
Appears in A. Menezes, P. Sarkar (Eds.): Progress in Cryptology – INDOCRYPT 2002,

Springer-Verlag LNCS 2551, pp. 296–313, ISBN 3-540-00263-4.

Errata added 2003-01-30 and 2005-08-14.

Improved Elliptic Curve Multiplication Methods
Resistant against Side Channel Attacks

Tetsuya Izu1, Bodo Möller2, and Tsuyoshi Takagi2

1 FUJITSU LABORATORIES Ltd.
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan

izu@flab.fujitsu.co.jp
2 TU Darmstadt, Fachbereich Informatik

Alexanderstr.10, D-64283 Darmstadt, Germany
{moeller,ttakagi}@cdc.informatik.tu-darmstadt.de

Abstract. We improve several elliptic curve multiplication algorithms
secure against side channel attacks (SCA). While some efficient SCA-
resistant algorithms were developed that apply only to special classes
of curves, we are interested in algorithms that are suitable for general
elliptic curves and can be applied to the recommended curves found in
various standards. We compare the running time and memory usage of
the improved schemes.

Keywords: elliptic curve cryptosystems, scalar multiplication, side
channel attacks, memory constraints, window method

1 Introduction

Side channel attacks (SCA) [Koc96,KJJ99] allow adversaries to obtain the se-
cret key in a cryptographic device, or partial information on it, by observing
information such as computing time and power consumption traces if the im-
plementation is naive or careless. This is a serious threat especially to mobile
devices such as smart cards. Thus, implementers need algorithms that are not
only efficient, but also SCA-resistant. Power analysis attacks subsume timing
attacks, so we will focus on the former. Simple power analysis (SPA) utilizes
information from a single computation, while differential power analysis (DPA)
uses statistical tools to evaluate information from multiple computations.

Elliptic curve based cryptosystems (ECC) have gained popularity for crypto-
graphic applications because of the short key length compared with earlier public
key cryptosystems such as RSA. They are considered particularly suitable for
implementation on smart cards or mobile devices. Because of the physical char-
acteristics of such devices and their use in potentially hostile environments, the
power consumption trace or the timing of computations using the secret key can
be clearly observed. Thus, side channel attacks are a serious threat against these
devices. The main target for side channel attacks against ECC implementation
is the algorithm used for scalar multiplication on the elliptic curve. Therefore,

1



various elliptic curve multiplication algorithms designed to resist side channel
attacks have been proposed.

In this paper we deal with DPA-resistant methods that do not require specif-
ically selected elliptic curves and thus can be used for the recommended curves
found in [NIST], [ANSI] and [SEC2]. We focus on curves over finite fields of
characteristic greater than 3. (While all the methods can be similarly applied to
curves over binary fields, our efficiency analysis does not cover this case.) We ex-
amine Coron’s dummy addition method [Cor99], a method using a non-standard
addition chain [Möl01], and a method using the Montgomery ladder [IT02a]. We
investigate their security against DPA and analyze their efficiency.

2 Elliptic Curve Arithmetic

Let K = Fq be the finite field with q elements where q is a power of a prime
p > 3. Elliptic curves over K are certain subsets of K2 ∪ {O} equipped with an
additive group structure; O denotes the point at infinity, the neutral element of
addition. Every elliptic curve over K is isomorphic to a curve described in the
form

E(K) := {(x, y) | y2 = x3 + ax + b} ∪ {O}, (1)

with a, b ∈ K, 4a3 + 27b2 6= 0, which we call the Weierstrass form. Let P1 =
(x1, y1), P2 = (x2, y2) be two elements of E(K) that are different from O. We
have −P1 = (x1,−y1). If −P1 6= P2, then the sum P1 + P2 = (x3, y3) is given by

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3)− y1 (2)

where λ = (y2 − y1)/(x2 − x1) for P1 6= P2, and λ = (3x2
1 + a)/(2y1) for P1 =

P2. We call computing P1 + P2 an elliptic curve addition (ECADD) if P1 6=
±P2; otherwise if P1 = P2 we speak of an elliptic curve doubling (ECDBL); the
remaining case P1 = −P2 (where P1 + P2 = O) should usually be avoided when
SCA-resistance is intended. The algorithms for ECADD and ECDBL are usually
not same (a general addition algorithm typically will have to detect the special
cases when the ECDBL algorithm is called for, or when P1 = −P2).

Elliptic curve cryptography usually employs curves whose order is the prod-
uct of a large prime and a very small integer h, the so-called cofactor. In this
paper, we assume that this standard scenario is fulfilled. Cryptographic protocols
avoid points of small order, i.e. points P such that hP = O. The recommenda-
tions of [SEC1] require h ≤ 4; in practice, the cofactor often is 1.

2.1 Efficiency of Addition and Doubling Algorithms

We estimate the efficiency of ECDBL and ECADD when using Jacobian coor-
dinates, a variant of projective coordinates where triples (X : Y : Z) represent
points (X/Z2, Y/Z3) on the elliptic curve. This type of coordinates yields the
best performance for our purposes. Denote by M , S, and A the time needed for
a multiplication, a squaring, and an addition, respectively, in the base field Fq.

2



(The effort for a subtraction may be considered equivalent to that for an addi-
tion.) For the total efficiency of elliptic curve operations, we are interested in the
time depending on the individual times M , S, A, and in the amount of auxiliary
storage used by the computation.

The coefficient a in the defining polynomial of the curve can be an arbi-
trary field element. However, many curves recommended by specifications such
as [NIST,ANSI,SEC2] use a = −3, allowing for a more efficient ECDBL im-
plementation. We assume that a is stored in memory as part of the system
parameters. In appendix A.1, we show algorithms for both cases: the general
algorithm ECDBLJ requires time 4M + 6S + 11A using 6 auxiliary variables; the
optimized algorithm ECDBLJ ,a=−3 requires time 4M +4S+13A using 5 auxiliary
variables.

For ECADD, we consider two cases: the general case of addition of points
given in Jacobian coordinates, and the special case where one of the input points
has a Z-coordinate of 1, i.e. is represented in affine coordinates. The latter case
allows for faster addition [CMO98]; this is known as addition with mixed co-
ordinates. Algorithms for both cases are shown in appendix A.2: the general
algorithm ECADDJ requires time 12M +4S +7A using 7 auxiliary variables, and
algorithm ECADDJ ,Z=1 for mixed coordinates requires time 8M + 3S + 7A using
7 auxiliary variables.

In the scalar multiplication algorithm in section 4, we will have to com-
pute 2wP where P is a point and w is a positive integer. If ECDBLJ is re-
peatedly applied to compute 2wP , we need 4wM + 6wM + 11wA operations.
Itoh et al. [ITTTK99] proposed a faster algorithm for directly computing 2wP ,
which can be found in appendix A.3. This algorithm wECDBLJw requires time
4wM +(4w +2)S +(12w− 1)A using 7 auxiliary variables. However, in the case
a = −3, it is more efficient to iterate w times algorithm ECDBLJ ,a=−3, which
requires time 4wM + 4wS + 13wA.

