The Cocke-Younger-Kasami Algorithm
- Revised -

Ulrike Brandt and Hermann K.-G. Walter

University of Technology, Darmstadt
Department of Computer Science
[brandt,walter]@iti.informatik.tu-darmstadt.de
Fax:+49(0)6151-16-6185

Abstract

The wellknown algorithm of Cocke-Younger-Kasami, solving the
wordproblem for contextfree grammars in Chomsky-Normalform in
time O(Jw|®) with the help of the recognition matrix can be extended
to arbitrary contextfree grammars. The resulting time bound is
O(Jw|*+(IGlI-1)) where ||G|| is a very natural number associated to

G. Moreover for linear grammars we get time O(|w|?), the bound from
Earley’s algorithm, and with small variations O(jw|) for one-sided-

linear grammars.
Keywords: wordproblem, contextfree grammars, recognition ma-

trix, time-complexity

Introduction

The starting point for this note is the simple observation
w € L(G) <= {w}NL(G) #0

(G a (contextfree) grammar and L(G)‘ihe generated language).
This is the reduction from the wordproblem to the emptiness-problem.

Since {w} is a regular set with a very special minimal Rabin-Scott-acceptor,
one can use the wellknown triple construction for the intersection-theorem.

Rewriting this triple construction into the recognition-matrix, we can avoid
under special circumstances both the construction via the intersection-theo-
rem and the design of a good algorithm for the emptiness problem.

194

Furthermore we can avoid the transformation of the original grammar into
some normalform, especially we need not prepare for erasing and chaining.
A reasonable timebound results, giving the timebound of Cocke-Younger-
Kasami in the case of Chomsky-Normalform.

Moreover, for linear grammars the quadratic timebound of Earley’s algo-
rithm results. With a small variation of the basic algorithm we get for
one-sided linear grammars (regular grammars) a linear timebound, as it

should be.

Besides the knowledge, that by different approach we get the timebound
O(Jw|?), our result may be of didactic value due to the simplicity of the

argument,

1 Notations

If X is an alphabet, then X* is the free monoid with the empty word O .

Consider X' C X. Let w € X*, then w has a unique decomposition

w = werjw;-- Thw, with
;e X'(1<i<r)andw; € (X \ X)*(0<i<r).

We call it the X -decompostion. ‘

Denote by Jw|y: = r the length with respect to X', Obviously, |w|x = |w|
is the length of w. ‘

Ifw=ux...2q withzy, € X forl1 <m <nand 0 <7< 5 <n denote by
w(i, j] the word

w(i,§] = Tig1... 2y i{ 0 <4 < j and wli, 4] = O.

For j <1 wlt, 7] is undefined.
Note: w[i — 1,i] = z; 1<i<n.

A grammar G is a quadruple G = (0,2, T, P), where

- Z is the alphabet of variables

- T is the alphabcet of terminals

- o € Z is the startsymbol

-PC Zx(ZUT)" is the (finite) st of productions.

A rule 7 € P is usually written in the form r = (p — q).

By u v we denote the direct-derivation from u to v, u F v is the transitiv
and reflexive closure of F.

195

The generated language of G is therefore defined by
LG)={weT| oFuw)

In this paper we are interested only in contextfree grammars and
contextfree languages, just defined by contextfree grammars,
ie forallp—qg€P p€ Z holds.

More details on grammars and languages can be found in standard textbooks
like [1] & [2] for example.

We introduce a measure forgrémmafrs G by
IGIl = Maz{lql,| 3 p-+g€ P}

For example, a linear grammar G is a contextfree grammar with ||G|| < 1.

2 Preparations

The basic idea is the following connection between languages L C X* and
we X"

weLl = LNn{w}#0
{w} is a regular set (see [1], [2]). The minimal Rabin-Scott-acceptor is
given by the following picture, provided w =z ... Zp(z; € X,1 <1 < n):

where 0 is the initial state, n is the accepting state and n + 1 is the fault
state.

