
Literature Review of the Challenges of Developing
Secure Software Using the Agile Approach

Hela Oueslati
Technical University Darmstadt

Darmstadt, Germany
hela.oueslati@stud.tu-darmstadt.de

Mohammad Masudur Rahman
Technical University Darmstadt

Darmstadt, Germany
mohammadmasudur.rahman

@stud.tu-darmstadt.de

Lotfi ben Othmane
Secure Software Engineering Group

Fraunhofer SIT
Darmstadt, Germany

lotfi.ben.othmane@sit.fraunhofer.de

Abstract—A set of challenges of developing secure software
using the agile development approach and methods are reported
in the literature. This paper reports about a systematic literature
review to identify these challenges and evaluates the causes
of each of these challenges, with respect to the agile values,
the agile principles, and the security assurance practices. We
identified in this study 20 challenges, which are reported in 10
publications. We found that 14 of these challenges are valid and 6
are neither caused by the agile values and principles, nor by the
security assurance practices. We also found that 2 of the the valid
challenges are related to the software development life-cycle, 4
are related to incremental development, 4 are related to security
assurance, 2 are related to awareness and collaboration, and 2
are related to security management. These results justify the need
for research to make developing secure software smooth.

I. INTRODUCTION

Companies commonly use agile development methods, such
as Scrum [28] and Extreme Programming (XP) [22] to develop
their evolving software. These methods are associated with
better developers productivity, product quality, and customers
satisfaction than the waterfall methods [9]. They embrace
requirement changes, prefer frequent deliveries, and their
practices do not include security engineering activities. These
characteristics, and others, make developing secure software
using these methods challenging [25]. For instance, it is
difficult to implement verification gates in the processes that
implement these methods because the cost of these gates is
very high, if they were to be repeated several times during the
development of the project [6].

There are several published papers that discuss the chal-
lenges of developing secure software using agile development
methods; that is, the problems that make developing secure
software using the agile approach difficult. For instance,
Benznosov and Kruchten evaluated the mismatches between
security assurance methods/techniques and agile practices [7].
In response to the challenges, several approaches and methods
for developing secure software using agile methods have been
proposed, e.g., [29], [6]. But, there is currently no evaluation
of the validity of the reported challenges.1

This paper aims to address the questions: what are the
challenges of developing secure software using the agile meth-
ods that have been proposed in the literature? And are these

1See Section III-B for the definition of validity.

challenges valid? There are currently no systematic literature
reviews that address these questions. A systematic literature re-
view is a mean to identify, analyze, and interpret the available
evidence (from publications) relevant to a research question
by using a sound approach [18], [31]. The answers to both
questions should contribute to identifying the pending research
challenges that the community shall address so organizations
can use the agile methods to develop secure software.

The paper reports about a study that examines the validity
of the challenges of developing secure software using the agile
development methods. It summarizes the challenges reported
in 10 publications and evaluates their validity with respect
to a set of agile development criteria and developing secure
software criteria. It is organized as follows. First we provide a
short background about the agile approach and development of
secure software in Section II. Then, we describe in Section III
the research method that we used to identify and validate
the challenges. Next, we present in Section IV the challenges
that we identified from the publications that we selected and
analyze the validity of the identified challenges in Section V.
We discuss the limitations and impacts of the study afterwards
in Section VI and conclude the paper in Section VII.

II. BACKGROUND

This section provides an overview of Agile Software Devel-
opment (ASD) approach and of developing secure software.

A. Overview of Agile Development Approach

Seventeen software developers met on February 2001 in the
Wasatch Mountains of Utah, USA to try to find a common
ground about their perception of software development [4].
They agreed on four values that the software methods they
created share in a manifesto and named the approach they
created Agile Software Development. Then, they developed
twelve supporting principles for the manifesto. Figure 1 shows
the manifesto and Table I lists the principles.

We note that there is a disagreement among researchers
on whether the concept “working software” includes only
the software functionalities or it includes by default also the
quality requirements, such as security requirements. In this
evaluation, we use “working software,” without considering
quality requirements, unless requested by the customers.



We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools (V1)
Working software over comprehensive documentation (V2)
Customer collaboration over contract negotiation (V3)
Responding to change over following a plan (V4)

That is, while there is value in the items on
the right, we value the items on the left more.

Fig. 1. Manifesto for Agile software development [4].

TABLE I
PRINCIPLES FOR AGILE SOFTWARE DEVELOPMENT [4].

CodePrinciple
P1. Our highest priority is to satisfy the customer through early

and continuous delivery of valuable software.
P2. Welcome changing requirements, even late in development.

Agile processes harness change for the customers competi-
tive advantage.

P3. Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale.

P4. Business people and developers must work together daily
throughout the project.

P5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get
the job done.

P6. The most efficient and effective method of conveying in-
formation to and within a development team is face-to-face
conversation.