We summarize these results on the efficiency of algorithms for elliptic curve
arithmetic in table 1.

Table 1. Computing time and number of auxiliary variables for several algo-
rithms

Algorithm Time # of auxiliary variables
ECDBLJ 4M + 6S + 11A 6

ECDBLJ ,a=−3 4M + 4S + 13A 5
ECADDJ 12M + 4S + 7A 7

ECADDJ ,Z=1 8M + 3S + 7A 7
wECDBLJw 4wM + (4w + 2)S + (12w − 1)A 7

3



3 Scalar Multiplication and Side Channel Attacks

Let d be a positive integer and P be a point on an elliptic curve E(K). Com-
puting dP =

∑
1≤i≤d P is called a scalar multiplication. Scalar multiplications

are used in encryption and decryption or signature generation and verification of
elliptic curve cryptosystems. These computations are relatively expensive when
implemented on low-power devices.

A standard method for performing scalar multiplications is the left-to-right
binary method. We show how to compute dP with this method. Let

d = d[k − 1]2k−1 + . . . + d[1]21 + d[0]20

be the binary representation of d where k is chosen minimal so that d[k−1] = 1.
Then, given d[0], d[1], . . ., d[k − 1] and P , we can compute dP as follows.

INPUT d, P, (d[0],d[1],..,d[k-1])

OUTPUT d*P

1: Q = P

2: for i = k-2 down to 0

3: Q = ECDBL(Q)

4: if d[i]==1

5: Q = ECADD(Q,P)

6: return Q

With the usual algorithms for ECDBL in step 3 and for ECADD in step 5, bit
information can be detected by SPA [Cor99]: the power consumption traces of
ECDBL and ECADD are not same, so an attacker can easily distinguish between
these operations and derive the values d[i].

3.1 SPA-Resistant Scalar Multiplication Methods

We describe several SPA-resistant methods for computing dP . If point P might
be chosen by the attacker, we assume that it is rejected if hP = O where h is
the cofactor, as otherwise SCA-resistance may be voided due to the special cases
of elliptic curve arithmetic (see section 2). Note that h is usually very small so
that hP can be computed with a short fixed sequence of operations.

At first we describe Coron’s dummy addition method [Cor99], which is one of
standard countermeasures against SPA. We will compare it with other efficient
methods in this paper. The algorithm is as follows:

INPUT d, P, (d[0],d[1],...,d[k-1])

OUTPUT d*P

1: Q[0] = P

2: for i = k-2 down to 0

3: Q[0] = ECDBL(Q[0])

4: Q[1] = ECADD(Q[0],P)

5: Q[0] = Q[d[i]]

6: return Q[0]

4



(We note that there is a potential security problem with this method [Möl01].
If d[i] = 0, the point that is one of the inputs to ECADD in the current iteration
will be the input to ECDBL in the next iteration. When using projective coor-
dinates, both ECADD and ECDBL involve squaring the Z coordinate, so the
same Z value will be squared again if d[i] = 0. Side channels may provide hints
that the same squaring is performed again, thus leaking information on d[i].)

As Coron’s dummy addition method requires (k − 1) ECDBL operations
and (k − 1) ECADD operations, it is slower than the standard binary method.
When we use algorithms ECADDJ and ECDBLJ or ECDBLJ ,a=−3, Coron’s dummy
addition method requires 12(k − 1)M + 9(k − 1)S + 18(k − 1)A for a 6= −3 and
12(k− 1)M +7(k− 1)S +20(k− 1)A for a = −3 (not counting conversion of the
final result from Jacobian into affine coordinates).

Several SPA-resistant algorithms have been proposed that are faster than
Coron’s dummy addition method. Three basic approaches are known to achieve
SPA resistance:

– The first one is to use indistinguishable addition and doubling algorithms
in the scalar multiplication (cf. [CJ01]). Jacobi form and Hesse form elliptic
curves achieve this as they allow using the same algorithm for both additions
and doublings [LS01,JQ01]. However, this requires specifically chosen ellip-
tic curves and does not work for the standardized curves recommended by
specifications such as [NIST], [ANSI] and [SEC2]. Brier and Joye proposed
an indistinguishable addition and doubling algorithm applicable to Weier-
strass form curves [BJ02], but it fails on certain inputs, making it vulnerable
to attacks [IT02b].

– The second one is the so-called double-and-always-add approach. Coron’s
dummy addition method is the simplest algorithm of this type. Okeya and
Sakurai proposed to use Montgomery form elliptic curves to achieve a double-
and-always-add method [OS00], but this is not applicable to the standardized
curves. This method was recently extended to general curves [BJ02,IT02a].

– The third approach is to use a special addition chain with a sequence of
additions and doublings that does not depend on the bit information of the
secret key, as proposed by Möller [Möl01]. (Recently, Seysen has proposed
a different addition chain secure against the SPA [Sey01].)

In this paper, we are interested in scalar multiplication algorithms that
do not require specifically chosen curves. Therefore we will examine Möller’s
method [Möl01] and Izu and Takagi’s method [IT02a].

3.2 Countermeasures against DPA

Even if a scalar multiplication implementation is secure against SPA, it may be
possible to break it by using DPA, i.e. by employing statistical tools to analyze
the information observed in many executions of the algorithm. However, it is
easy to enhance SPA-resistant methods to be DPA-resistant. We describe two
approaches, one due to Coron and one due to Joye and Tymen.

5



One of the countermeasures described by Coron in [Cor99] is projective ran-
domization: Let P = (X : Y : Z) be a base point given in Jacobian coordinates;
then for all r ∈ K\{0}, (r2X : r3Y : rZ) represents the same point. If we trans-
form a base point (X : Y : Z) into (r2X : r3Y : rZ) with a random r before
starting the scalar multiplication, the side channel information available to the
statistic analysis will be randomized. The additional computational cost is only
4M + 1S at the beginning of the scalar multiplication.

Joye and Tymen proposed a related countermeasure [JT01]. It is based
on randomly selected isomorphisms between elliptic curves. The base point
P = (x, y) and the defining coefficients a, b of an elliptic curve can be ran-
domized into P ′ = (r2x, r3y) and a′ = r4a, b′ = r6b, yielding the corresponding
point on an isomorphic curve defined by a′, b′. This randomization allows us to
keep a Z-coordinate of 1 and thus benefit from mixed coordinates in the scalar
multiplication. Joye-Tymen randomization requires 5M + 3S in the beginning
of the scalar multiplication. At the end of the scalar multiplication, we have to
transform the point to the original curve using r. For Jacobian coordinates, trans-
formation from (X : Y : Z) back into affine coordinates

(
X/(rZ)2, Y/(rZ)3

)
for

the original curve requires 5M + 1S + 1I. Joye-Tymen randomization requires
additional storage: during the scalar multiplication, implementations must store
the random field element r; and elliptic curve operations have to be performed
using modified coefficients a′, b′. Thus, three field elements have to be stored.

