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Abstract—Discovery of nodes and content in large-scale dis-
tributed systems is generally based on Kademlia, today. Under-
standing Kademlia-type systems to improve their performance is
essential for maintaining a high service quality for an increased
number of participants, particularly when those systems are
adopted by latency-sensitive applications.

This paper contributes to the understanding of Kademlia
by studying the impact of diversifying neighbours’ identifiers
within each routing table bucket on the lookup performance. We
propose a new, yet backward-compatible, neighbour selection
scheme that attempts to maximize the aforementioned diversity.
The scheme does not cause additional overhead except negligible
computations for comparing the diversity of identifiers. We
present a theoretical model for the actual impact of the new
scheme on the lookup’s hop count and validate it against
simulations of three exemplary Kademlia-type systems. We also
measure the performance gain enabled by a partial deployment
for the scheme in the real KAD system. The results confirm the
superiority of the systems that incorporate our scheme.

Index Terms—Kademlia; Lookup Performance; Performance
Improvement; Markov Chain; Formal Routing Analysis

I. INTRODUCTION

The family of Kademlia-type [1] systems represents the
most widely used and deployed type of Distributed Hash
Tables (DHT). These systems are adopted, for the discovery of
nodes and content, by several peer-to-peer (P2P) file-sharing
applications, accounting for multi-million users today [2], [3],
like Bittorrent and eMule. Implementations of Kademlia have
been also experimented as communication overlays in video
streaming applications [4] and botnets [5], [6].

The routing (also called lookup), the key operation in these
systems, has received a great deal of attention from the
research community in the last years. Some studies (e.g. [7]–
[13]) identified limitations in the standard system designs, thus
raised doubts about their suitability, particularly, for latency-
sensitive applications. The authors accordingly proposed mod-
ifications to the standard designs in order to improve the
system performance. Considered performance metrics are the
hop count, the lookup latency, and the overhead in terms of
the number of sent messages.

We aim to further improve the performance based on con-
crete theoretical models. In contrast to the above studies, we
do not focus on optimizing the parameters governing routing
table structure and lookup mechanism. Rather, the goal is to
develop a low-overhead scheme, which can be integrated easily
into all existing designs.

Towards this end, we study a previously disregarded lookup
performance factor – the diversity of neighbours’ identifiers
within each routing table bucket. Consequently, we propose,
model, and evaluate a new neighbour selection scheme that
attempts to maximize this diversity. The scheme is compatible
not only with the standard Kademlia and its variations, but
also with previously proposed improvements. It thus can be
combined to any of them in order to improve their achieved
performance further. It does not change the standard routing
protocol nor the routing table structure, and it does not cause
additional communication overhead. Only slight changes in the
standard routing table’s maintenance processes are required,
causing only a negligible extra computational overhead.

Our main contributions can be summarized as follows:
• We propose a new neighbour selection scheme to reduce

the average lookup’s hop count in Kademlia-type sys-
tems, with almost no extra overhead.

• We develop a theoretical model (extending our prior work
[13]) to asses the impact of the proposed scheme on the
lookup performance.

• We evaluate the scheme using both the model and exten-
sive simulations of three Kademlia-type systems.

• We measure the impact of our scheme on the lookup
performance of modified KAD clients in the real KAD
system.

The model predictions and simulation results, which agree
very closely to each others, show that the new scheme im-
proves the lookup performance in form of reduction in the
average hop count, and thus in the number of sent messages.
The improvement applies also for the measurement results of
the KAD clients that incorporate our scheme.

The remainder of this paper is structured as follows: We
give an overview of Kademlia and its variations in Sec. II,
and then discuss the related work in Sec. III. Next, Sec. IV
presents an overview of our proposed scheme, Sec. V describes
our model, and Sec. VI discusses the results. Finally, Sec. VII
concludes the paper.

II. KADEMLIA-TYPE SYSTEMS

Kademlia [1] is a structured peer-to-peer (P2P) system.
It uses a b-bit identifier space from which the identifiers of
nodes and objects are assigned. Nodes store key-value (key-
object) pairs, such that the nodes at the closest distance to an
identifier are responsible for storing it. The distance between
two identifiers is defined as the XOR of their values.