P7. Working software is the primary measure of progress.
P8. Agile processes promote sustainable development. The spon-

sors, developers, and users should be able to maintain a
constant pace indefinitely.

P9. Continuous attention to technical excellence and good design
enhances agility.

P10. Simplicity–the art of maximizing the amount of work not
done is essential.

P11. The best architectures, requirements, and designs emerge
from self-organizing teams.

P12. At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

The values and principles of the agile approach are im-
plemented by several methods including: Scrum, XP, Ag-
ile Modeling (AM) [2], and Feature-Driven Development
(FDD) [26]. Thus, the methods enable producing potentially
shippable working software at regular intervals [2] named
iterations (a.k.a. cycles), provide customers high value features
(customers-valued product functionalities) in short time and
accommodate several classes of software, such as Web appli-
cations [14]. It applies a greedy-like approach with incomplete
information for selecting functionalities to develop.2

Often, the agile approach is understood to be a devel-
opment philosophy. However, the methods that implement

2The greedy approach chooses the locally optimal option with the hope to
obtain the optimal global solution.

Fig. 2. CMM security engineering process.

the approach use “kind of” control theory mechanisms that
guide the teams to project completion [23]. This results to
several advantages. First, it reduces the chance of project
failure because it enables early detection of gaps between
business expectations and developers understanding. Second,
it enables discovery of customer needs rather than customer
wishes since customers can observe demos of the product
while being developed and can adapt the requirements based
on their needs. Third, it enables early discovery of technical
barriers since the developers experiment their ideas and use
the experiment results to adapt the system architecture and
work plan.

B. Overview of developing secure software

Goertzel et al. [12] define Secure software as: software
that cannot be intentionally subverted or forced to fail; it
remains correct and predictable in spite of intentional efforts
to compromise that dependability. Similarly McGraw [24]
define secure software as: software that continues to function
correctly under malicious (intended) attacks.

A reference model for engineering secure software is
System Security Engineering-Capability Maturity Model
(SSE-CMM) [15], shown in Figure 2. The process has three
sub processes: risk process, engineering process, and assurance
process. The risk process assesses the risk to the system. It
includes practices for identifying security vulnerabilities and
threats along with their impacts and occurrence likelihood.
The security engineering process determines and implements
solutions to the threats. It includes practices for specifying
security needs and creating solutions that address the risks.
The security assurance process provides confidence that the
implemented security solutions reduce the risks. It includes
practices for collecting evidences using testing, verification,
and validation; and for argumentation that security require-
ments are addressed and risks are mitigated.

III. REVIEW AND ANALYSIS METHODOLOGY

We conducted a systematic literature review to identify
the challenges of developing secure software using the agile
approach and methods and we evaluated the validity of the
identified challenges. The descriptions of both literature review
and evaluation tasks follow.



TABLE II
SECURITY RISKS AND SECURITY ASSURANCE PRACTICES

Co-
de

Assurance
practice

Description

S1 Specify secu-
rity policies

Identify the security needs in order to meet legal, policy, and organizational requirements for security considering
the security objectives. The needs (policies) become the security claims of the software.

S2 Security
training

Train the developers of the software on using cryptographic libraries and security techniques to develop security
features, use security coding standards, performing security code reviews, using tools for static and dynamic analysis
of source code, and performing security testing.

S3 Identify vul-
nerabilities

Identify and categorize the flaws of the software. These flaws are either: (1) source code security vulnerabilities,
such as buffer overflows, and non-validated input or (2) weaknesses related to the software architecture, such as
sending data unprotected in a public network [24].

S4 Assess secu-
rity risks

Identify the security threats to the software and assess their likelihoods of occurrences and impacts.

S5 Verify and
validate the
security

Perform security review, static analysis, dynamic analysis of source code, security architecture review, functional
testing of the security features, and penetration testing (and possibly fuzz testing). Develop arguments to show
that the customer′s security needs are met. An assurance argument is a set of stated assurance objectives that are
supported by assurance evidences derived from multiple sources, such as security testing and security review of code
source [15].

A. Systematic literature review

We applied in this review the method proposed by Kitchen-
ham et al. [18], [17]. The description of the activities follows.

Research question identification. The first research question
investigated in this study is:

RQ1: What are the challenges of developing secure software
using the agile approach?

Paper search process. We used in May 2014, the IEEE and
ACM libraries to search for papers with the keywords “secure
software agile.” We read the titles and abstracts of the papers
that the search engines found and we selected 28 papers that
we found are potentially related to our research question.

Paper selection. We read the papers that we initially selected
and we found only 6 papers relevant to our research question.
In this selection we excluded the papers that list challenges but
do not argue about them because we considered the claims as
weak. We looked at the references of the papers and their
citations which allowed finding 3 technical reports and 1
journal paper that are related as well to our research questions.
We selected in total 10 papers for further processing.

