,G}[0,n]$ .

Therefore we get O(|w|) as time-complexity-bound again.

Note, we do not need any normalform or a reduction to deterministic Rabin-Scott-acceptors to get the result.

# 5 Concluding remarks

We haven't discussed, wether it is possible to use some kind of Valiant-type reductions via interpreting  $T_{w,G}$  as a "closure" and then reducing the computing of this closure to Boolean matrix-multiplication.

# 6 References

All what we used in this note is very familiar to those knowing the basics of formal language theory. Therefore two references will suffice

- [1] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley Pub.Co., Reading Mass., 1978
- [2] G. Rozenberg A. Salomaa, Handbook of Formal Languages, three volumes, Springer Verlag Berlin, Heidelberg, New York, 1997