Each node v stores the identifiers and addresses of other
nodes, also called neighbours or contacts1, in a b-level tree-
structured routing table. Each level in the routing table consists
of so called k-buckets, such that each bucket stores up to k
known contacts that share a common prefix with v’s identifier.
Contacts that represent nodes which have left the system are
called stale.

Kademlia implements a key-based routing protocol: To
route a message from a node v to a target identifier x, v
picks α known contacts that are closest to x and sends them
lookup requests in parallel. Every queried contact that is online
replies with the set of β contacts that are locally known as
being closest to x, thus extending v’s set of candidate contacts.
This process iterates until no further contacts closer to x are
discovered or a timeout is held. The original Kademlia paper
suggests k = 20 and α = 3.

In order to mitigate the effect of churn, each node performs
maintenance processes for its routing table buckets. In prac-
tice2, two periodic maintenance processes are performed: The
first process aims to increase the amount of contacts that are
stored in the routing table by searching for potential new con-
tacts belonging to low populated buckets. The second process
aims to keep the routing information up-to-date by checking
if the stored contacts are still responsive and removing stale
ones. Long-lived contacts are checked less frequently than
newer ones. This preference for old contacts is based on the
observation that the longer a contact has been online, the more
likely it is to remain online in the future [1], [14].

The above design is the basis for a family of Kademlia-
type systems. In this paper, we focus on three of them. The
mainline implementation of BitTorrent (MDHT) integrates one
of those systems for nodes discovery. In MDHT, the routing
table (Fig. 1(a)) includes a single k-bucket per level. uTorrent,
the most popular MDHT implementation uses k = 8, α = 4,
and β = 1 [12].

Considering the fractions of the identifier space that are
covered at each routing table level i, Jimenez et al. [12]
introduced a variation of MDHT implementing variable bucket
sizes (iMDHT) to increase the distance reduction at each hop.
The bucket size is chosen to be 128, 64, 32, and 16 for the
buckets at levels i ∈ (0..3) respectively, and 8 for the rest
(Fig. 1(b)). Both MDHT and iMDHT use b = 160.

KAD, the DHT used by the popular file-sharing application
eMule, uses b = 128, k = 10, α = 3, and β = 2. It implements
a different routing table structure: As shown in Fig. 1(c),
starting from the fourth level, the routing table includes
multiple buckets per level, grouping contacts according to the
first l ∈ {3, 4} bits after the first varying bit. Consequently, the
difference between the common prefix length of the current
hop and the next hop to x, called the bit gain, is at least l.

1From here onwards, these two terms are used interchangeably.
2This is how it is implemented, for example, in the eMule software:

http://www.emule-project.net.

III. RELATED WORK

Motivated by the high popularity of Kademlia and its
variations, those systems have been the subject of many studies
in the past few years. In this Section, we discuss only those
studies which focused on the lookup process, or those which
proposed improvements for the standard system design.

Crosby and Wallach [11] measured the lookup latency in
MDHT and Azureus (the DHT that is used by the Vuze Bit-
torent client). They reported high latency values, and attributed
this to the observed high ratio of stale contacts in the routing
tables. Similarly, Stutzbach and Rejaie [8] analysed the lookup
process and measured the lookup latency in KAD.

Several studies investigated the possibility to improve the
lookup performance. The approach by Falkner et al. [10]
adapted the lookup parameters at runtime according to the
number of expected lookup response messages. Their design
reduced the median lookup latency but at the same time
increased the lookup overhead. Steiner et al. [9], in addition to
analysing the lookup latency in KAD by evaluating the impact
of both external factors (e.g. RTT of lookup messages) as well
as internal lookup parameters, achieved an improved lookup
latency by coupling the lookup with the content retrieval
process. More recently, Jimenez et al. [12] suggested several
modifications to MDHT, and achieved better lookup latency
with low additional overhead.

A number of other studies succeed to reduce the lookup
costs (measured by number of lookup messages or latency)
via: caching [16], [17], geographical proximity [18], [19], or
recursive lookup [20].

In this paper, we propose to improve the lookup perfor-
mance, in form of reduction in the average hop count, by
adapting the standard neighbour selection scheme. Although
the approach differs from earlier improvements, it is orthogo-
nal and hence compatible with them.