We choose to select the papers that discuss both the chal-
lenges of developing secure software using the agile approach
and the papers that discuss the agile software development
methods. This implies that we may have challenges that
apply to a specific agile development method but not to the
agile approach. This is not a problem in our case because
we already evaluate the identified challenges with respect to
characteristics of the agile development approach in Section V.

Data extraction process. Two researchers read the papers and
marked the text relevant to the challenges of developing secure
software using the agile development approach or methods
in each of these papers. In some papers the authors mention
explicitly the challenges and in some other papers each re-
searcher had to summarize the essence of the given passage

using a short phrase, or a code [27]. Then, both researchers
met to match their findings and discuss the differences.

We report the results of the systematic review in Section IV.

B. Evaluation of the identified challenges

In this section, we define the validity of the identified
challenges and the method that we used to evaluate them.

Research question identification. The second research ques-
tion investigated in this study is:

RQ2: Are these challenges valid?

A challenge for secure software development method is
valid if either it is caused by one or many of the characteristics
of the agile development approach or is caused by one or
many of the characteristics of developing secure software. We
describe in the following the evaluation method.

Evaluation of the challenges with respect to the agile
development approach. The agile development approach is
based on 4 values and 12 principles as described in Section II.
A challenge is valid with respect to the agile development
approach if it is caused by one or many agile values and/or
principles. We use the following question to evaluate whether
a challenge is valid or not: What are the ASD values or
principles that cause the challenge?”

Evaluation of the challenges with respect to developing
secure software. Developing secure software requires assuring
that the software complies with its security policies. This
requires performing correctly a set of activities that support
producing secure software, as is proposed by SSE-CMM [15].
We propose the use of the five security practices of Table II
as criteria for evaluating challenges for developing secure
software, which we derived from the SSE-CMM process.
Table II describes these criteria. These evaluation criteria
do not include secure software administration because we
consider that the environment is related to the deployment



TABLE III
CLASSIFICATION OF THE SECURITY CHALLENGES.

Code Challenge Source
Software development life-cycle challenges
CH1.1 Security requirements elicitation activity is not included in the agile development methods [1][8][30][11]
CH1.2 Risks assessment activity is not included in the agile development methods [8][30][11]
CH1.3 Security related activities need to be applied for each development iteration [7][8][11]
CH1.4 Iteration time is limited and may not fit time consuming security activities [3][16]
Incremental development challenges
CH2.1 Refactoring practice breaks security constraints [7]
CH2.2 Changes of requirements and design breaks system security requirements [30]
CH2.3 Continuous code changes makes completing the assurance activities difficult [7][30]
CH2.4 Requirement changes makes the trace of the requirements to security objectives difficult [3]
Security assurance challenges
CH3.1 Security assessment favors detailed documentation [1][7][20][32]
CH3.2 Tests are, in general, insufficient to ensure the implementation of security requirements [7]
CH3.3 Tests do no cover in general, all vulnerability cases [30]
CH3.4 Security tests are in general difficult to automate [32]
CH3.5 Continuous changing of the development processes (to support lesson learned) conflicts with audit needs of uniform

stable processes
[3]

Awareness and collaboration challenges
CH4.1 Security requirements are often neglected [3]
CH4.2 Developers lack experience on secure software [1][3][30][32]
CH4.3 Customers lack security awareness [1][3]
CH4.4 Developer role must be separate from security reviewer role to have objective results [20][32]
Security management challenges
CH5.1 Security activities increases the cost of the software [1]
CH5.2 There are no incentive for organizations to develop security features in early increments [3][5]
CH5.3 Organizations compromise security activities to accommodate accelerated releasing schedule [1]

activities.3 A challenge is valid with respect to the secure
software development requirements if it is caused by one or
many of the secure software assurance practices. We use the
following question to evaluate whether a challenge is valid
or not: What are the secure software assurance practices that
cause the challenge?”

IV. CHALLENGES OF DEVELOPING SECURE SOFTWARE
USING THE AGILE METHODS

This section answers the question RQ1. The systematic
review resulted into identifying 20 challenges for developing
secure software using the agile approach, which we classified
into 5 categories. A summary of the challenges is provided in
Table III. Their description follows.

Software development life-cycle challenges. ASD methods
enable developing software in successive iterations [21]. These
methods do not integrate security requirements elicitation
activities (CH1.1) [30], [1], [8], [11], nor risks assessment
activities (CH1.2) [30], [8], [11]. In addition, Beznosov et
al. [7], Boström et al. [8], and Ge et al. [11] claim4 that
some security activities need to be repeated for each iteration
because each iteration should include the full development
life-cycle (CH1.3). Moreover, development iterations are of
limited time, often few weeks, which makes fitting security
activities (e.g., security requirements elicitation) challenging
because they are often time consuming (CH1.4) [16], [3].