Actually the b coefficient is usually not needed for elliptic curve operations.
For Joye-Tymen randomization without b, the initial transformations require
only 4M + 3S, and additional storage is needed only for two field elements.

The other countermeasure against DPA is to randomize the computation pro-
cess of the addition chain [IYTT02,OA01,LS01]. However, the Oswald-
Aigner scheme was broken by an SPA proposed by Okeya and Sakurai [OS02a].
Walter showed how to attack the Liardet-Smart method [Wal02].

3.3 Computing Architecture

We discuss the relevant properties of smart card computing architectures (for
a more comprehensive description, see [VW98]).

The main components are a central processing unit (CPU), read only mem-
ory (ROM), electrically erasable programmable read only memory (EEPROM),
random access memory (RAM), and the arithmetic unit (AU). Typical smart
card CPUs are variants of the Motorola 6805 or Intel 8051 processor.

The ROM contains the smart card operating system and additional software
including the scalar multiplication algorithm. Fixed system parameters can be
stored in EEPROM. Writing into EEPROM is very slow (usually on the order
of 1 000 times slower than writing or reading RAM). The RAM of smart cards
is usually limited to 4 Kbits. The AU includes a coprocessor; this is used for
implementing field operations (addition, subtraction, and multiplication).

Assuming that the underlying field K = Fq is a prime field (which is typically
the case), system parameters for most elliptic curve cryptosystems are of the form
(q, a, b,G,#G, h) where (a, b) are the coefficients defining the elliptic curve, G is

6



a base point generating a prime-order subgroup of the elliptic curve, #G is the
order of G, and h = #E(K)/#G is the cofactor. Coefficient b may be omitted
if it is not needed for elliptic curve arithmetic or for verifying that externally
supplied points actually lie on the curve. These system parameters are fixed,
so they can be stored in EEPROM. A fixed secret key may also be stored in
EEPROM.

Depending on the cryptographic application, scalar multiplication dP may
involve the fixed base point (P = G) or ephemeral points. For scalar multiplica-
tion methods involving a precomputed table of points, we assume that this table
is stored in RAM; as we will explain in section 4.1, using a fixed table might
make the implementation vulnerable to DPA.

Finally, we need a random number generator (see section 3.2). Smart cards
often provide random number generation through their operation system.

4 Window-Based Method

To minimize the exposure to side channel attacks, elliptic curve scalar multipli-
cation should be implemented using a fixed sequence of operations. We describe
Möller’s method that achieves this for general elliptic curves [Möl01,Möl01a].3

We first describe it in a general form; choice of point representations will be
discussed in the following security analysis.

This method represents the multiplier d in base 2w for some window size w ≥
2 such that digit value 0 is avoided (except for leading zeros): in the original
method [Möl01], digits are from the set {−2w, 1, 2, . . ., 2w − 1}; in the improved
method [Möl01a], digits are from the set bi ∈

{
− 2w,±1,±2, . . .,±(2w−1 −

1), 2w−1
}
. Both sets have cardinality 2w, and for both methods the binary rep-

resentation of d can easily be transformed into a representation d =
∑k

i=0 bi ·2wi

using digits bi from the respective set. (To ensure that k does not depend on
the specific multiplier, a small multiple of the group order can be added to d,
assuming that the original value of d is bounded above by the order. This way
it is easy to achieve k = d(n + 2)/we where n denotes the bit length of the
group order.) Then the following algorithm can be used for computing dP if
precomputed values P [b] = bP are available:

INPUT k, b[], P[]

OUTPUT d*P

1: A = P[b[k]]

2: for i = k-1 down to 0

3: A = ECADD(A, P[b[i]])

4: for j = 1 to w

3 A new window-based algorithm for elliptic curve multiplication with resistance
against side channel attacks has recently been described in [Möl02]. It can provide
better efficiency than the window-based algorithm from [Möl01,Möl01a] if fixed pre-
computation for the elliptic curve in question can be used. In the present paper, we
assume that we have to work without such precomputation.

7



5: A = ECDBL(A)

4: return A
Algorithm 1: Compute dP where d =

Pk
0 bi2

wi and P [b] = bP

Note that −bP can be computed from bP at almost no cost, so it is possible to
implement the improved method using a P [] array containing only 2w−1 + 1 ele-
ments. Precomputation can be performed as follows (exp2(w-1) denotes 2w−1):

INPUT w, P

OUTPUT P[]

1: m = exp2(w-1)

2: P[1] = P

3: for i = 2 to m-2 step 2

4: P[i] = ECDBL(P[i/2])

5: P[i+1] = ECADD(P[i], P)

6: P[m] = ECDBL(P[m/2])

7: P[2*m] = ECDBL(P[m])

5: return P[]
Algorithm 2: Precomputation for Algorithm 1

If w ≥ 4, it is possible to compute array P [] more efficiently than this by ex-
ploiting that a combined computation of (b + b′)P and (b − b′)P from bP and
b′P is faster than two separate point additions; see [OK02].

4.1 Security Analysis

If points in the table are represented using affine coordinates, the security of
window-based methods against DPA is questionable: because the points in affine
coordinate system can be uniquely presented for the given system parameter
(p, a, b), we can analyze the power consumption trace of the ECADD for a fixed
point and we can guess which points are used for the ECADD. We show a general
attack strategy against table lookup based methods using the DPA if the same
scalar is used in many elliptic curve multiplications. In applications such as el-
liptic curve Diffie-Hellman, the attacker may be able to submit the same point P
many times. The feasibility of the attack depends on an implementation of the
method. We call the attack a fixed table attack.

We briefly describe the attack strategy. Let (A1 : B1 : 1), (A2 : B2 : 1),
(A3 : B3 : 1) be the values of points in the table using affine coordinates.
The ECADD implementation consists of several base field operations, and we
can know the power consumption traces of each base field operation by the
help of SPA [Sey01]. When using algorithm ECADDJ or ECADDJ ,Z=1, we always
compute AiX and BiY for some integers X, Y . During the scalar multiplication,
the integers X and Y may be considered random assuming that point A is
projectively randomized at the beginning of Algorithm 1. An attacker can gather
measurements Power(AiX) and Power(BiY ) for i = 1, 2, 3 and random X, Y
from many computations. The length of Ai and Bi is fixed, and we can find the
mean value of AiX and BiY :

Exp(Ai) =
1

#S

∑
X∈S

Power(AiX), Exp(Bi) =
1

#S

∑
X∈S

Power(AiX)

8



where S is the set of all sampled points and #S is the cardinality of set S. Then
we can guess which point of the table is used, or we can classify them into three
classes based on Exp(Ai),Exp(Bi) for i = 1, 2, 3. For example, if A1 has smaller
Hamming weight than A2, A3 and Power(AiX) is positively correlated with the
Hamming weight of Ai, the relationship Exp(A1) < Exp(A2),Exp(A3) will hold
for large S.

A countermeasure against the fixed table attack is to randomize the points
in the table by using Coron’s projective randomization method: when using
Jacobian coordinates, replace (X : Y : Z) by (r2X : r3Y : rZ) where r is
a random non-zero field element.