The model that we present in this paper extends on our prior
model of Kademlia-type systems [13], which allows a very
accurate prediction of the routing overhead. Though theoretical
analysis of P2P routing performance is widely studied, tradi-
tionally only asymptotic bounds have been derived (e.g. [1],
[21]–[23]). The few studies deriving exact formulas commonly
only consider the average routing length, special cases such as
bijective mapping from identifiers to nodes, and are of limited
accuracy when compared to measurements or simulations (e.g.
[8], [24], [25]). In particular, [24], [25] model P2P routing
using a Markov chain approach similar to the one suggested
in [13], but are restricted to systems without parallelism.

IV. IMPROVING THE LOOKUP PERFORMANCE

In this Section, we introduce an approach for improving the
lookup performance in Kademlia-type systems: We give an
overview of the idea in Sec. IV-A and then validate the main
assumption on which it is based (against results obtained from
a real Kademlia-type system) in Sec. IV-B. In Sec. IV-C, we
describe how the approach can be implemented in practice.
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Fig. 1: The routing table structures of three Kademlia-type systems (adapted from: [15]): (a) MDHT, (b) iMDHT, and (c) KAD.

A. Increasing the Diversity

Our approach is based on a new neighbour selection scheme.
As described in Sec. II, the k contacts (i.e. neighbours)
that each routing table bucket can store share a common
prefix. This means that they all belong to a specific range
of identifiers, thus represent a certain region of the identifier
space. This way, without further restrictions, multiple contacts
in the bucket can have very close identifiers (e.g. represent
contiguous positions in the respective identifier space region),
whereas there are other portions of the region not closely
covered by the stored contacts.

By storing a large number of contacts from only one portion
of the region, the node’s view for the respective identifier space
region is narrowed. Consequently, we propose to improve the
lookup performance by widening this view. That is, the node
should try to maximize the diversify of the identifiers that are
stored in each of its routing table buckets independently, by
choosing contacts such that their identifier prefixes are maxi-
mally diverse. Then the expected common prefix length of the
closest contact to an arbitrary target identifier is maximized,
which should lead to a lower average number of hops.

We now show that the expected bit gain, i.e. the difference
between the node and the closest contact in its routing table
to a target identifier x, is increased by maximizing the afore-
mentioned diversity. A general model of the actual impact on
the average hop count is presented in Sec. V.

Theorem 1: Consider a k-bucket such that contacts in the
bucket offer a bit gain of at least l. The expected bit gain
bgdiv offered by the closest contact to x in that k-bucket
when maximizing the diversity is at least as big as bgnorm,
the expected bit gain for the standard contact selection.

Proof: The cumulative distribution function (CDF) of the
expected bit gain of one contact chosen uniformly at random
from all identifiers in the k-bucket is given by

F l(i) =

{
0, i < l

1− 1/2i−l, i ≥ l

because there is a guaranteed improvement of l and the
probability for every further bit to agree with the respective
bit of x is 1

2
. Note that the CDFs for the maximum of inde-

pendent random variables X1, . . . , Xm with CDFs F1, . . . , Fm

is F (x) = 1 −
∏m
i=1 Fi(x). Furthermore, the expected value

of a random variable X with values in N0 and CDF F is
E(X) =

∑∞
i=0 P (X > i) =

∑∞
i=0 1− F (i). The distribution

of the maximum bit gain of k contacts when selecting contacts
uniformly at random from all nodes suitable for a bucket is
thus

bgnorm = l +

∞∑
i=l+1

1− F l(i)k.

When maximizing the diversity of the q = blog kc additional
bits, there is one contact for each 2q bit sequences as well
as k − 2q contacts chosen uniformly at random. Thus, the
guaranteed bit gain is q. The closest contact in the routing table
is either the one contact guaranteed to agree with x in those q
bits or one of the contacts chosen uniformly at random. The
CDF of the first is given by F lA(x) = F l(x− q) and the CDF
of the maximum bit gain of the contacts chosen uniformly at
random is F lB(x) =

(
F l(x)

)k−2q
. Thus, the CDF of the total

bit gain is F lA(x)F lB(x), so that the expected bit gain is given
by

bgdiv = l + q +

∞∑
i=l+q+1

1− F l(i− q)
(
F l(i)

)k−2q
.

bgdiv presents an upper bound on bgnorm because

bgnorm = l +

∞∑
i=l+1

1−
(
F l(i)

)2q (
F l(i)

)k−2q
≤ l + q +

∞∑
i=l+q+1

1−
(
F l(i)

)2q (
F l(i)

)k−2q
≤ l + q +

∞∑
i=l+q+1

1−
(

1− 2q

2i−l

)(
F l(i)

)k−2q
= l + q +

∞∑
i=q+1

1−
(

1− 1

2i−l−q

)(
F l(i)

)k−2q
= bgdiv.