3Note that SS-CMM [15] considers the administration tasks as part of the
development process.

4We use the term ”claim” to state that authors did not necessarily justify
their statements.

Incremental challenges. Security requirements are con-
straints on the functional requirements [13]. Beznosov and
Kruchten [7] claim that code refactoring, which is a practice in
the agile development methods, could break such constraints
(CH2.1). They also claim that continuous code changes limits
the ability to complete security assurance activities (CH2.3),
a viewpoint shared by Wayrynen et al [30]. Wayrynen et al.
claim also that changing the requirements and design breaks
the system security requirements (CH2.2) [30]. These changes,
according to Bartsch, make tracing the requirements to the
security objectives (CH2.4) challenging [3].
Security assurance challenges. ASD methods advocate
for light documentations. Beznosov and Kruchten [7],
Woody [32], and Alnatheer et al. [1] claim that this practice
conflicts with the use of documentation for security assessment
(CH3.1). Beznosov and Kruchten [7] claim also that the test
philosophy of agile developers (i.e., rely on tests to confirm
that requirements are implemented) conflicts with security
needs because tests are, in general, insufficient to ensure the
implementation of security requirements (CH3.2). In addition,
Wayrynen et al. [30] claim that tests, in general, do no cover
all vulnerabilities cases (CH3.3) and Woody [32] claims that
security tests are difficult to automate (CH3.4). Moreover,
the agile development teams often improve the development
processes they use to consider the lessons they learned.
According to Bartsch, this good practice makes performing
security audits challenging (CH3.5) because, for example,
some of the activities used for the audit may be discontinued
and the used resources may become not uniform [3].
Awareness and collaboration challenges. The ASD approach



TABLE IV
CAUSES OF THE CHALLENGES FOR DEVELOPING SECURE SOFTWARE USING THE AGILE APPROACH.

Code Challenge Agile
Value

Agile
principle

Security assur-
ance practice

Software development life-cycle challenges
CH1.1 Security requirements elicitation activity is not included in the agile development methods - - -
CH1.2 Risk assessment activity is not included in the agile development methods - - -
CH1.3 Security related activities need to be applied for each development iteration - P1, P3 S1, S3, S4, S5
CH1.4 Iteration time is limited and may not fit time consuming security activities - P3 S1, S3, S4, S5
Incremental development challenges
CH2.1 Refactoring practice breaks security constraints V4 P9 S3, S5
CH2.2 Changes of requirements and design breaks system security requirements V4 P2 S1, S5
CH2.3 Continuous code changes makes completing the assurance activities difficult V4 P2 S3, S5
CH2.4 Requirement changes makes the trace of the requirements to security objectives difficult V4 P2 S5
Security assurance challenges
CH3.1 Security assessment favors detailed documentation V2 P7, P10 S4, S5
CH3.2 Tests are, in general, insufficient to ensure the implementation of security requirements - P7, P10 S5
CH3.3 Tests do no cover in general, all vulnerability cases - P7, P10 S5
CH3.4 Security tests are in general difficult to automate - -
CH3.5 Continuous changing of the development processes (to support lesson learned) conflicts with

audit needs of uniform stable processes
V4 P11, P12 S5

Awareness and collaboration challenges
CH4.1 Security requirements are often neglected - P7, P10 -
CH4.2 Developers lack experience on secure software - - -
CH4.3 Customers lack security awareness - - -
CH4.4 Developer role must be separate from security reviewer role to have objective results V1 P4, P6 S5
Security management challenges
CH5.1 Security activities increases the cost of the software - - S1,S2,S3,S4, S5
CH5.2 There are no incentive for organizations to develop security features in early increments - - -
CH5.3 Organizations compromise security activities to accommodate accelerated releasing schedule V2 P3 S1, S3, S4, S5

Notes:
(1) Challenges that are not caused by the agile values and principles, neither by the security assurance practices are marked with color.

encourages the developers and customers to collaborate. Also,
developing secure software requires the project collaborators
to be educated about why and how to develop secure software.
Unfortunately, according to Bartsch, agile developers require
further training about developing secure software (CH4.2) [3].
He claims also that security requirements are in practice
often neglected in favor of functional requirements [3](CH4.1).
Wayrynen et al. [30], Woody [32], and Alnatheer et al. [1]
share the viewpoint of Bartsch about CH4.2 and also propose
the inclusion of security experts in the development teams
to help spreading the knowledge about security. Alnatheer et
al. [1] and Bartsch [3] claim also that customers lack security
awareness (CH4.3), which limits their ability to help the
developers develop secure software because e.g., they cannot
state the security requirements for their products. In addition,
Woody [32] and Konglsi [20] claim that software assessment
should be performed by security experts instead of the project
developers to ensure objectivity of the results. (CH4.4).