More sophisticated fixed table attacks may apply even if the table is fixed
only during each single point multiplication: observations from individual ECADD
operations performed within each point multiplication may show correlations
that indicate whether the same table value is used or not (cf. [WT01,Sch02] for
related attacks against RSA).4 Thus, a projective randomization should be done
for each ECADD: after each use of a table value, the table should be updated by
substituting the randomized point (r2X : r3Y : rZ) for the old point (X : Y : Z).
This requires an additional 4M + 1S for each ECADD.

We now analyze the security of randomization in the initial phase. We assume
that the above countermeasure against the fixed table attack is used. In the first
step of Algorithm 1, a point is assigned to A depending on the digit b[k]. In
step 3 of Algorithm 1, the addition ECADD(A,R) is carried out for a randomized
point R. If the point A is not randomized before the scalar multiplication, the
attacker has a statistical advantage for guessing the digit b[k]. Therefore point A
should be randomized.

When using Algorithm 1 in the improved method with precomputed points
−2wP, P, 2P, . . ., (2w−1−1)P, 2w−1P and digit set {−2w,±1,±2P, . . .,±(2w−1−
1), 2w−1}, then when b[i] is a negative digit for which no table entry exists, an
addition in the underlying field K must be carried out to invert the Y coordinate
of P

[
− b[i]

]
in order to compute the inverted point for use by the ECADD in

step 3 of Algorithm 1. This may provide the attacker with partial information
on digit b[i] if this point inversion can be detected by DPA. A countermeasure is
to perform this inversion unconditionally and use either its result or the original
value (dummy point inversion).

4.2 Efficiency

We now estimate the efficiency of Möller’s method for w = 2, 3. We use the
algorithms and efficiency estimations discussed in section 2.1. Both the cases a =
−3 and a 6= −3 are considered. As input to the scalar multiplication algorithm,
we assume that the following values are given: the definition of the curve (the
definition of field K = Fq and coefficients a, b ∈ K), the base point P = (x, y)
represented in affine coordinates, and the scalar d in Möller’s representation.

4 Recently, Okeya and Sakurai proposed a fixed table attack against Möller’s scheme
using a second order DPA [OS02b]

9



The points in the precomputed table for w = 2 are −4P, P, 2P . In order to
generate the points, we first compute 2P = ECDBLJ (P ), 4P = ECDBLJ (2P ), and
reverse the sign of the Y -coordinate of 4P , which requires 2(4M + 6S + 11A) +
1A = 8M +12S +23A for a 6= −3 and 2(4M +4S +13A)+1A = 8M +8S +27A
for a = −3.

For making Möller’s method DPA-resistant, we apply Coron’s projective ran-
domization method (see section 4.1). In the beginning of the scalar multiplica-
tion, we randomize all the points in the table, namely −4P, P, 2P . Because the
Z coordinate of P is 1, we require 2(4M + S) + 1(3M + S) = 11M + 3S. Before
each multiplication, we randomize the point P

[
b[i]

]
in the table, which requires

k(4M + 1S) in total, where k is the number of ECADDJ operations performed by
Algorithm 1.

In the main loop of the scalar multiplication in the case a 6= −3, we perform k
point inversions and compute k times ECADDJ and k times wECDBLJw , which
requires kA + k(12M + 4S + 7A) + k(4wM + (4w + 2)S + 12w − 1)A = (12 +
4w)kM + (6 + 4w)kS + (6 + 12w)kA = 20kM + 14kS + 31kA. In the case
a = −3, we perform k point inversions and compute k times ECADDJ and kw
times ECDBLJ ,a=−3, which requires kA+k(12M+4S+7A)+kw(4M+4S+13A) =
(12 + 4w)kM + (4 + 4w)kS + (7 + 13w)kA = 20kM + 12kS + 34kA.

After the scalar multiplication, we pull back the point (X : Y : Z) to affine
coordinates by computing (X/Z2, Y/Z3). This requires 2M + 1S + 1I.

Consequently, we need (24k + 21)M + (15k + 16)S + (31k + 23)A + 1I for
a 6= −3 and (24k+21)M+(13k+12)S+(34k+27)A+1I for a = −3. For scalars d
up to 160 bits, k becomes 81. In this case, we conclude that Möller’s method with
Coron’s projective randomization requires 3005.1M for a 6= 3 and 2874.8M for
a = −3, assuming that 1S = 0.8M, 1A = 0.01M, 1I = 30M [OS01] [MvOV97].

We estimate the memory requirements for the method excluding the system
parameters. Assume that n bits are needed to store one element of the underlying
field K. The table of the algorithm consists of 3 points represented in Jacobian
coordinates, using a total of (3n)·3 = 9n bits of storage. This is 1440 bits for 160-
bit elliptic curve cryptography. The point arithmetic algorithms need 7 auxiliary
variables (i.e., 7n bits). These also suffice to store point A during the algorithm
and to perform projective randomization of table elements.

Similarly, we can estimate the efficiency and memory for w = 3. In this case,
there are 5 precomputed points: −8P, P, 2P, 3P, 4P . Compared with w = 2,
preparing the table requires one more ECADDJ ,Z1=1 operation for computing 3P
(additional cost 8M +3S +7A), one more ECDBLJ or ECDBLJ ,a=−3 operation for
computing 4P (additional cost 4M +6S +11A or 4M +4S +13A, respectively),
and two more projective randomizations (additional cost 2(4M +S) = 8M +2S).
The loop body in Algorithm 1 requires one more point doubling (additional cost
4kM + 4kS + 12kA for a 6= −3 with wECDBLJw , 4kM + 4kS + 13kA for a = −3
with ECDBLJ ,a=−3). The total computational cost of the scalar multiplications
becomes (28k + 41)M + (19k + 27)S + (43k + 41)A + 1I for a 6= −3 and (28k +
41)M + (17k + 21)S + (47k + 47)A + 1I for a = −3. For scalars up to 160 bits,
here we have k = 54, so this is 2449.0M for a 6= −3 and 2360.0M for a = −3

10



with the same assumption above. The size of the precomputed table is 15n bits
(2400 bits for 160-bit ECC).

5 Montgomery-Type Method

Another approach to compute an SCA-resistant scalar multiplication is to use
Montgomery’s ladder, which was originally proposed in [Mon87] for Montgomery
form elliptic curves. Recently, the method also has been applied to Weierstrass
form curves [BJ02,IT02a] in order to resist side channel attacks. With this ap-
proach, the x-coordinate-only point addition algorithm is employed to mini-
mize the computation time. In this paper, we use the following addition algo-
rithm [IT02a] for efficiency. Let x1, x2 be x-coordinate values of two points P1, P2

of an elliptic curve E : y2 = x3 + ax + b. Then the x-coordinate value x3 of the
sum P3 = P1 + P2 is given by

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2
− x′3

where x′3 is the x-coordinate value of P ′3 = P1 − P2. On the other hand, the x-
coordinate value x4 of the doubled point P4 = 2P1 is given by

x4 =
(x2

1 − a)2 − 8bx1

4(x3
1 + ax1 + b)

.