Note that Theorem 1 only shows that the expected bit gain
of the closest contacts in one node’s routing table is increased.
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Fig. 2: An exemplary MDHT routing table: Buckets A and B are located at the second
and fourth levels (i.e. levels 1 and 3), thus have common prefixes of lengths 2 and 4,
respectively. Considering the first three bits after the common prefix, their respective

diversity degrees are 8 (i.e. the maximal value in MDHT) and 4.

Lookup parallelism (α > 1) and further contacts in the lookup
response (β > 1) are not considered so far. Nevertheless,
the above result motivates an in-depth analysis of the contact
selection scheme, which we present in the following sections.

From here onwards, we use the term diversity degree for a
bucket to indicate how diverse are the prefixes of the identifiers
stored in it. It is measured by the number of distinct blog kc
bits after the bucket’s common prefix, resulting in a maximal
degree of 2blog kc. That is 3 bits in MDHT and KAD, whereas
iMDHT considers 7, 6, 5, and 4 bits for buckets at levels
i ∈ (0..3) respectively, and 3 bits for the rest. Fig. 2 shows
an exemplary MDHT routing table: The diversity degrees of
buckets A and B are 8 (i.e. the maximal value in MDHT) and
4, respectively.

Note that the idea above is similar to the KAD’s rout-
ing table structure, which divides contacts having the same
common prefix length with the routing table owner into
buckets according to the first 4 bits after the common prefix.
However, our approach is more flexible, since it does not
restrict the number of prefixes per bucket, but rather selects
more diverse prefixes if possible, allowing for a less diverse
contact selection if maximal diversity is not achievable.

B. Diversity Degrees in Real Kademlia-type Systems

We here aim to validate our aforementioned assumption
that the bucket in standard Kademlia-type systems is likely to
store multiple contacts having very close identifiers. Towards
this end, we downloaded routing tables of randomly selected
online KAD nodes using an accurate KAD crawler [3], and we
then analysed the diversity degrees of the contact identifiers
contained in their buckets. We restricted our analysis only
to the buckets located at the fourth routing table level, for
two reasons: First, given the routing table structure of KAD
(Fig. 1(c)), those buckets jointly are used, on average, in 11

16
of the lookup requests, hence represent the most important
part of the routing table. Second, there exist with very high
probability nodes in the system that can fill those buckets with
all possible prefixes, enabling those buckets to achieve higher
completeness (as shown in [8]) and higher diversity degrees
than buckets at lower levels.
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Fig. 3: CDF of the diversity degrees of measured standard KAD buckets.

The results that we discuss here represent 1,505,658 buck-
ets. We classify them, by the number of contacts they contain,
into three groups: (i) 170,262 buckets containing eight contacts
each, (ii) 271,585 buckets containing nine contacts each,
and (iii) 1,063,811 buckets containing ten contacts each (i.e.
complete buckets). For each group, we computed the CDF
of buckets with a diversity degree ≤ m. Recall that in KAD
m ∈ (1..8).

Fig. 3 shows the results: 42% to 67% of the buckets have
m ≤ 4 (i.e. half the maximal degree), and at most 8% have
the maximal degree. These results confirm our aforementioned
assumption about diversity degrees in the real systems.

C. Implementation

The aforementioned idea to improve the lookup perfor-
mance can be implemented in real Kademlia-type systems by
only slightly modifying the standard routing table’s mainte-
nance processes that we discussed in Sec. II (i.e. modifying
the neighbour selection), without changing their frequency.
More precisely, when a node decides to find new contacts
either to insert them to low-populated buckets, or to replace
stale contacts, it selects contacts whose identifiers increase the
diversity degrees of the corresponding buckets. This way, the
approach does not require changing the original routing table
structure nor the routing protocol, and it does not induce any
additional overhead, except computing the diversity degrees
over the identifiers.