Security management challenges. Alnatheer et al. [1] claim
that making software secure increases the cost of the products
because it requires more development effort (CH5.1) and
that organizations tend to compromise security when they
have accelerated releasing schedule (CH5.3). In addition,
Bartsch [3] and Woody et al. [5] claim that there are, currently,
no incentive for organizations to develop security features in
early increments (CH5.2).

In the next section we analyze the validity of the challenges

reported above.

V. ANALYSIS OF THE CHALLENGES OF DEVELOPING
SECURE SOFTWARE USING THE AGILE METHODS

This section evaluates the validity of each of the identified
20 challenges. First, we discuss how each of the agile values
and principles, and the security assurance practices causes
the challenges reported in the literature. We discuss next, in
Subsection V-C, the (6) invalid challenges that are reported
in the literature. We classify the challenges afterwards, in
Subsection V-D, based on the cause categories. Table IV
summarizes the evaluation.

A. Analysis of the relationship between the agile val-
ues/principles and the identified challenges

Value V1. Developers can perform security assessment to
identify flaws and vulnerabilities and address them. However,
the security assessment best practices favor separating the
security evaluators from the developers to avoid the influence
of social relations on the results, which helps to have objective
assessment. This is not aligned with V1 that favors interactions
between the team members (CH4.4).
Value V2. Developing secure software requires performing
security assurance activities, such as static or dynamic analysis
that are not critical to delivering working software (CH 5.3). In
addition, the agile approach advocates for light documentation
while security assurance techniques favor detailed documen-
tation (CH3.1).



Value V3. V3 is not the cause of any of the identified
challenges.
Value V4. The agile approach embraces responding to changes
requested by the customers. Unfortunately, the requirements
and design changes could break the security constraints of
the software (CH2.1) and make it difficult to trace the re-
quirements to the security objective of the system (CH2.4).
Also, frequent code changes make completing the assurance
activities difficult because the changes potentially invalidate
the results of the security reviews, tests, and analysis (CH2.3).
In addition, agile development methods encourage code refac-
toring [10] to improve the maintainability of the software.
However, such changes could also break the security con-
straints (CH2.1). Moreover, security evaluators use the devel-
opment process-related information, such as the architecture
documents and the traceability of artifacts documents, in
assessing the security of software. The audit techniques cannot
be applied on different iterations if the development process
changes. This is not aligned with V4 which tolerates process
changes that potentially make the information that are used in
the assessment inconsistent (CH3.5).
Principle P1. In the waterfall method, the security activi-
ties are distributed on the phases of the development life-
cycle [24]. However, the priority for the team that uses an
agile development method is to continuously deliver valuable
software to the customer. This requires performing the security
activities in each development iteration (CH1.1).
Principle P2. Though the ASD approach embraces require-
ment changes to fulfill late customer needs, these changes
could potentially break the system security requirements
(CH2.2) and make tracing of the requirements to the security
objectives difficult (CH2.4). In addition requirement changes
cause code changes, which could make completing security
assurance activities such as code review difficult (CH2.3).
Principle P3. Delivering a secure working software every
short period requires performing the security activities for
each period. This requires fitting the security activities in
the iteration period (CH1.3 and CH1.4). The short iteration
duration can also lead the development teams to compromise
on security activities (CH5.3); the developers may rush to
deliver working software rather than secure working software.
Principles P4 and P6. Requiring that the business people
and developers meet and collaborate daily throughout the
project improves the social relations between them and helps
to avoid misunderstandings. However, the security evaluator
is somehow a judge; they should not be involved in the
development process, neither have social relations with the
development team to be objective in their evaluation (CH4.4).
Principles P7 and P10. The agile approach encourages doing
the minimum work and evaluates the progress based on
working software. This is practiced by developing only code
that passes the acceptance tests that asserts that the software
works. However, security requirements are negative require-
ments (e.g., only authorized users can access the feature)
while tests check positive requirements. Thus, in general, tests
are not sufficient to ensure the implementation of security

requirements (CH3.2) and may not cover, in general, all the
vulnerabilities cases (CH3.3). Thus, measuring the progress of
a project primarily on working software is not enough, these
measurements should also include the evaluation of security
arguments. In addition, the agile approach favors writing
a light documentation which conflicts with some security
assurance needs of detailed documentation such as architecture
review.
Principle P9. The continuous attention to technical excellence
is practiced by code refactoring [10]. However, code refactor-
ing can break security constraints (CH 2.1).
Principles P11 and P12. Agile development team members
self-organize to improve their development tools, techniques,
and processes. However, the assessor uses the development
process-related information in the security evaluation. Thus,
audit techniques that use such information cannot apply on
different iterations if the processes change.