If & is the transition-function and é* the extension of § to words we
immediately see:

0% (u,1) = j <= u = w[t,j] (0<i<j<n).

Consider a contextfree grammar G and a word w € T*. Now we can use a
modified triple-construction to create a grammar G,, with

L(Gw) = L(G)N {w},

196

hence we have reduced the wordproblem to the emptiness-problem for
contextfree grammars (see [1] for details). The modifications are elaborated
in the way that terminal parts of the right-hand-side of a rule are processed

directly.

The Rabin-Scott-acceptor for {w} has special properties (some kind of mono-
tonicity for example). Therefore it is not necessary to construct Gy explic-

itly.
We make use of the recognition-matrix Ty, (see [1]).

This is a matrix of format(n + 1,n + 1), where numeration of columns and
rows start with 0 instead of the usual 1. It is defined for arbitrary grammars

by
Tueli,jl={{€Z | GV'-w[i,J']} (0<i,j <n).

Tw,G is an upper triangular matrix.
The criterium for "w € L(G)?” can be rewritten in the form o € T[0, n].

Since we use a modified versioa of the triple-construction we need a prepre-
pared table of statetransitions for the terminal parts of the grammar G.

Let r = (p =) € P and g = uofi ... &su, be the Z-decomposion of q, then
| Terminal(r) ={u; | 0<i<s}

and
Terminal(G) = U,ep Terminal(r)

We prepare a table A for all transitions

8*(u,3) =j (u€ Terminal(G),0<14,5 <n+1).

This table is of format (n + 2, (||G|| + 1) - #(P)).

On a Random-Access-Machine (see[l]), the length of w(= n) must be
part of the input, hence addressing an entry of A takes constant time. Given

w, |w| and G the preparation of A needs linear time on a RAM.

197

Example:
G:o— (o)o]()|O

generating the Dyck-language D, (seé [1]). Let w = (()())(), we get
|lw| = 8 and A is given by

ol1|2|8]4|5|6]7]8]9
D(0]1(2|3|4]5(6]7|8]9
(11(z]9(4(9]9]9]9]9]9
) 19(93]9(5/6]9|8/9]9
O19(9/4](9]6|9|8|9[9]9

Special treatment has to be given to the processes of erasing and chaining
in contextfree grammars.

Define for any Z' C Z

Chain(Z') ={¢ | neZ:EFn).

This operation can be done in constant time and can be preprepared.

Observation 1:
Chain is a closure-operator, i.e.

(1) 2' € Chain(Z') for 2' C Z

(2) Z' C 2" C Z =+ Chain(2’) C Chain(2")
(3) Z' C Z = Chain(Chain(Z’)) = Chain(Z’)
(4) Chain(@) =0

(5) Chain(Z) = Z.

Observation 2:

Let T(w) = {€|¢ - w} then

Chain(T'(w)) = T'(w) and therefore
Chain(Ty,6[i,]) = Tw,cli,j] for all 0 < 4,5 < n.

198

3 The algorithm

To compute Ty, ¢ we start with the initialization.

Observation 3:
(1) Foralll1<i<n: Twcli,i] = T(O)
(2) Forall0<i<j<n:

Chain({¢ | 3Ju€T*:u=ulij]and £ = u € P}) C Tugl[i,J]

Therefore we can initialize in the following way:
for i =0 to n do Ty gli,i] :=T(0) od
~ fori=0tondo
forj=i+1tondo
Tw Gli, 5] := Chain({{|3u € T* : u = w[i,j] and { »u € P})
od
od

The time costs are O(Jw|) for the first loop and O(|w|?) for the second and
the third loop, in summary O(|w|?), since the internal operations take con-
stant time. The complexity is measured on a RAM.

Example 1:
Consider the grammar G given by

c=(o)e | () | Dandw=(00)0

After initialization the current value of Ty g is

0|1]2|3|4]|5]|6]|7]|8
0lo |0 |0

1 c|0]c

2 c|0]0

3 oc|0]|o

4 a|l0|0
5 c|0]|0
6 c|l0|o
7 o|0
8 o

All other entries are = 0.

