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1 Introduction

After the vision of the Semantic Web was broadcasted at the turn of the millennium,
ontology became a synonym for the solution to many problems concerning the fact that
computers do not understand human language: if there were an ontology and every
document were marked up with it and we had agents that would understand the mark-
up, then computers would finally be able to process our queries in a really sophisticated
way. Some years later, the success of Google shows us that the vision has not come true,
being hampered by the incredible amount of extra work required for the intellectual
encoding of semantic mark-up – as compared to simply uploading an HTML page. To
alleviate this acquisition bottleneck, the field of ontology learning has since emerged as
an important sub-field of ontology engineering.

It is widely accepted that ontologies can facilitate text understanding and automatic
processing of textual resources. Moving from words to concepts not only mitigates data
sparseness issues, but also promises appealing solutions to polysemy and homonymy
by finding non-ambiguous concepts that may map to various realizations in – possibly
ambiguous – words.

Numerous applications using lexical-semantic databases like WordNet (Miller, 1990)
and its non-English counterparts, e.g. EuroWordNet (Vossen, 1997) or CoreNet (Choi and
Bae, 2004) demonstrate the utility of semantic resources for natural language processing.

Learning semantic resources from text instead of manually creating them might be
dangerous in terms of correctness, but has undeniable advantages: Creating resources
for text processing from the texts to be processed will fit the semantic component neatly
and directly to them, which will never be possible with general-purpose resources.
Further, the cost per entry is greatly reduced, giving rise to much larger resources
than an advocate of a manual approach could ever afford. On the other hand, none of
the methods used today are good enough for creating semantic resources of any kind
in a completely unsupervised fashion, albeit automatic methods can facilitate manual
construction to a large extent.

The term ontology is understood in a variety of ways and has been used in philosophy
for many centuries. In contrast, the notion of ontology in the field of computer science is
younger – but almost used as inconsistently, when it comes to the details of the definition.

The intention of this essay is to give an overview of different methods that learn
ontologies or ontology-like structures from unstructured text. Ontology learning from
other sources, issues in description languages, ontology editors, ontology merging and
ontology evolving transcend the scope of this article. Surveys on ontology learning
from text and other sources can be found in Ding and Foo (2002) and Gómez-Pérez
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and Manzano-Macho (2003), for a survey of ontology learning from the Semantic Web
perspective the reader is referred to Omelayenko (2001).

Another goal of this essay is to clarify the notion of the term ontology not by defining
it once and for all, but to illustrate the correspondences and differences of its usage.

In the remainder of this section, the usage of ontology is illustrated very briefly in the
field of philosophy as contrasted to computer science, where different types of ontologies
can be identified.

In section 2, a variety of methods for learning ontologies from unstructured text
sources are classified and explained on a conceptual level. Section 3 deals with the
evaluation of automatically generated ontologies and section 4 concludes.

1.1 Ontology in philosophy

In philosophy, the term ontology refers to the study of existence. In this sense, the
subject is already a central topic of Aristotle’s Categories and in all metaphysics. The term
was introduced in the later Renaissance period, see Ritter and Gründer (1995), as “lat.
philosophia de ente”. In the course of centuries, ontology was specified in different ways
and covered various aspects of metaphysics. It was sometimes even used as a synonym
for this field. Further, the distinction between ontology and theology was not at all times
clear and began to emerge in the 17th century.

For Leibniz, the subject of ontology is everything that can be recognized (germ. erkannt).
Recognition (germ. Erkenntnis) as a basis of metaphysics is criticised by Kant, who
restricts ontology to a propaedeutical element of metaphysics, containing the conditions
and the most fundamental elements of all our recognition (germ. Erkenntniß) a priori.

The relation of ontology to logic was introduced by Hegel and later strengthened
by Husserl, who defends the objectivity of logical entities against subjectivation and
replaces the notion of logical terms as psychical constructions with “ideal units” that
exist a priori. Ontology in this context can be divided into two kinds: formal ontology
that constitutes itself as a theory of all possible forms of theories, serving as science of
sciences, and regional or material ontologies that are the a priori foundations of empirical
sciences (Husserl, 1975). The latter notion paved the way to domain-specific ontologies, see
section 1.2.