B. Relation of the challenges with the security assurance
practices

Security assurance practice S1. System security policies
are constraints on the system requirements. Requirements and
design changes in the different development iterations can
break the constraints (CH2.2). For example, the addition of
a new feature “log access to data” could conflict with existing
access control policy if the policy may not apply to the
log file–which could be accessed by entities not considered
in the policy. In addition, this assurance activity has to
be applied for each development iteration (CH1.3), though
iteration time is limited and may not fit to finalize the security
activities (CH1.4). Also, specifying the security policies is
time consuming and it increases the software development cost
(CH5.1). This encourages the organizations to compromise
the assurance activity to accommodate accelerated releasing
schedule (CH5.3).
Security assurance practice S2. Developing secure software
requires training the developers, which increases the cost of
software development (CH5.1).
Security assurance practice S3. Identifying and categorizing
the flaws of secure software must be performed in each
iteration (CH1.3), which costs time (CH1.4). Moreover, code
changes, even code refactoring, may introduce code vulnera-
bilities (CH2.1)(CH2.3) and may contribute to increasing the
software development cost (CH5.1). It may also delay the
development, which leads organizations to compromise the
assurance activity (CH5.3).
Security assurance practice S4. This assurance practice has
to be applied to each development iteration (CH1.3), though
iteration time is limited and may not be sufficient to finish
the activity (CH1.4). In addition, security risk assessment is
often based on detailed documentation of the software, which
contradicts with the agile practice of having light documen-
tation (CH3.1). Moreover, security risk assessment is a time
consuming activity and it increases the software development
cost (CH5.1). This could cause a delay in the releasing



schedule, which encourage organizations to compromise the
activity (CH5.3).
Security assurance practice S5. The security verification and
validation gate asserts whether software is secure, with respect
to its security requirements, or not (CH3.1). This should be
done in every iteration (CH1.3), which is challenging due to
time limitation (CH1.4). Moreover, this activity does not add
value to the functionalities of the software and it increases its
cost (CH5.3). The results of the verification and validation
could be invalidated by code refactoring (CH2.1) and also
by requirements and design changes (CH2.2). Furthermore,
frequent requirement changes can make tracing their impacts
on the security objectives, a technique used in security ver-
ification, challenging (CH2.4)(CH3.5). We note also that the
common practices in security assurance rely on independent
evaluators, not on the developers of the software (CH4.4); and
that tests are, in general, insufficient to ensure the implemen-
tation of security requirements (CH3.2) and may not cover all
vulnerability cases (CH3.3).

C. Challenges which have no relations to ASD values or
principles neither to the security assurance practices

The inclusion of security requirement activity (CH1.1) is
independent of the development method; the agile values and
principles do not prevent performing such activity as part
of the development life cycle. This also applies to the risk
assessment activity (CH1.2). For instance, in Scrum a risk
management activity could be included in the backlog and the
developers could monitor the risk exposure of their software
using the risk burndown chart. Also, the problems of au-
tomating security tests (CH3.4), developers lack of experience
on secure software (CH4.2), and customers’ lack of security
awareness (CH4.3) apply to both the agile and waterfall
development methods. In addition, the lack of incentives for
organizations to develop security features in early increment
(CH5.2) is not influenced by the agile values or principles;
it applies to both the agile and the waterfall development
methods.

D. Summary

The analysis reveals that not all of the challenges of
developing secure software discussed in the literature are valid.
They are of 4 categories.

1. Challenges that are caused by the agile values or agile
principles and security assurance practices. This category
includes 12 challenges: CH1.3, CH1.4, CH2.1, CH2.2, CH2.3,
CH2.4, CH3.1, CH3.2, CH3.3, CH3.5, CH4.4, and CH5.3.
We observe that all the incremental development challenges
and most of the security assurance challenges belong to this
class. In our opinion this category of challenges needs the
most attention.

2. Challenges that are caused by the agile values or
principles. This category includes only 1 challenge: CH4.1.

3. Challenges that are caused by the security assurance
practices. This category includes 1 challenge: CH5.1.

4. Challenges that are not caused by the agile values or
principles nor the security assurance practices. This cat-
egory includes 6 claimed challenges: CH1.1, CH1.2, CH3.4,
CH4.2, CH4.3, CH5.2. These challenges are not valid; they do
not make developing secure software using the agile methods
more difficult than using e.g., the waterfall method.

VI. LIMITATIONS AND IMPACTS OF THE STUDY

A. Impacts of the study results

This study provides a review of the literature about the
challenges associated with developing secure software using
the agile approach and the agile methods. It potentially impacts
the research and practice of developing secure software using
the agile methods [19]. First, the study makes it easier–for es-
pecially new researchers–to get an overview about the domain,
understand the literature, and construct research questions.
Second, it could be used to identify relevant literature for the
“related work” section of primary studies. Third, it justifies
the need for further research to address the challenges.