These relations enable us to compute xd, the x-coordinate value of dP , using
only the x-coordinates of points. These formulae are called the (additive) x-
coordinate-only addition formulae.

In the original ladder, ECADD and ECDBL are computed separately.
For performing SCA-resistant scalar multiplication efficiently, Izu and Takagi
[IT02b]. encapsulated these formulae into one formula xECADDDBL, which out-
puts x-coordinate values of P3 = P1 + P2 and P4 = 2P1 on inputs P1, P2. In
fact, with a projective version of the x-coordinate-only formulae, we can com-
pute X3, Z3, X4, Z4 with 13M + 4S + 18A for a 6= −3 and 11M + 4S + 23A for
a = −3. The number of auxiliary variables for the formulae is 7. The concrete
algorithms are in appendix A.4 (xECADDDBL, xECADDDBLa=−3).

Algorithm 3 shows an improved Montgomery’s ladder. Note that we need
P ′3 = P1 −P2 to compute P3 = P1 −P2. The following ladder keeps P ′3 constant
(equal to P ).

In the scalar multiplication with the x-coordinate-only formula, an output is
the x-coordinate of dP . We need to extra computation to obtain the y-coordinate
(y-recovering). dP = (X ′d : Y ′d : Z ′d) is computed on input Xd, Zd, Xd+1, Zd+1,
P = (x, y) as in appendix A.5 (YRecovering), which requires 11M + 2S + 7A
and 7 auxiliary variables.

INPUT d, P, (n)

OUTPUT d*P

1: Q[0] = P, Q[1] = ECDBL(P)

11



2: for i = n-2 down to 0

3: (Q[d[i] XOR 1], Q[d[i]]) = ECADDDBL(Q[d[i]], Q[d[i] XOR 1])

4: return Q[0]

Algorithm 3: Improved Montgomery ladder

5.1 Security Analysis

We discuss the security of the improved Montgomery ladder (Algorithm 3). For
each bit of Algorithm 3, we always compute ECADDDBL. As a sequence of
operations in K, the computation is a fixed pattern unrelated to the bit infor-
mation d[]. Thus the side information becomes a fixed pattern and we conclude
that the ladder is secure against the SPA. Note that the security of the ladder
is independent of which particular formula is used within the ladder.

In order to enhance the method to be DPA-resistant, we have the Coron and
Joye-Tymen countermeasures described in section 3.2. With Coron’s projective
randomization countermeasure transferred to the x-coordinate-only setting, base
point P = (x : 1) is randomized to (rx : r), giving us a DPA-resistant algorithm
as side information is randomized. In this situation, Okeya et al. observed that
a constant difference P ′3 need not be randomized [OMS01]; they claimed that it
is secure enough if only the base point is randomized. This approach provides
good efficiency. With Joye-Tymen’s countermeasure, base point (x, y) would be
transformed into (r2x, y3y) in order to randomize side channel information. Ef-
ficiency is a little worse than Coron’s countermeasure. From now on, we assume
that Coron’s countermeasure is used with Algorithm 3.

5.2 Efficiency

We estimate the efficiency of the improved Montgomery-ladder with Coron’s
project randomization method. As input to the scalar multiplication algorithm,
we assume that the following values are given: the definition of the curve (the
definition of field K = Fq and coefficients a, b ∈ K), the base point P = (x, y)
in affine coordinates, and the scalar d in binary representation.

From base point (x, y), we compute two points P = (rx : r) (randomized base
point) and P ′3 = (x : 1) (constant difference) before applying Algorithm 3, which
requires 1M . We also compute a ECDBL in step 1, which requires 6M +3S+9A
using 5 auxiliary variables. In the main loop of Algorithm 3, we compute n− 1
times xECADDDBL (or xECADDDBLa=−3), where n is the bit length of the scalar d.
This requires (13n − 13)M + (4n − 4)S + (18n − 18)A for a 6= −3 and (11n −
11)M + (4n − 4)S + (23n − 23)A for a = −3. After that, y-recovering requires
13M + 4S + 16A using 7 auxiliary variables, and the conversion from projective
to affine coordinates requires 2M + 1I.

The total efficiency of the improved Montgomery ladder combined with the x-
coordinate-only formula and Coron’s projective randomization method is (13n+
7)M + (4n + 1)S + (18n− 2)A + 1I for a 6= −3, and (11n + 9)M + (4n + 1)M +
(23n− 7)A + 1I for a = −3. If we choose a 160-bit scalar, the method requires

12



Table 2. Computing times of the scalar multiplications

Method Computing Time (160-bit
ECC)

Coron’s dummy (12n− 7)M + (9n− 8)S + (18n− 18)A + 1I 3117M
Coron’s dummy (a = −3) (12n− 7)M + (7n− 6)S + (20n− 20)A + 1I 2866M

Improved Möller (w = 2) (24k2 + 21)M + (15k2 + 16)S + (31k2 + 23)A + 1I 3005M
Improved Möller (w = 2, a = −3) (24k2 + 21)M + (13k2 + 12)S + (34k2 + 27)A + 1I 2875M

Improved Möller (w = 3) (28k3 + 41)M + (19k3 + 27)S + (43k3 + 41)A + 1I 2449M
Improved Möller (w = 3, a = −3) (28k3 + 41)M + (17k3 + 21)S + (47k3 + 47)A + 1I 2360M

Improved Izu-Takagi (13n + 7)M + (4n + 1)S + (18n− 2)A + 1I 2659M
Improved Izu-Takagi (a = −3) (11n + 9)M + (4n + 1)S + (23n− 7)A + 1I 2349M

2659M for a 6= 3, and 2349M for a = −3, under assumptions 1S = 0.8M, 1A =
0.01M, 1I = 30M [OS01] [MvOV97].

Let us estimate the required memory excluding the system parameters. Let n
be the bit size of the definition field. The registers used by the algorithm are
(X1 : Z1) and (X2 : Z2). The total bit size of these registers is 4n, which is 640
bits for n = 160. The number of auxiliary variables used during the computation
is 7, which amounts to 1120 bits for n = 160.

6 Comparison

In this section, we compare the computing times of a scalar multiplication re-
sistant against the SCA. The Coron dummy addition method with Joye-Tymen
randomization in section 3, the improved Möller method with Coron’s projective
randomization method in section 4.2, and the improved Izu-Takagi method with
Coron’s projective randomization method in section 5.2 are compared.

In table 2 we summarize the computing time of these methods depending
on the group size n (in bits). Both cases of a 6= −3 and a = −3 are estimated.
The last numbers of the rows are estimated for 160-bit ECC, where we assume
that 1S = 0.8M, 1A = 0.01M, 1I = 30M [OS01] [MvOV97]. Here we use kw =
d(n + 2)/we.

In table 3, we summarize the RAM usage of the improved Möller method
and the improved Izu-Takagi method.