For computer science, the most influential definition has been given by Quine (cf.
Quine, 1969), who binds scientific theories to ontologies. As long as a theory holds
(because it is fruitful), theoreticians perform an ontological commitment by accepting the
a priori existence of objects necessary to prove it. A consequence of his famous quote “to
be is to be the value of a bound variable” is: As long as scope and domain of quantified
variables (objects) are not defined explicitly by an ontology, the meaning of a theory is
fuzzy. Ontologies in the sense of Quine are the outcome of empirical theories, and hence
they also need to be justified empirically.

To subsume, ontology abstracts from the observable objects in the world and deals
with underlying principles of existence as such.
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1.2 Ontologies in Computer Science

Ontology in computer science is understood not as general as in philosophy, because the
perception of ontologies is influenced by application-based thinking. But still ontologies
in computer science aim at explaining the world(s), however, instead of embracing the
whole picture, they only focus on what is called a domain. A domain is, so to speak,
the world as perceived by an application. Example: The application of a fridge is to
keep its interior cold and that is reached by a cooling mechanism which is triggered
by a thermostat. So the domain of the fridge consists only of the mechanism and the
thermostat, not of the food in the fridge, and can be expressed formally in a fridge
ontology. Whenever the application of the fridge is extended, e.g. to illuminate the
interior when the door is opened, the fridge ontology has to be changed to meet the new
requirements. So much about the fridge world. In real applications, domains are much
more complicated and cannot be overseen at a glance.

Ontologies in computer science are specifications of shared conceptualizations of a
domain of interest that are shared by a group of people. Mostly, they build upon a
hierarchical backbone and can be separated into two levels: upper ontologies and domain
ontologies.

Upper ontologies (or foundation ontologies), which describe the most general entities,
contain very generic specifications and serve as a foundation for specializations. Two
well-known upper ontologies are SUMO (Pease and Niles, 2002) and CyC (Lenat, 1995).
Typical entries in upper ontologies are e.g. “entity”, “object” and “situation”, which
subsume a large number of more specific concepts. Learning these upper levels of
ontologies from text seems a very tedious, if not impossible task: The connections as
expressed by upper ontologies consist of general world knowledge that is rather not
acquired by language and is not explicitly lexicalized in texts.

Domain ontologies, on the other hand, aim at describing a subject domain. Entities
and relations of a specific domain are sometimes expressed directly in the texts belonging
to it and can eventually be extracted. In this case, two facts are advantageous for learning
the ontological structures from text: The more specialized the domain, the less is the
influence of word sense ambiguity according to the “one sense per domain”-assumption
in analogy to the “one sense per discourse”-assumption (Gale et al., 1993). Additionally,
the less common-knowledge a fact is, the more likely it is to be mentioned in textual
form.

In the following section, distinctions between different kinds of ontologies and other
ways of categorizing the world are drawn.

1.3 Types of Ontologies

John Sowa (Sowa, 2003) classifies ontologies into three kinds. A formal ontology is a
conceptualization whose categories are distinguished by axioms and definitions. They
are stated in logic that can support complex inferences and computations. The knowledge
representation community defines ontology in accordance as follows:

Band 20 (2) – 2005 77



Biemann

“[An ontology is] a formal, explicit specification of a shared conceptualization.
‘Conceptualization’ refers to an abstract model of phenomena in the world
by having identified the relevant concepts of those phenomena. ‘Explicit’
means that the type of concepts used, and the constraints on their use are
explicitly defined. ‘Formal’ refers to the fact that the ontology should be
machine readable. ‘Shared’ reflects that ontology should capture consensual
knowledge accepted by the communities.” (Gruber, 1993; Ding and Foo,
2002)

As opposed to this, categories in prototype-based ontologies are distinguished by typical
instances or prototypes rather than by axioms and definitions in logic. Categories are
formed by collecting instances extensionally rather than describing the set of all possible
instances in an intensional way, and selecting the most typical members for description.
For their selection, a similarity metric on instance terms has to be defined.

The third kind of ontology are terminological ontologies that are partially specified by
subtype-supertype relations and describe concepts by concept labels or synonyms rather
than prototypical instances, but lack an axiomatic grounding. A well known example for
a terminological ontology is WordNet (Miller, 1990).