V. MODEL

In this Section, we analytically derive the hop count distri-
bution in Kademlia-type systems both for the standard contact
selection scheme as well as for our modified scheme. More
precisely, we determine the probability that the path needed
to find the closest node to a target identifier x is of length h
for both schemes.

The model that we present here extends our prior work [13]
such that: (i) it allows queries for arbitrary identifiers rather
than for only node identifiers, and (ii) it integrates our contact
selection scheme, which improves the diversity of identifiers,
into the model. In Sec. V-A, we review the main components
of the original model [13]. In Sec. V-D and Sec. V-E, we
describe in details our modifications on the original model to
achieve (i) and (ii), respectively.



A. Model Principles

We analytically answer the question: Given an arbitrary
target identifier x and a Kademlia-type system, how likely
is it to discover the responsible node within h hops for all h?

To this end, we model the routing process as a Markov
chain, such that states of the chain represent the common
prefix length of the α closest nodes with the target identifier
x. Due to the prefix-based routing table structure, the common
prefix length is sufficient to determine the transition probabil-
ities, i.e. the probability to change from one set of common
prefix lengths to either the terminal state of discovering the
target or another set of common prefix lengths. The probability
to reach the target in h hops is then given by the probability
that the Markov chain is in the terminal state after h steps.

Recall that the assignment of a contact to a bucket is made
on the basis of the common prefix length with the routing
table owner. The corresponding distance function, which we
refer to as the bit distance, is

dist(x, y) = b− commonprefixlength(x, y). (1)

Following [13], we formally characterize a Kademlia-type
system by the identifier space size b, and the routing table
parameters k (the bucket size) and L (the number of buckets
per level). The d-th entry kd of the b-dimensional vector k
gives the bucket size for contacts at bit distance d to the routing
table owner. For example, in iMDHT we have

kd =



128, d = b

64, d = b− 1

32 d = b− 2

16, d = b− 3

8, d < b− 3.

The b × b-matrix L determines the number of buckets per
level as well as how the identifier space is split among these
buckets. So the entry Lij of the matrix L ∈ R(b+1)×(b+1) gives
the fraction of the identifiers at bit distance i to the routing
table owner for which j additional digits besides the common
prefix are considered for deciding the bucket. For example, in
KAD, Lb4 = 1, Li3 = 0.75, and Li4 = 0.25 for i < b. In
the context of our probabilistic model, we consider a random
variable Ld, whose distribution is given by the d-th row of L.
The routing algorithm is modelled for arbitrary α and β in
[13]. However, we only consider here the standard values of
KAD: α = 3 and β = 2.

We now describe the general idea of the derivation presented
in [13] using the above terminology. Kademlia routing is
modelled as a Markov chain, so that states correspond to the bit
distance of the closest α known nodes to the target identifier
x. Routing termination is denoted by the state ∅. The state
space is hence given by

Sα = {∅} ∪ {(d1, . . . , dα) : di ∈ Zb+1, di ≤ di+1}.

The initial distribution I gives the probability that α closest
nodes in the requesting node’s routing table have bit distances

d1, . . . , dα to x. For any non-terminal state, the transition
matrix T gives the probability to get from a set of α contacted
nodes with bit distances d1, . . . , dα to either the terminal state
or a set of nodes with bit distances d̃1, . . . , d̃α. The success rate
after k hops is obtained by computing T k−1I and choosing
the entry corresponding to the terminal state ∅.

The model is based upon various assumptions: Node iden-
tifiers are assumed to be chosen uniformly at random, and
queries are blocking, i.e. at each hop exactly α nodes are
queried before deciding on the next set of contacts to query.
The basic model also assumes a steady-state, no churn system
with maximally full buckets. However, it is shown in [13] how
to extend the model to dynamic environments. For simplicity,
we stick with the basic model in the following.

The essential part of the derivation is to determine the
probability distribution of the bit distances of the closest
γ ∈ {α, β} contacts in a node’s routing table given the bit
distance D from the routing table owner to x. The probability
that the bit distances C of the closest contacts corresponds to
s ∈ Sγ is given by

P (C = s|D = d)

=

b∑
l=0

P (C = s|X0 = d, Ld = l)P (Ld = l)

=

b∑
l=0

P (C = s|X0 = d, Ld = l)Ldl.