We see that at 160 bits the improved Izu-Takagi method is more efficient
than the improved Möller method with w = 2 both in terms of computing time
and in terms of storage requirements. In the case a = −3, it remains faster than
the latter method with w = 3. If sufficient storage is available for the improved
Möller method with w = 3, then in the case a 6= −3 this method is the fastest.

Table 3. Comparison of memory usage

Method RAM usage
Improved Möller (w = 2) 7n plus 9n for the table (2560 bits)
Improved Möller (w = 3) 7n plus 15n for the table (3520 bits)

Improved Izu-Takagi 7n (1120 bits)

13



References

[ANSI] ANSI X9.62 - 1998, Public Key Cryptography for the Financial Services In-
dustry: The Elliptic Curve Digital Signature Algorithm (ECDSA), 1998.

[BJ02] E. Brier and M. Joye, “Weierstraß Elliptic Curves and Side-Channel At-
tacks”, PKC 2002, LNCS 2274, pp. 335–345, Springer-Verlag, 2002.

[CJ01] C. Clavier and M. Joye, “Universal exponentiation algorithm – A first step
towards provable SPA-resistance –”, CHES 2001, LNCS 2162, pp. 300–308,
2001.

[CMO98] H. Cohen, A. Miyaji and T. Ono, “Efficient elliptic curve exponentiation
using mixed coordinates”, ASIACRYPT ’98, LNCS 1514, pp. 51–65, 1998.

[Cor99] J. Coron, “Resistance against differential power analysis for elliptic curve
cryptosystems”, CHES ’99, LNCS 1717, pp. 292–302, 1999.

[ITTTK99] K. Itoh, et al. “Fast Implementation of Public-Key Cryptography on a DSP
TMS320C6201”, CHES ’99, LNCS 1717, pp. 61–72, 1999.

[IYTT02] K. Itoh, J. Yajima, M. Takenaka, and N. Torii, “DPA Countermeasures by
improving the Window Method”, to appear in CHES 2002,, 2002

[IT02] T. Izu and T. Takagi, “A Fast Parallel Elliptic Curve Multiplication Resis-
tant against Side Channel Attacks”, PKC 2002, LNCS 2274, pp. 280–296,
2002.

[IT02a] T. Izu and T. Takagi, “A Fast Parallel Elliptic Curve Multiplication Re-
sistant against Side Channel Attacks”, Technical Report CORR 2002-03,
University of Waterloo, 2002. Available from
http://www.cacr.math.uwaterloo.ca/.

[IT02b] T. Izu and T. Takagi, “On the Security of Brier-Joye’s Addition Formula for
Weierstrass-form Elliptic Curves”, TR No. TI-3/02, Technische Universität
Darmstadt, 2002. Available from
http://www.informatik.tu-darmstadt.de/TI/.

[JQ01] M. Joye and J. Quisquater, “Hessian elliptic curves and side-channel at-
tacks”, CHES 2001, LNCS 2162, pp. 402–410, 2001.

[JT01] M. Joye and C. Tymen, “Protections against differential analysis for elliptic
curve cryptography”, CHES 2001, LNCS 2162, pp. 377–390, 2001.

[Koc96] C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”, CRYPTO ’96, LNCS 1109, pp. 104–113, 1996.

[KJJ99] C. Kocher, J. Jaffe and B. Jun, “Differential power analysis”, CRYPTO ’99,
LNCS 1666, pp. 388–397, 1999.

[LS01] P. Liardet and N. Smart, “Preventing SPA/DPA in ECC systems using the
Jacobi form”, CHES 2001, LNCS 2162, pp. 391–401, 2001.

[MvOV97] A. J. Menezes, P.C. van Oorschot, and S. A. Vanstone. Handbook of applied
cryptography, CRC Press, 1997.

[Möl01] B. Möller, “Securing elliptic curve point multiplication against side-channel
attacks”, ISC 2001, LNCS 2200. pp. 324-334, Springer-Verlag, 2001.

[Möl01a] B. Möller, “Securing elliptic curve point multiplication against side-channel
attacks”, Addendum: efficiency improvement,
http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller/

ecc-sca-isc01.pdf, 2001.

[Möl02] B. Möller, “Parallelizable elliptic curve point multiplication method with
resistance against side-channel attacks”, ISC 2002, LNCS 2433. pp. 402-
413, 2002.

14



[Mon87] P. Montgomery, “Speeding the Pollard and elliptic curve methods for fac-
torizations”, Math. Comp., vol. 48, pp. 243–264, 1987.

[NIST] National Institute of Standards and Technology, Recommended Elliptic
Curves for Federal Government Use, Appendix to FIPS 186-2, 2000.

[OA01] E. Oswald, M. Aigner, “Randomized Addition-Subtraction Chains as
a Countermeasure against Power Attacks”, CHES 2001, LNCS2162, pp. 39-
50, 2001.

[OK02] H. Oguro and T. Kobayashi, “Efficient Window Method on Elliptic Curve
Cryptosystems”, Proceedings of the 2002 Symposium on Cryptography and
Information Security, SCIS 2002, pp. 687–692, 2002 (in Japanese).

[OMS01] K. Okeya, K. Miyazaki, and K. Sakurai, “A Fast Scalar Multiplica-
tion Method with Randomized Projective Coordinates on a Montgomery-
form Elliptic Curve Secure against Side Channel Attacks”, ICISC 2001,
LNCS 2288, pp.428-439, Springer-Verlag, 2002.

[OS00] K. Okeya and K. Sakurai, “Power analysis breaks elliptic curve cryp-
tosystems even secure against the timing attack”, INDOCRYPT 2000,
LNCS 1977, pp. 178–190, Springer-Verlag, 2000.

[OS01] K. Okeya and K. Sakurai, “Efficient elliptic curve cryptosystems from
a scalar multiplication algorithm with recovery of the y-coordinate on
a Montgomery-form elliptic curve”, CHES 2001, LNCS 2162, pp. 126–141,
Springer-Verlag, 2001.

[OS02a] K. Okeya, and K. Sakurai, “On Insecurity of the Side Channel Attack Coun-
termeasure using Addition-Subtraction Chains under Distinguishability be-
tween Addition and Doubling”, ACISP 2002, LNCS2384, pp. 420–435, 2002.

[OS02b] K. Okeya, and K. Sakurai, “A Second-Order DPA Attack Breaks a Window-
method based Countermeasure against Side Channel Attacks”, ISC 2002,
LNCS 2433, pp. 389–401, 2002.

[Sch02] W. Schindler, “A Combined Timing and Power Attack”, PKC 2002,
LNCS 2274, pp. 263–279, Springer-Verlag, 2002.

[Sey01] M. Seysen, “DPA-Gegenmaßnahmen bei einer ECDSA-Implementierung auf
Chipkarten”, presented at DPA Workshop, Bonn (BSI), ECC Brainpool,
2001.

[SEC1] Standards for Efficient Cryptography Group/Certicom Research,
SEC 1: Elliptic Curve Cryptography, Version 1.0, 2000. Available from
http://www.secg.org/.