Figure (1) illustrates different ontology paradigms for a toy example food domain
divided into vegetarian and non-vegetarian meals.

All of these paradigms have their strengths and weaknesses. Formal ontologies directly
induce an inference mechanism. Thus, properties of entities can be derived when needed.
A drawback is the high effort of encoding and the danger of running into inconsistencies.
Further, exact interference may become intractable in large formal ontologies.

Terminological and prototype-based ontologies cannot be used in a straightforward
way for inference, but are easier to construct and to maintain. A disadvantage of the
prototype-based version is the absence of concept labels, which makes it impossible
to answer queries like “Tell me kinds of cheese!”. Due to the absent labeling during
construction, they are directly induced by term clustering and therefore easier to construct
but less utilizable than their terminological counterparts.

A distinction that causes confusion are the notions of taxonomy versus ontology, which
are occasionally used in an interchangeable way. Taxonomies are collections of entities
ordered by a classification scheme and usually arranged hierarchically. There is only one
type of relation between entries, mostly the is-a or part-of relation. This corresponds
to the notion of terminological ontologies. For formal ontologies, the concepts together
with is-a relations form the taxonomic backbone of the ontology.

Another kind of resource which is a stepping stone towards ontologies are thesauri like
Roget’s Thesaurus (Roget, 1852) for English or Dornseiff (Dornseiff, 2004) for German. A
thesaurus contains sets of related terms and thus resembles a prototype-based ontology.
However, different relations are mixed: a thesaurus contains hierarchy relations amongst
others, but they are not marked as such.
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Figure 1: Formal vs. terminological vs. prototype-based food ontology.

2 Learning Ontologies from unstructured Text

Ontologies can be learnt from various sources, be it databases, structured and unstruc-
tured documents or even existing preliminaries like dictionaries, taxonomies and directo-
ries. Here, the focus is on acquisition of ontologies from unstructured text, a format that
scores highest on availability but lowest on accessibility.

Most approaches use only nouns as the bricks for ontology building and disregard
any ontological relations between other word classes.

To a large extent, the methods aim at constructing is-a-related concept hierarchies
rather than full-fledged formal ontologies. Other subtype-supertype relations like part-
of are examined much less.
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One underlying assumption for learning semantic properties of words from unstruc-
tured text data is Harris’ distributional hypothesis (Harris, 1968), stating that similar
words tend to occur in similar contexts. It gives rise to the calculation of paradigmatic
relations (cf. Heyer et al., 2005), called ‘associations’ in de Saussure (1916). We shall see
that the notion of context as well as the similarity metrics differs considerably amongst
the approaches presented here.

Another important clue is the use of patterns that explicitly grasp a certain relation
between words. After the author who introduced patterns such as “X, Ys and other
Zs” or “Ws such as X, Y and Z”, they are often referred to as Hearst-patterns (Hearst,
1992), originally used to extract is-a relations from an encyclopedia for the purpose of
extending WordNet. Berland and Charniak (1999) use similar kinds of patterns to find
instances of the part-of relation.

As learning from text usually involves statistics and a corpus, using the world wide
web either as additional resource or as the main source of information is often a possibility
to avoid data sparseness as discussed in Keller et al. (2002) and carried out e.g. by Agirre
et al. (2000) and Cimiano and Staab (2004).

Ontology learning techniques can be divided in constructing ontologies from scratch
and extending existent ontologies. The former comprises mostly clustering methods
that will be described in section 2.1, the latter is a classification task and will be treated
in section 2.2. Approximately, this is the distinction between unsupervised versus
supervised methods, although we shall see that some clustering approaches involve
supervision in intermediate steps.

Section 2.3 summarizes research undertaken in semantic lexicon construction, which
is a related task to ontology learning, although the representation of results might differ.
In section 2.4, the view of ontology learning as an Information Extraction exercise is
discussed.

2.1 Clustering for Ontology Learning

In hierarchical clustering, sets of terms are organized in a hierarchy that can be trans-
formed directly into a prototype-based ontology. For clustering, a distance measure on
terms has to be defined that serves as the criterion for merging terms or clusters of terms.
The same measure can be used – if desired – to compute the most typical instances of a
concept as the ones closest to the centroid (the hypothetical ‘average’ instance of a set).
Crucial to the success of this methodology is the selection of an appropriate measure of
semantic distance and a suitable clustering algorithm.