B. Limitations of the study

The main limitations of this study are: the possibility to miss
relevant publications, the bias in the selection of the relevant
studies, the inaccuracy of the data extraction, subjectivity
of the evaluation of the challenges, and the low number of
relevant publications. The first three limitations are common
to systematic literature review [9], [17].

Missing relevant publications. We used in this study a set
of keywords to search for potentially relevant papers. This
approach misses the papers that are not indexed by the search
engine we used and also the papers that are not indexed with
the keywords we choose. We note that keywords are both
discipline and language specific and are not standardized [17].
In addition, the results of search engines are not consistent.
For instance, we searched in June 2015 the ACM library.
We obtained 1601 records when we queried the library from
Fraunhofer SIT and 543 when queried it from TU Darmstadt,
Germany. Fortunate, the issue did not change the set of
relevant papers of our study.

Bias in the selection of the relevant studies. We selected
potentially relevant papers from the papers identified in the
search steps based on the titles and abstracts. This approach
discards the papers that do not “indicate” discussion about
the challenges of developing secure software using the agile
approach. Thus, we may have missed relevant papers.

Inaccuracy of the data extraction. We read the selected papers
and extracted the challenges reported in section IV. Some
challenges may have been missed because their discussion in
the related papers was confusing and lack transparency. Two
of the authors read the papers and discussed the challenges
that each identified, which helps to control the inaccuracy of
the data extraction.

Subjectivity of the evaluation. This limitations is due to the
fact that the evaluation is based on human perception of
the challenges and evaluation criteria. Two of the authors



evaluated the challenges and discussed their disagreement,
which should reduce the subjectivity of the evaluation.

Low number of relevant publications. The number of relevant
papers, 10, is low. This is because the topic is “new.”

VII. CONCLUSION

There has been an ongoing discussion about the difficulties
to use the agile development methods to develop secure
software. Among the argumentation is that agile development
methods embrace requirement changes and frequent deliveries
while developing secure software requires the use of verifica-
tion gates and refinement of artifacts. This paper reports about
a review of the literature to identify the challenges reported in
the literature about developing secure software using the agile
approach and methods. It summarizes the challenges discussed
in the literature and evaluates the relations of each to the
agile values, the agile principles, and the security assurance
practices. This results to the identification of 20 challenges
found in 10 publications, 14 of the 20 are deemed valid and
6 are found to be not caused by the agile values, the agile
principles, nor the security assurance practices.

The results of this study are an evidence that developing
secure software using the agile methods is challenging, which
calls for research to address the challenges. We are working
on contributing to adapt the agile development methods and
the security assurance practices to enable developing secure
software using the agile methods smoothly.

REFERENCES

[1] A. Alnatheer, A. M. Gravell, and D. Argles, “Agile security issues:
A research study,” accessed on Apr. 2015. [Online]. Available:
http://esem2010.case.unibz.it/idoese/docs/alnatheer.pdf

[2] S. W. Ambler. (2009, Dec.) The agile scaling model
(ASM): adapting agile methods for complex environments. IBM.
[Online]. Available: ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/
raw14204usen/RAW14204USEN.PDF

[3] S. Bartsch, “Practitioners’ perspectives on security in agile develop-
ment,” in Proc. the Sixth International Conference on Availability,
Reliability and Security, ser. ARES ’11, Vienna, Austria, Aug. 2011,
pp. 479–484.

[4] M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C.
Martin, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for
agile software development,” http://agilemanifesto.org/, accessed on Apr.
2015.

[5] S. Bellomo and C. C. Woody, “Dod information assurance and
agile: Challenges and recommendations gathered through interviews
with agile program managers and dod accreditation reviewers,”
Carnegie Mellon University, Tech. Rep. CMU/SEI-2012-TN-024,
Nov. 2012. [Online]. Available: repository.cmu.edu/cgi/viewcontent.
cgi?article=1674&context=sei

[6] L. ben Othmane, P. Angin, H. Weffers, and B. Bhargava, “Extending
the agile development approach to develop acceptably secure software,”
IEEE Transactions on Dependable and Secure ComputingDependable
and Secure Computing, vol. 11, no. 6, pp. 497 – 509, Nov. 2014.

[7] K. Beznosov and P. Kruchten, “Towards agile security assurance,” in
Proc. of the 2004 Workshop on New Security Paradigms, ser. NSPW
’04, White Point Beach Resort, Canada, 2004, pp. 47–54.

[8] G. Boström, J. Wäyrynen, M. Bodén, K. Beznosov, and P. Kruchten,
“Extending XP practices to support security requirements engineering,”
in Proc. of the 2006 international workshop on Software engineering
for secure systems, Shanghai, China, May 2006, pp. 11–18.

[9] T. Dyba and T. Dingsoyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and Software Technology,
vol. 50, no. 9-10, pp. 833 – 859, Aug. 2008.