(2)

The initial distribution, giving the probability of all possible
distances of the requesting node, is obtained from Eq. 2 by
summarizing over all possible distances, i.e. P (X0 = s) =∑b
d=0 P (X0 = s|D = d)P (D = d) with P (D = d) =

2d−2d−1

2b
. Similarly, the transition probabilities can be obtained

from Eq. 2. There are αβ returned contacts of which the
closest α distinct contacts need to be selected. Let R denote
the αβ returned bit distances, Z the set of all possible returned
bit distances, and topα : Z → Sα the shortest α distances of
distinct contacts. Then the transition probability is expressed
by

P
(
X1 = s|(X0 = (d1, ..., dα)

)
=
∑
z∈Z

P (topα(z) = s|X0 = (d1, ..., dα), R = z) (3)

·P (R = z|X0 = (d1, ..., dα))

α∏
j=1

P
(
C = zj |D = dj

)
.

The only component of the above derivation influenced by
our changes is the probability P (C = s|D = d, Ld = l) in
Eq. 2. Our first change to the original model [13] (allowing
queries to any identifier) affects only the last step of the
routing. There is no guarantee that the bucket covering the
region that x belongs to contains one node, whereas under
the assumption of maximally full routing tables, this is given
when x corresponds to a node identifier. We hence consider the
case C = ∅ both for the standard scheme and for our modified
scheme in Section V-D. The second change (selecting contacts



such that the prefixes in the buckets are maximally diverse)
modifies the probability P (C = s|D = d) for all states s. We
hence derive P (C = s|D = d) for non-terminal states s in
Section V-E, distinguishing the case of β = 2 and α = 3.

B. Assumptions and Notations

In this section, we state our assumptions and notations for
the model. Our assumptions are mostly identical to those in
[13], so we refer to that publication for an in-depth discussion
of their impact.

1) The system is in steady state without churn, failures, and
attacks. In particular, there are no stale contacts in the
routing tables and nodes do not fail nor do they drop
messages. Furthermore, buckets are maximally full, i.e.
if a bucket contains k1 < k values, there are exactly those
k1 nodes in the region the bucket is responsible for.

2) Node identifiers are uniformly and independently dis-
tributed over the whole identifier space. Requested identi-
fiers are also chosen uniformly at random from the whole
ID space.

3) Routing table entries are chosen independently.
4) The lookup uses strict parallelism, i.e. a node awaits all

answers to its queries before sending additional ones.

The following notations are used throughout the derivation:

• Cnorm and the Cown denote the closest contact distri-
butions in both the standard scheme and our modified
scheme, respectively.

• α is the degree of parallelism, β the number of returned
closest contacts when queried for an identifier, kd is the
bucket size at distance d.

• The number of additional bits considered for the replace-
ment scheme is given by qd = blog kdc. Furthermore,
we generally drop the index d for kd and qd if the
conditioning on d is explicit.

• The probability that a binomially distributed random
variable with parameters m and p takes value z is denoted
by B(m, z, p) =

(
m
z

)
pz(1− p)m−z .

• The probability that c elements chosen from a set B of
size b are chosen from a subset A ⊂ B of size a is
abbreviated by

Ξ(a, b, c) =

(
a
c

)(
b
c

) .
• The probability that the γ closest contacts to x within a

group of size a within distance d to x have bit distances
δ1, . . . , δγ , is denoted Υγ((δ1, . . . , δγ), d, a) as derived
in [13], Eq. 10. The group is assumed to be uniformly
selected from all nodes within distance at most d.

• The probability that there are no nodes in a region with
2d identifiers is abbreviated by em(d) =

(
1− 2d−b

)n−1
.

Before our main derivation, we discuss an approximation made
during the latter steps.

C. Approximating: Empty Buckets
When querying for random IDs, there might not be node

in the bucket closest to the target identifier. In such a case,
we assume that the routing table owner knows the responsible
node and the routing terminates in the next hop. We now show
that this assumption does not considerably increase the success
probability. The responsible node either belongs to a different
bucket on the same level or it is at the same bit distance to
x as the routing table owner, thus belonging to a bucket on a
higher level. The responsible node is possibly not contained
in the routing table if more than kd nodes are in the region of
the bucket that it belongs to. However, the said bucket covers
at most the same number of identifiers as the empty bucket
that x belongs to. For typical values of k being at least 8,
the probability of such an event is barely above 0.0001, as
detailed in the following. We start by explaining the derivation
in general before considering MDHT, iMDHT, and KAD in
detail.