An overview of clustering methods for obtaining ontologies from different sources
including free text can be found in Maedche and Staab (2004). In principle, all kinds
of clustering methods – be it agglomerative or divisive – can be applied to all kinds of
representations, be it vector space (Salton et al., 1975), associative networks (Heyer and
Witschel, 2005) or set-theoretic approaches as presented in Cimiano et al. (2004). Here,
the focus will be on just a few, illustrative methods.
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Methods based on distributional similarity Methods using distributional similarity can
be divided into syntactic and window-based approaches.

Syntactic approaches make use of similarity regarding predicate-argument relations
(i.e. verb-subject and verb-object relations), the usage of adjective modifiers or subjective
predicates is rare.

An early paper on semantic clustering is Hindle (1990), which aims at finding seman-
tically similar nouns by comparing their behavior with respect to predicate-argument
structures. For each verb-subject and verb-object pair in his parsed 6 million word
corpus, he calculates co-occurrence weights as the mutual information within the pairs.
Verb-wise similarity of two nouns is the minimum shared weight, and the similarity
of two nouns is the sum of all verb-wise similarities. The exemplified analysis of this
similarity measure exhibits mostly homogeneous clusters of nouns that act or are used
in a common way.

For obtaining noun hierarchies from text, Pereira et al. (1993) chose an encyclopedia
as a well-suited textual resource for a divisive clustering approach based on verb-object
relations, allowing the nouns to be members in multiple clusters.

A whole class of syntactic approaches is subsumed in the Mo’K workbench (Bisson
et al., 2000), which provides a framework to define hierarchical term clustering methods
based on similarity in contexts limited to specific syntactic constructions. In the same
work, comparative studies between different variants of this class are presented, including
ASIUM (Faure and Nédellec, 1998; Dagan et al., 1994). Another paper on using selectional
preferences is e.g. Wagner (2000).

A different direction is using methods that produce paradigmatic relations as candi-
date extraction mechanism without syntactic pre-processing. A well-known source of
paradigmatic relations is the calculation of second-order co-occurrences, which does not
rely on parsing. While (first-order) co-occurrences rate pairs of word high that occur
together often in a certain text window, second order co-occurrences are words that have
similar distributions of first-order co-occurrences (see e.g. Ruge (1992), Schütze (1998),
Rapp (2002), Biemann et al. (2004) – this corresponds roughly to Rieger’s δ-abstraction
(Rieger, 1981; Leopold, 2005)). The context definition of these methods is mostly not
restricted to any syntactic construction, which introduces more noise but keeps the
method language-independent. It can be argued that given a sufficient corpus size, equal
results to syntactically aided methods might be achieved, see e.g. Pantel et al. (2004).
However, as the underlying bag-of-words simplification of window-based methods ab-
stracts from the order of the words, no clues for the relation between candidate pairs can
be drawn directly from this data, making these approaches on their own not viable for
the construction of ontologies from scratch.

While there does not seem to be an alternative to use patterns in order to alleviate the
labeling problem, the action of naming super-concepts is not necessary when aiming at
a prototypical ontology, such as in Paaß et al. (2004): here, a hierarchical extension to
Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is introduced. PLSA (like
LSA – (cf. Deerwester et al., 1990)) assumes latent concepts, which are playing the role
of an intermediate concept layer: the probability of seeing a word w in a document d is
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the sum of the product probabilities of d belonging to concepts c and w being generated
when c is present. To introduce hierarchical dependencies, the probability mass is split
between sub- and super-concepts. In an experiment, a fixed 4-level hierarchy with 1, 14,
28 and 56 nodes on the levels was defined. The words with the highest probability per
concept constitute the entries of the prototypical ontology. While results look impressive,
a clear drawback is the predefined structure of the hierarchy.

Methods based on extraction patterns The other possibility is to use explicit clues, like
Hearst-patterns.