199

Example 2:

Consider the grammar

o= |c| O

¢ —afb | O andw = a’b%ad

T(0) = {¢}, Chain(¢) = {0,¢}, Chain(o) = {0}

After initialization the current value of Ty,G is

0ol1]2. |3 |4]|5]|6]7
0|laé| O
1 | 0
2 aé| 0
3 of| 0
4 €| o
5 at| 0
6 af| 0
7 g,&

All other entries are = 0.

The whole computation of T}, can be easily derived from the following pic-

ture
oG

&1 &

Z N

‘ v winalt ow ... wle, il u |

wli, j]

200

with the following conditions:

- (- ubiur. UEP

- 0% (o, 8) = 41,0 (w, 5t) =

- *(unda) =i 0<Ai

- € € Tuglia]

- i€afR<s. . Sa1Sasg

- i<all

Therefore we get the following algorithm after initialization
fori=0tondo

forj=1+2tondo

Tu,cli, §] := Chain(Tugl[i, j]
u{¢ez | 3i2Li<i<je<...<ia<jand{—+qg€P

with Z-decomposition g = upéy ... 1w :

(1)31<A<lii< i<y
(2)l=1=>uqu; #0
(3) &1 € Tw,g[0" (uo,1%), 1]
(4) 6" (u,jt) =3 |
(5) €r € Tw,G’[J‘ (uz\-—é,j}\—l)ajz\] (1 <A< l)})
o
od

The criterion of success is simply

o € Ty,g[0,n).

Example 1:

Consider the grammar G : ¢ —= (0)0]()|0 and the word w = (() ()) ()
We compute Ty, ¢(1,5),w[1,5] = ()(). The only production which can be

used is o = (¢)o. The only choice for the j) is the following;
j1 =2, since 6*((,1) =2 and 0 € Ty ¢(2,2) = {0}
j2 = 5, since ¢*(),2) = 3 and ¢ € Ty,G(3,5) = {¢} and

§*(0,5) =5

hence o € Ty g(1, 5].

The chain operation is useless in this case.

201

The resulting recognition-matrix is

0({1(213|4|5|6]|7]|38
0(c| @

1 c|0|o o

2 c|0]|0

3 c|0|o

4 c|0|0

5 c|0]0
6 cl|l0]o
7 ol 0
8 o

The other entries are = 0.
Therefore (() ()) () € L(G)

Example 2:
Consider G: 0 — €0€ | ¢| O and é — a€b | O and a?b?cab
- T,c[0,2]. We have two possible rules

(1) o= éotie l=3yg=u =uy=uz3=0=>j3=2.
By definition(1) either j; =1 or 73 = 1.
If j, = 1 then £ € T, 6[0,1) = 0, a contradiction. If jo = 1 then
€ € Ty[l,2] = 0, again a contradiction.

(2) € = aébyi.e. l=1,u, =a,u; =b=>j =2, but §*(2,b) =3
a contradiction
In summary T, ¢[0, 2] = 0.

- Tw,g(1,3). Again two possible rules

(1) o= ¢oé,ie. l=3up=uy=uy=u3=0
=> j3 = 3, again either j; = 2 or j; = 2.
In both cases we get a contradiction.

(2) € = atb,ie. l=1,up =a,u; =b,j; =2 and £ € Ty, (2,2
hence { € Ty, 6[1, 3.

202

By Chain we get Ty g[1,3] = {0,{}
- Ty,[0,4]. Again two possible rules

(1) og=€oéte l=3yp=u=u=u3=0=>j3=4

(i) 71 = 1 impossible
(ii) j1 = 2 impossible
(i) 1 =3=>js =8orja=4
In the first case ¢ € T, ¢(3,4),
in the second case o°€ Ty, G[3, 4].

(iv) je=2or ja =1 or ja = 3 analogously.

' (2) £ = a{b,i,e. l=1,u0 = a,u; =b,j1 = 3,
£€ Tw,G[1’3] = {‘7{5} ={€ Tw,G[0’4]

By Chain we get 7),6[0,4] = {0,¢}.