[10] M. Fowler and K. Beck, Review: Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[11] X. Ge, R. F. Paige, F. A. Polack, H. Chivers, and P. J. Brooke,
“Agile development of secure web applications,” in Proc. of the 6th
International Conference on Web Engineering, ser. ICWE ’06, Palo Alto,
CA, July 2006, pp. 305–312.

[12] K. M. Goertzel, T. Winograd, H. L. McKinley, P. Holley, and B. A.
Hamilton, “Security in the software lifecycle,” Online, August 2006,
draft version 1.2. [Online]. Available: www.cert.org/books/secureswe/
SecuritySL.pdf

[13] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, Integrating Secu-
rity and Software Engineering: Advances and Future Visions. Hershey,
PA: Idea Group Publishing, 2007, ch. Arguing Satisfaction of Security
Requirements, pp. 16–43.

[14] M. Jazayeri, “Some trends in web application development,” in Proc.
Future of Software Engineering, ser. FOSE ’07, Washington, DC, USA,
May 2007, pp. 199–213.

[15] JTC1 Information technology, committee SC27, Information
technology –Security techniques – Systems Security Engineering –
Capability Maturity Model (SSE-CMM), International Organization for
Standardization (OSI) Std. ISO/IEC 21 827, 2008. [Online]. Available:
http://www.iso.org/iso/catalogue detail.htm?csnumber=44716

[16] H. Keramati and S.-H. Mirian-Hosseinabadi, “Integrating software
development security activities with agile methodologies,” in Proc.
IEEE/ACS International Conference on Computer Systems and Appli-
cations, Doha, Qatar, Apr. 2008, pp. 749 –754.

[17] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–a
tertiary study,” Information and Software Technology, vol. 52, no. 8, pp.
792–805, Aug. 2010.

[18] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” University of Durham,
Durham, UK, Tech. Rep. EBSE-2007-01, July 2007.

[19] B. A. Kitchenham, D. Budgen, and O. P. Brereton, “Using mapping
studies as the basis for further research a participant-observer case
study,” Information and Software Technology, vol. 53, no. 6, pp. 638 –
651, 2011.

[20] V. Kongsli, “Towards agile security in web applications,” in Proc. 21st
ACM SIGPLAN Symposium on Object-oriented Programming Systems,
Languages, and Applications, Portland, OR, USA, Oct. 2006, pp. 805–
808.

[21] C. Larman and V. R. Basili, “Iterative and incremental development: A
brief history,” Computer, vol. 36, no. 6, pp. 47–56, Jun. 2003.

[22] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2003.

[23] L. M. Maruping, V. Venkatesh, and R. Agarwal, “A control theory
perspective on agile methodology use and changing user requirements,”
Info. Sys. Research, vol. 20, no. 3, pp. 377–399, Sep. 2009.

[24] G. McGraw, Software Security: Building Security In, ser. Addison-
Wesley Software Security Series. Addison-Wesley, 2006.

[25] ——, “On bricks and walls: Why building secure software is hard,”
Computers & Security, vol. 21, no. 3, pp. 229–238, 2002.

[26] S. R. Palmer and J. M. Felsing, A practical guide to feature-driven
development, 1st ed. Prentice Hall, Feb. 2002.

[27] J. Saldana, The coding manual for qualitative researchers, 1st ed.
London, UK: SAGE Publications Ltd, 2009.

[28] K. Schwaber and M. Beedle, Agile Software Development with Scrum,
1st ed. Upper Saddle River, NJ, USA: Prentice Hall, 2001.

[29] B. Sullivan, “Agile security; or, how to defend applications
with five-day-long release cycles,” Black Hat, DC,, Jan. 2010.
[Online]. Available: http://www.blackhat.com/presentations/bh-dc-10/
Sullivan Bryan/BlackHat-DC-2010-Sullivan-SDL-Agile-slides.pdf

[30] J. Wayrynen, M. Boden, and G. Bostrom, “Security engineering and
extreme programming: An impossible marriage?” in Proc. 4th Confer-
ence on Extreme Programming and Agile Methods. Calgary, Canada:
Springer, Aug. 2004, pp. 117–128.

[31] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering. Berlin Hei-
delberg: Springer-Verlag, 2012.

[32] C. Woody, “Agile security - review of current research and pilot usage,”
Carnegie Mellon University, Tech. Rep., Nov. 2013. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=70232

http://esem2010.case.unibz.it/idoese/docs/alnatheer.pdf
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF
repository.cmu.edu/cgi/viewcontent.cgi?article=1674&context=sei
repository.cmu.edu/cgi/viewcontent.cgi?article=1674&context=sei
www.cert.org/books/secureswe/SecuritySL.pdf
www.cert.org/books/secureswe/SecuritySL.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=44716
http://www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/BlackHat-DC-2010-Sullivan-SDL-Agile-slides.pdf
http://www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/BlackHat-DC-2010-Sullivan-SDL-Agile-slides.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=70232