Caraballo (1999) constructs a terminological ontology from text in the following way:
noun candidates from a newspaper corpus are obtained by considering conjunction and
appositive data. For all nouns, a co-occurrence matrix is set up. Similarity between two
nouns is calculated by computing the cosine between their respective vectors and used
for hierarchical bottom-up clustering. For labelling this hierarchy in a post-processing
step, Hearst-patterns are used for finding hypernym candidates, which are placed as
common parent nodes for clusters, if appropriate. Evaluated by human judgement, the
method performs at about 35-55% precision.

A similar approach is presented by Cimiano and Staab (2005) who also cluster nouns
based on distributional similarity and use Hearst-patterns, WordNet and patterns on the
web as a hypernym oracle for constructing a hierarchy. Unlike as in Caraballo (1999),
the hypernym sources are directly integrated into the clustering, deciding for each pair
of nouns how they should be arranged into the hierarchy. The resulting taxonomy
outperforms Caraballo’s when evaluating the outcome against a reference ontology (see
section 3).

2.2 OL as a classification task

Given an existing ontology, its extension can be viewed as a classification task: features
of the existing data are used as a training set for Machine Learning, which produces a
classifier for previously unknown instances.

One possibility is to utilize the hierarchical structure in a decision tree, as proposed
in Alfonseca and Manandhar (2002). When inserting new concepts, it is tested whether
they fit best to the actual node or one of the daughter nodes. The tree is traversed
top-down from the root until an appropriate position is found. The largest problem
here is the general nature of top-level concepts that leads to taking the wrong path in
the beginning of the process, which can be alleviated by propagating the signatures of
lower-level concepts one step upwards. For around 1200 concepts, an accuracy of about
28% is reported. A related approach is Witschel (2005), which substitutes the syntactic
dependencies for similarity by comparing words only on sentence-based co-occurrences.
A small sub-tree of an existing WordNet-like hierarchy is used as training and test data.
Propagating the semantic descriptions iteratively upwards to the root, the approach is
biased towards putting new words into larger sub-trees. While Witschel’s results are
better, this might be due to the smaller number of concept classes.
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In Fleischman and Hovy (2002), only eight categories for named entities denoting
persons are considered. They examine five machine learning approaches on features
based on preceding and following word N-grams which are combined into concepts
using WordNet, reporting 70% accuracy.

Placing words into WordNet where the concentration of words with similar distribu-
tional characteristics is highest is conducted by Widdows (2003). He arrives at about 80%
precision for common nouns, 34% for proper nouns and 65% for verbs.

How to enlarge WordNet by assigning appropriate named entities to the leaves using
the Google index is discussed in Paşca (2005).

2.3 Ontology Learning as Semantic Lexicon Construction

The similarities between the construction of semantic lexicons and lexical ontologies –
be it terminological or prototype-based – are striking. Both encode semantic similarities
between terms and they abstract terms to concepts. Whereas semantic lexicons often
attach semantic categories to words and do not structure the set of words internally any
further (although semantic lexicons like e.g. HaGenLex (Helbig, 2001) are organized
in a flat hierarchy of categories), ontologies aim at explaining all possible relations
between concepts, being more fine-grained. Nevertheless, words with the same semantic
label should be found in the same region of the ontology, which makes part of the
methodology for automatic construction applicable to both tasks.

Let us assume that we have a small semantic lexicon, given by a set of categories,
which are formed each by a set of words. Using a text corpus, we want to extend this
lexicon.

Mostly, bootstrapping approaches have been used to tackle this problem. On the
one hand, because bootstrapping can iteratively use previously learnt examples, which
reduces the minimal size of the seed lexicon. On the other hand it does not necessarily
need negative examples for learning, making the procedure viable for learning single
semantic categories. The largest problem that bootstrapping methods have to face is error-
propagation: misclassified items will lead to the acquisition of even more misclassified
items. Various attempts have been made to minimize this thread.

In general, bootstrapping starts with a small set of seeds as current category. For every
candidate item, the similarity to the current category is computed and the most similar
candidates are added to the current category. These steps are conducted iteratively until
a stopping criterion holds; sometimes the process is deliberately stopped after about
50-200 iterations.