Remarks:

- The exclusion of chain-rules by condition (2) is compensated by the
Chain-operation.

- By condition (1) we get jx —ja-1 <j—i (2<i<),
together with condition Ty, gli,i] = T(0O) for all 0 < 1 < n, we can
organize the algorithm in an ON-LINE-mode. Our version is OFF-
LINE.

- Knowing the recognition-matrix it should be easy to construct a parser
without increasing time-complexity.

We now turn our interest to time-complexity. Observe, that j ~ if existent —
is uniquely determined by j and w; (Condition(4)). -

Hence, we have " free” choices for j1,72,...,51-1. These leads to [— 1 loops.
The crucial condition (1) can be checked by a boolean variable in the body

of the loops.
Worst-case-bounds are 0 < jy <n (1< A<l -1),
|<||Glland 0L 4,5 < m.

Hence, we get
O(TLQ , nl-—l) = O(n2+(”G“—1))

as the overall worst-case-time-bound, provided ||G|| # 0.

Since prepreparation and initialization have time-bounds O(n) and O(n?)
resp., we get in whole the time-bound

O(Jw)*+IClI=1)),

203

4 Special cases

I. Normalforms:

For a grammar G in Chomsky-normalform all productions are of the
form ' ‘

& = &é2 (€012 € Z) or
fo—=t (6o € Z,t€T), hence

IG|| = 2 and therefore time-complexity is 0(Jw|®). Indeed, in this case the
Cocke-Younger-Kasami-algorithm results.

For a grammar G in 2-Greibach-normalform all productions are of the
form

o > t61&2 (€0 2€ Z,tET)or
o> t& (€01 € Z,t€T)or
o=t (o€ Z,teT), hence

IG]| = 2 and therefore time-complexity is O(|w|®), giving the same result
as in the Chomsky-normalform-case.

II. Linear grammars

Recall, a contextfree grammar is linear iff ||G|| < 1, hence we get the time-
complexity O(|jw|?), which is the bound of Earley’s algorithm, and is not
reached by the Cocke-Younger-Kasami-algorithm, without altering the al-
gorithm.

III. One-sided linear grammars

In a rightlinear grammar all productions are of the form §o — ué; with

o€ Z,66€ZU0andueT”.

In this case j; = n, the "target” state. Therefore we only have to compute
Tuw,cln,n),. .., Twcl0,n], knowing that Ty g[n,n] = T(D).

Therefore, both phases -initialization and computation - can be simplified
drastically.

The resulting algorithm is:

Initialization:

for i = n downto 0 do

Tycli,n) := Chain({¢ € Z | 3¢ - ue€ P withu=uw[i,n]}) od

204

Computation:
fori=0tondo

Twli,n) ;= Chain({{ € Z|ueT*ne Z:
n € Tw,cl6* (u,1),n] and £ = un € P})

od
Obviously, the time-complexity is O(|w]) - as it should be.

The same kind of simplification can be used for leftlinear grammars, where
all productions are of the form '

€= &luwithépe 2,6, € ZUD and u € T,

In this case the " source " state 0 is fixed, hence we only have to compute
Tw,G[O;O]» veo ,Tw,G[O,Tl]- ‘

Therefore we get O(|w|) as time-complexity-bound again.

Note, we do not need any normalform or a reduction to deterministic Rabin-
- Scott-acceptors to get the result.

5 Concluding remarks

We haven't discussed, wether it is possible to use some kind of Valiant-
type reductions via interpreting Ty, g as a ” closure ” and then reducing the
computing of this closure to Boolean matrix-multiplication.

6 References

All what we used in this note is very familiar to those knowing the basics of
formal language theory. Therefore two references will suffice

(1] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley
Pub.Co., Reading Mass., 1978

(2] G. Rozenberg - A. Salomaa, Handbook of Formal Languages, three vol-
umes, Springer Verlag Berlin, Heidelberg, New York, 1997