[SEC2] Standards for Efficient Cryptography Group/Certicom Research, SEC 2:
Recommended Elliptic Curve Cryptography Domain Parameters, Ver-
sion 1.0, 2000.

[VW98] K. Vedder and F. Weikmann, “Smart Cards – Requirements, Properties and
Applications –”, Chipkarten, Vieweg, pp. 1-23, 1998.

[WT01] C. D. Walter and S. Thompson, “Distinguishing Exponent Digits by Ob-
serving Modular Subtractions”, CT-RSA 2001, LNCS 2020, pp. 192–207,
2001.

[Wal02] C.D. Walter, “Breaking the Liardet-Smart Randomized Exponentiation Al-
gorithm”, to appear in CARDIS ’02.

A Appendix

We show the concrete algorithms for computing ECDBLJ , ECDBLJ ,a=−3, ECADDJ ,
ECADDJ ,Z=1, wECDBLJw , xECADDDBL, xECADDDBLa=−3, and YRecovering, which

15



are describe in this paper. In order to estimate the efficiency, we use four nota-
tions ×, ·2,+,− for the arithmetic of the definition field K. The notation × is a
standard multiplication in K. The notation ·2 is a squaring in K. The notations
+ and − are a multiplication and a subtraction in K, respectively.

A.1 Computing ECDBLJ (left) and ECDBLJ ,a=−3 (right)

ECDBLJ , 4M + 6S + 11A ECDBLJ ,a=−3, 4M + 4S + 13A
Input (X1, Y1, Z1, a) Input (X1, Y1, Z1)
Output (X2, Y2, Z2) Output (X2, Y2, Z2)
R4 ← X1, R5 ← Y1, R6 ← Z1 R4 ← X1, R5 ← Y1, R6 ← Z1

R1 ← R2
4 R2 ← R2

5
R2 ← R2

5 R2 ← R2 + R2
R2 ← R2 + R2 R3 ← R4 × R2
R4 ← R4 × R2 R3 ← R3 + R3

R4 ← R4 + R4 R2 ← R2
2

R2 ← R2
2 R2 ← R2 + R2

R2 ← R2 + R2 R5 ← R5 × R6

R3 ← R2
6 R5 ← R5 + R5

R3 ← R2
3 R6 ← R2

6
R6 ← R5 × R6 R4 ← R4 + R6
R6 ← R6 + R6 R6 ← R6 + R6
R5 ← R1 + R1 R6 ← R4 − R6
R1 ← R1 + R5 R4 ← R4 × R6
R3 ← a× R3 R6 ← R4 + R4
R1 ← R1 + R3 R4 ← R4 + R6

R3 ← R2
1 R6 ← R2

4
R5 ← R4 + R4 R6 ← R6 − R3
R5 ← R3 − R5 R6 ← R6 − R3
R4 ← R4 − R5 R3 ← R3 − R6
R1 ← R1 × R4 R4 ← R4 × R3
R4 ← R1 − R2 R4 ← R4 − R2

X2 ← R5, Y2 ← R4, Z2 ← R6 X2 ← R5, Y2 ← R4, Z2 ← R5

16



A.2 Computing ECADDJ (left) and ECADDJ ,Z1=1 (right)

ECADDJ , 12M + 4S + 7A ECADDJ ,Z1=1, 8M + 3S + 7A
Input (X1, Y1, Z1, X2, Y2, Z2) Input (X1, Y1, X2, Y2, Z2)
Output (X3, Y3, Z3) Output (X3, Y3, Z3)
R2 ← X1, R3 ← Y1, R4 ← Z1 R2 ← X1, R3 ← Y1, R5 ← X2
R5 ← X2, R6 ← Y2, R7 ← Z2 R6 ← Y2, R7 ← Z2

R1 ← R2
7 R1 ← R2

7
R2 ← R2 × R1 R2 ← R2 × R1
R3 ← R3 × R7 R3 ← R3 × R7
R3 ← R3 × R1 R3 ← R3 × R1

R1 ← R2
4 R5 ← R5 − R2

R5 ← R5 × R1 R7 ← R5 × R7
R6 ← R6 × R4 R6 ← R6 − R3

R6 ← R6 × R1 R1 ← R2
5

R5 ← R5 − R2 R4 ← R2
6

R7 ← R4 × R7 R2 ← R2 × R1
R7 ← R5 × R7 R5 ← R1 × R5
R6 ← R6 − R3 R4 ← R4 − R5

R1 ← R2
5 R1 ← R2 + R2

R4 ← R2
6 R4 ← R4 − R1

R2 ← R2 × R1 R2 ← R2 − R4
R5 ← R1 × R5 R6 ← R6 × R2
R4 ← R4 − R5 R1 ← R3 × R5
R1 ← R2 + R2 R1 ← R6 − R1
R4 ← R4 − R1
R2 ← R2 − R4
R6 ← R6 × R2
R1 ← R3 × R5
R1 ← R6 − R1

X3 ← R4, Y3 ← R1, Z3 ← R7 X3 ← R4, Y3 ← R1, Z3 ← R7

A.3 Computing wECDBLJ
w

wECDBLJw , 4wM + (4w + 2)S + (12w − 1)A
Input (X1, Y1, Z1, a)
Output (X2, Y2, Z2)
R4 ← X1, R5 ← Y1, R6 ← Z1

R1 ← R2
4 Repeat the following w − 1 times:

R2 ← R2
5 R7 ← R2 × R7

R2 ← R2 + R2 R7 ← R7 + R7

R4 ← R4 × R2 R1 ← R2
5

R4 ← R4 + R4 R2 ← R2
4

R2 ← R2
2 R2 ← R2 + R2

R2 ← R2 + R2 R6 ← R4 × R6

R3 ← R2
6 R6 ← R6 + R6

R3 ← R2
3 R4 ← R5 × R2

R6 ← R5 × R6 R4 ← R4 + R4

R6 ← R6 + R6 R2 ← R2
2

R5 ← R1 + R1 R2 ← R2 + R2
R1 ← R1 + R5 R5 ← R1 + R1
R7 ← a× R3 R1 ← R1 + R5
R1 ← R1 + R7 R1 ← R1 + R7

R3 ← R2
1 R3 ← R2

1
R5 ← R4 + R4 R5 ← R4 + R4
R5 ← R3 − R5 R5 ← R3 − R5
R4 ← R4 − R5 R4 ← R4 − R5
R1 ← R1 × R4 R1 ← R1 × R4
R4 ← R1 − R2 R4 ← R1 − R2