Riloff and Shepherd (1997) were the first to apply bootstrapping for building semantic
lexicons, extending one category at a time. Their context definition is one noun to the
left and one noun to the right for head nouns in sentences. Collecting the contexts of
the current category set, they calculate a score for each word by checking the relative
frequency of the word appearing in the category’s contexts. Amongst the first 100

words retrieved by the algorithm for categories of a seed size around 50, about 25%
were judged correct by human decision. In Riloff and Jones (1999) not only classes are
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assigned to words, but also the confidence of contexts supporting a class is estimated.
Contexts in this work are patterns such as “headquartered in <x>” or “to occupy
<x>”. Moreover, only the top 5 candidates are added to the knowledge base per step,
alleviating error-propagation to a precision of about 46%-76% after 50 iterations. Further
improvement was gained in Thelen and Riloff (2002), where multiple categories are
learned at the same time to avoid too large single categories consisting of a mixture with
several other categories. In that way, about 80% accuracy for the first couple of hundred
new words can be reached. This complies well with the structuralist notion of semantics
being defined in a negative way (de Saussure, 1916; Eco, 1977): A category “grows” in
the space of meaning as long as it meets the border of another category.

Building multiple categories simultaneously is also used in Biemann and Osswald
(2005), who extend a semantic lexicon for the use of semantic parsing. As contexts,
only modifying adjectives of nouns are taken into account. Semantic classes of known
nouns are inherited via the modifying adjectives to previously unclassified nouns. In
experiments using a co-occurrence significance measure to consider merely typical
modifiers, the authors report to succeed in doubling their resource of 6000 nouns in 50

categories with an accuracy of about 80%.
As opposed to these shallow approaches, Roark and Charniak (1998) look for words

occurring together in syntactical formations that involve full parsing of the corpus. A
radical break with syntactical pre-processing is conducted in Biemann et al. (2004), where
a lexical-semantic resource is extended without using any tagging or parsing, merely by
using sentence-based co-occurrence statistics. A word is added to a category if many
words of the category occur with it within a sentence window. While scores are differing
strongly for selected categories, the approach serves as a language-independent baseline.

2.4 Information Extraction for Ontology Population

In Information Extraction (IE, see Grishman (1997) for a survey), templates containing
roles, relations, temporal and time information to describe possible situations are encoded.
The task is to fill the templates’ slots by extracting relevant data from documents. IE
proceeds in a situative way: instantiated templates are attached to the texts from which
they have been extracted. Ontologies, on the other hand, encode conceptualizations that
are not bound to specific text snippets but apply in general. Nevertheless, templates
can be defined in IE systems like GATE (Bontcheva et al., 2004) and the standard IE
extraction mechanisms can be employed to fill these templates, producing eventually
more powerful and flexible extraction rules than the patterns mentioned before.

IE systems are historically suited for the extraction of named entities. This is why they
are mainly used to find instances of concepts (like chocolate companies) and relations
(like employer – employee) rather than the concepts themselves: they can be better used
for populating than for constructing ontologies. After collecting all the situative template
instantiations, pruning has to be applied to keep only relations that occur frequently and
with high confidence.
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In Brin (1998), the DIPRE system is laid out that bootstraps the author-of relation
between writers and book titles by automatically creating extraction patterns that heavily
rely on HTML-tags, but also use clues from unformatted text. Using a DIPRE-like
architecture, the SNOWBALL system (Agichtein and Gravano, 2000) learns patterns
for free text that has been tagged by a named entity recognizer and uses them to
extract instances similar to a few user-provided example tuples, never attempting to
extract all the information from each document. For example, the SNOWBALL-pattern
“<LOCATION>-based <ORGANISATION>” extracts headquarters of companies with high
precision. Sufficient recall is ensured by using a large corpus.

3 Evaluation

As ontology learning just emerged recently as a field of its own, there are not many
gold standards that could be used for evaluation. Further, the desired result of ontology
learning is not a simple list with binary classifications, but a far more complicated
structure. To make it even worse, there is “no clear set of knowledge-to-be-acquired”
(Brewster et al., 2004), not even for very specialized domains. As Smith (2004) claims,
there are several possibilities of conceptualizations for one domain that might differ in
their usefulness for different groups of people, but not in their soundness and justification.
So even if the outcome of an algorithm does not compare well with a manually built
ontology, how can its quality be judged?

Of course, there is always the option of manual evaluation, with its well-known
drawbacks of being subjective and time-consuming. For complicated tasks like ontology
learning, a comparably low inter-annotator agreement can be expected, which in turn
means that several annotators have to judge the results to arrive at consistent figures.

But maybe it is not the ontology itself that is in the focus of interest, but its ap-
plication. Learning ontologies is a goal of its own, but ontologies are usually just a
resource that should improve performance on NLP tasks. Measuring improvements of
ontology-supported approaches depicts best the gain for the application in focus, but it
unfortunately does not provide direct scores for the ontology itself.

In the remainder of this section, several possibilities to conduct an automatic evaluation
on ontologies are discussed.

3.1 Evaluation against a Gold Standard

The question on how to compare two taxonomies or ontologies is first dealt with
in Maedche and Staab (2002), who show ways to compare them on lexical and on
conceptual level. For the lexical level, they measure the lexical overlap between the
concept names in a variant-robust way. For comparing the taxonomic backbones of two
ontologies, the notion of semantic cotopy is introduced. Semantic cotopy of a concept
is the union of all its sub- and super-concepts, approximating its intensional semantics.
The averaged taxonomical similarity is determined by the maximal overlap of semantic
cotopies. Further, the authors provide ways to compare the relations of two ontologies
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and evaluate their measures by an empirical study, using the tourism ontology developed
within the GETESS project (Staab et al., 1999).

When aiming at taxonomy relations, it is possible to compare results of an algorithm
with lexical-semantic nets like WordNet, as employed by e.g. Wagner (2000) and Witschel
(2005). Yet, whenever a relation is not found in the gold standard, the algorithm might
be wrong or the gold standard might be incomplete. This even holds for large resources
– Roark and Charniak (1998) report that 60% of the terms generated by their semantic
class learner could not be found in WordNet.

In Brewster et al. (2004) a comparison of ontologies with automatically extracted
keywords from text corpora is proposed. The method measures lexical overlap as a
score of how much the ontology fits the texts, but merely in a bag-of-words fashion,
disregarding internal structure.

3.2 Application-based Evaluation

Recent years saw an increasing amount of research using WordNet to improve any kind
of NLP application. The bulk of these applications can in turn be used for evaluating
automatically created semantic resources. In the following paragraphs, setups for an
application-based evaluation of ontologies are discussed.

Document clustering and classification Document similarity is usually measured by
comparison of document vectors in a vector space (Salton et al., 1975), where each
dimension in the space represents one term. Ambiguity and variability of natural
language might cause several concepts to be mapped onto one dimension and several
dimensions to be used for one concept, resulting in spurious similarity scores. This is
the main motivation to use LSA (Deerwester et al., 1990), which reduces the number
of dimensions by just considering main components as determined by singular value
decomposition. But LSA has a number of drawbacks, including bad scalability and
black-box-like latent concepts. With a domain-specific ontology, terms that are found
in or around the same concept can be mapped into one dimension. On the other hand,
terms that are present in many concepts due to their semantic ambiguity can be excluded
or disambiguated, see next paragraph.

The clustering induced by the similarity measure can be compared to pre-categorized
collections such as the Reuters corpus (Reuters Corpus, 2000). It is also possible to train
a classifier and compare its performance between presence and absence of ontology
information. Evaluation using document similarity will favor ontologies that keep similar
terms in similar places, possibly in a flat and not very fine-grained hierarchy.

In Heinrich et al. (2005), two latent concept methods for constructing a prototype-based
ontology are compared by measuring their effects on document clustering. As latent
methods include the notion of a document into their models and can be applied to
cluster words as well as documents, the choice seems natural. The ontology is used for
dimensionality reduction in document clustering, which is compared to a gold standard.

86 LDV-FORUM



Ontology Learning from Text: A Survey of Methods

Word sense disambiguation The task of word sense disambiguation (WSD) is to choose
the appropriate sense for ambiguous words from a predefined inventory of senses. For
English, WSD methods are usually evaluated on the SENSEVAL corpora (Kilgarriff, 1998),
using WordNet as sense dictionary. Senses are assigned according to the ambiguous
words’ contexts: Either contexts are compared to glosses and terms close to the different
concepts in WordNet (unsupervised WSD) or to context profiles per sense acquired from a
training corpus (supervised WSD). Using WSD for the evaluation will favour ontologies
that distinguish well between the different senses of words. WSD was successfully
supported by semantic resources obtained from large corpora by Gliozzo et al. (2005),
where terms are mapped to domains using LSA with a large number of dimensions.