X2 ← R5, Y2 ← R4, Z2 ← R6

17



A.4 Computing xECADDDBL (left) and xECADDDBLa=−3 (right)

xECADDDBL, 13M + 4S + 18A xECADDDBLa=−3, 11M + 4S + 23A
Input (X1, Z1, X2, Z2, x, a, b) Input (X1, Z1, X2, Z2, x, b)
Output (X3, Z3, X4, Z4) Output (X3, Z3, X4, Z4)
R1 ← X1, R2 ← Z1, R3 ← X2 R1 ← X1, R2 ← Z1, R3 ← X2
R4 ← Z2 R4 ← Z2
R6 ← R1 × R4 R6 ← R1 × R4
R1 ← R1 × R3 R1 ← R1 × R3
R4 ← R2 × R4 R4 ← R2 × R4
R2 ← R3 × R2 R2 ← R3 × R2
R3 ← R6 − R2 R3 ← R6 − R2
R3 ← R2

3 R3 ← R2
3

R5 ← x × R3 R5 ← x × R3
R7 ← a × R4 R1 ← R1 − R4
R1 ← R1 + R7 R1 ← R1 − R4
R2 ← R2 + R6 R1 ← R1 − R4
R1 ← R1 × R2 R2 ← R2 + R6
R2 ← R2

4 R1 ← R1 × R2
R7 ← b × R2 R2 ← R2

4
R1 ← R1 + R7 R7 ← b × R2
R1 ← R1 + R1 R1 ← R1 + R7
R5 ← R1 − R5 R1 ← R1 + R1
R5 ← R7 + R5 R5 ← R1 − R5
R5 ← R7 + R5 R5 ← R7 + R5
R2 ← a × R2 R5 ← R7 + R5
R1 ← R2

6 R1 ← R2 + R2
R1 ← R1 + R2 R1 ← R1 + R1
R2 ← R2 + R2 R2 ← R2 − R1
R2 ← R1 − R2 R1 ← R2

6
R2 ← R2

2 R1 ← R1 + R2
R1 ← R6 × R1 R2 ← R2 + R2
R7 ← R4 × R7 R1 ← R1 − R2
R1 ← R1 + R7 R2 ← R2

2
R7 ← R6 × R7 R1 ← R6 × R1
R7 ← R7 + R7 R7 ← R4 × R7
R7 ← R7 + R7 R1 ← R1 + R7
R7 ← R7 + R7 R7 ← R6 × R7
R7 ← R2 − R7 R7 ← R7 + R7
R6 ← R4 × R1 R7 ← R7 + R7
R6 ← R6 + R6 R7 ← R7 + R7
R6 ← R6 + R6 R7 ← R2 − R7

R6 ← R4 × R1
R6 ← R6 + R6
R6 ← R6 + R6

X3 ← R5, Z3 ← R3 X3 ← R5, Z3 ← R3
X4 ← R7, Z4 ← R6 X4 ← R7, Z4 ← R6

A.5 Computing YRecovering

YRecovering, 11M + 2S + 7A

Input (Xd, Zd, Xd+1, Zd+1, x, y, a, b)
Output (X′d, Y ′d, Z′d)
R1 ← Xd, R2 ← Zd, R3 ← Xd+1, R4 ← Zd+1
R5 ← x × R2
R6 ← R5 − R1
R6 ← R2

6
R6 ← R3 × R6
R5 ← R5 + R1
R7 ← x × R1
R1 ← R1 × R2
R3 ← a × R2
R2 ← R2

2
R7 ← R3 + R7
R7 ← R5 × R7
R5 ← y × R4
R5 ← R5 + R5
R3 ← R5 × R2
R1 ← R5 × R1
R2 ← b × R2
R2 ← R2 + R2
R7 ← R7 + R2
R7 ← R4 × R7
R7 ← R7 − R6
X′d ← R1, Y ′d ← R7, Z′d ← R3

18



Erratum5

Algorithm 1 in section 4 should be changed as follows:

INPUT k, b[], P[]

OUTPUT d*P

1: A = P[b[k]]

2: for i = k-1 down to 0

3: for j = 1 to w

4: A = ECDBL(A)

5: A = ECADD(A, P[b[i]])

6: return A

Algorithm 1: Compute dP where d =
Pk

0 bi2
wi and P [b] = bP

Erratum6

Appendix A.4 should read as follows. (The only change is in xECADDDBLa=−3,
where R1 ← R1 − R2 has been replaced by R2 ← R1 − R2; thanks to Darrel
Hankerson for pointing out this typo.)

xECADDDBL, 13M + 4S + 18A xECADDDBLa=−3, 11M + 4S + 23A
Input (X1, Z1, X2, Z2, x, a, b) Input (X1, Z1, X2, Z2, x, b)
Output (X3, Z3, X4, Z4) Output (X3, Z3, X4, Z4)
R1 ← X1, R2 ← Z1, R3 ← X2 R1 ← X1, R2 ← Z1, R3 ← X2
R4 ← Z2 R4 ← Z2
R6 ← R1 × R4 R6 ← R1 × R4
R1 ← R1 × R3 R1 ← R1 × R3
R4 ← R2 × R4 R4 ← R2 × R4
R2 ← R3 × R2 R2 ← R3 × R2
R3 ← R6 − R2 R3 ← R6 − R2
R3 ← R2

3 R3 ← R2
3

R5 ← x × R3 R5 ← x × R3
R1 ← R1 − R4R7 ← a × R4 R1 ← R1 − R4R1 ← R1 + R7 R1 ← R1 − R4

R2 ← R2 + R6 R2 ← R2 + R6
R1 ← R1 × R2 R1 ← R1 × R2
R2 ← R2

4 R2 ← R2
4

R7 ← b × R2 R7 ← b × R2
R1 ← R1 + R7 R1 ← R1 + R7
R1 ← R1 + R1 R1 ← R1 + R1
R5 ← R1 − R5 R5 ← R1 − R5
R5 ← R7 + R5 R5 ← R7 + R5
R5 ← R7 + R5 R5 ← R7 + R5

R1 ← R2 + R2
R2 ← a × R2 R1 ← R1 + R1

R2 ← R2 − R1

R1 ← R2
6 R1 ← R2

6
R1 ← R1 + R2 R1 ← R1 + R2
R2 ← R2 + R2 R2 ← R2 + R2
R2 ← R1 − R2 R2 ← R1 − R2
R2 ← R2

2 R2 ← R2
2

R1 ← R6 × R1 R1 ← R6 × R1
R7 ← R4 × R7 R7 ← R4 × R7
R1 ← R1 + R7 R1 ← R1 + R7
R7 ← R6 × R7 R7 ← R6 × R7
R7 ← R7 + R7 R7 ← R7 + R7
R7 ← R7 + R7 R7 ← R7 + R7
R7 ← R7 + R7 R7 ← R7 + R7
R7 ← R2 − R7 R7 ← R2 − R7
R6 ← R4 × R1 R6 ← R4 × R1
R6 ← R6 + R6 R6 ← R6 + R6
R6 ← R6 + R6 R6 ← R6 + R6
X3 ← R5, Z3 ← R3 X3 ← R5, Z3 ← R3
X4 ← R7, Z4 ← R6 X4 ← R7, Z4 ← R6

5 Added 2003-01-30. Does not appear in INDOCRYPT 2002 proceedings.
6 Added 2005-08-14. Does not appear in INDOCRYPT 2002 proceedings.

19