Information Retrieval and Question Answering After various attempts to use query ex-
pansion methods in order to provide better coverage for information retrieval (see e.g.
Ruge (1992); Stamou and Christodoulakis (2005)), this direction to improve information
retrieval has been largely abandoned as it usually decreases precision too much without
considerably improving recall. A possible reason is that users actually look for what they
have been typing in and not for hypernyms or even synonyms. Another problem is the
lack of disambiguation clues in the query which causes the query expansion mechanism
to over-generate even worse.

But ontologies can be used in other parts of the retrieval process. Taxonomies that are
build automatically from web data are used by Sánchez and Moreno (2005) to group
query results returned by a search engine. In this case, the user’s behavior of accepting
or rejecting the interface is the instance of judgement. Improving question answering
by overcoming the shortfalls of the bag-of-words model is the objective of e.g. Leveling
and Hartrumpf (2005). Here, a semantic lexicon forms the background knowledge for
semantic parsing, which yields a semantic representation much more precise than simply
considering presence or absence of terms. Extending the lexicon as described in section
2.3 should result in higher performance.

Using Information Retrieval and Question Answering tasks for evaluation will promote
ontologies with high coverage, as these applications are usually tested in a generic rather
than in a domain-specific setting.

Co-reference Resolution The goal of co-reference resolution is to detect words that
form a referent chain in a text. These chains mostly consist of pronouns, but also
synonyms, hypernyms and part-whole related terms can refer to a previously mentioned
entity. Co-reference resolution can be viewed as the classification task of finding the
right antecedent for a referent using e.g. grammatical, contextual and morphological
features. The evaluation framework for English co-reference resolution, which is not
an application itself but rather a pre-processing step for methods like summarization,
abstracting and information extraction, are the MUC-6 and MUC-7 corpora (Chinchor,
1998). The use of semantic resources, however, is scarcely encountered for co-reference
or anaphora resolution. An exception is Hoste (2005), where WordNet and the Dutch
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part of EuroWordNet are used for additional features, which bring about only a small
gain because of lacking coverage. At first glance, it seems that ontologies can only
support co-reference resolution in the rare cases of nouns referring to other nouns that
are semantically related, but not in the default case of pronouns referring back to noun
phrases. But there is the possibility of using the semantic role of the pronoun to find
antecedents that are compatible, e.g. as subject or object of the pronoun’s sentence’s
predicate, as pointed out by Johansson et al. (2005). As there is plenty of room for
improvement in co-reference and anaphora resolution, this might be a suitable task to
evaluate ontologies that encode semantic roles additionally to hierarchical relations.

4 Conclusion

After clarifying the usage of the term ontology, a variety of methods have been described
how to construct and extend ontologies using unstructured text sources. We have then
been looking at approaches that are directly labeled with ontology learning, complemented
by a consideration of earlier work that has similar goals despite differing terminology.
Further, various scenarios for ontology evaluation have been conveyed.

Currently, ontology learning cannot fulfill the promises that its name suggests. As
far as prototype-based ontologies are concerned, clustering might yield more or less
semantically coherent sets of words, but will not be of great help for carrying out the
crucial step from terms to concepts. Taxonomical ontologies can be learnt as far as the
relations are explicitly mentioned in the text and extractable by patterns that are scarcely
met in real life texts. For circumventing the problem of possible pattern mismatches
(i.e. “life is a highway”) even more text has to be considered, resulting in very small
taxonomies as opposed to the size of the corpus, as pointed out by Brewster et al. (2005).

Especially when comparing the requirements for formal ontologies as formulated by
the Semantic Web community and the structures learnable from text as described, one
has to state that the ‘self-annotating web’ will remain a vision for a long time.

But maybe the task is ill-defined. It is beyond doubt that modeling semantics will carry
natural language processing further, as it has reached a state where further improvement
of systems would in fact need rather more language understanding than more rules or
more training examples. It is an open question, however, whether formal specifications
are the only way to reach the goal, or whether the manual approach of hand-coding
semantics will be outperformed by inconsistent, statistical black-box methods again.
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