Let u be the routing table owner and E1 denote the event
that that the bucket with the longest common prefix with x in
u’s routing table is empty. Furthermore, denote by v the node
that is responsible for x, and by E2 the event that v is not
contained in u’s routing table. We bound the probability by
maximizing over all possible bit distances of u to x

P (E1 ∩ E2) = P (E1)P (E2|E1) (4)
≤ max
{d,l}

P (E1|D = d, Ld = l)P (E2|E1, D = d, Ld = l).

The probability that there are no nodes with the a common
prefix length of b− d+ l with x is

P (E1|D = d, Ld = l) =
(
1− 2d−l−b

)n−1
. (5)

An upper bound on the second factor is obtained by the
probability that there are more nodes than the bucket size
with the same common prefix as v. The probability depends
on the routing table structure. For MDHT and iMDHT, which
do not consider any more bits after the first non-common bit
for the routing table structure, an upper bound is given by the
probability that any bucket on higher levels in u’s routing table
cannot contained all nodes in their respective regions. Note
that by conditioning on E1, all nodes have chosen an identifier
within the remaining fraction 1−2d−1−b of the identifier space,
so that the probability to have a common prefix b−d+ i with
u is 2d−i−b

1−2d−1−b . The probability of the event Ai that more than
kd−i can be chosen at level i < d − 1 is hence obtained
from the complementary cumulative distribution function of a
binomially distributed random variables with parameters n−1

and 2d−i−b

1−2d−1−b . The probability that any of these events Ai hold
is then obtained by a union bound, resulting in

P (E2|E1, D = d, Ld = 1) ≤
d∑
i=2

P (Ai|E1, D = d, Ld = l)

(6)

=

d∑
i=2

1−
kd−i∑
j=0

B(n− 1,
2d−i−b

1− 2d−1−b
, j)

 .
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Fig. 4: Estimate error when assuming that the destination identifier x is found if the
respective routing table bucket is empty.

The bounds for MDHT and iMDHT can be computed from
Eq. 4, Eq. 5, and Eq. 6.

When considering KAD, there are 5 buckets for each non-
zero common prefix length, hence we multiply the above
probability with 5. However, these buckets are only of interest
if all buckets containing nodes with common prefix length b−d
are empty. If at most kd nodes are available for the closest non-
empty bucket to x, the responsible node is contained in u’s
routing table regardless of the buckets on lower levels. There
are m ∈ {5, 8} buckets with the same common prefix. Let j
be the index of the empty bucket with the longest common
prefix with x. We sort the remaining a ∈ {4, 7} buckets with
the same common prefix to u by their distance to x. Let Cij
be the number of nodes in the i − th closest bucket, and
pd =

∑d
i=2

(
1−

∑kd−i
j=0 B(n− 1, 2d−i−b

1−2d−1−b , j)
)

the quantity
from Eq. 6.

Then the second probability from Eq. 4 can be bound for
KAD by

P (E2|E1, D = d, Ld = l)

≤ max
j=1,...,m

P (C1j > k|E1, D = d, Ld = l)

+ P (C1j = 0|E1, D = d, Ld = l) (7)
(P (C2j > kd|E1, D = d, Ld = l, C1j = 0)

+ P (C2j = 0|E1, D = d, Ld = l, C1j = 0) (. . .+

P (Caj = 0|E1, D = d, Ld = l, C1j = 0, .., Ca−1j = 0)pd) . . .) .

The variable Cij given E1, C1j = 0, . . . , Ci−1j = 0 is
binomially distributed with parameter n − 1 and qij chosen
based on the combined fraction of identifiers that are covered
by the closest i − 1 buckets. For d = b, there are 8 buckets,
each responsible for the same number of identifiers, so that
qij = 2−4

1−i2−4 . Otherwise, there are three distinct possibilities.
If Ld = 4 (i.e. j = 4 or j = 5), four bits are resolved for the
closest bucket, but only three for the remaining three buckets,

so that

qij =

{
2d−4−b

1−2d−4−b , i = 1
2d−3−b

1−2·2d−4−b−(i−2)·2d−3−b , i > 1.

If l = 3, there are two possibilities. If the XOR distance of
x and u starts with 11 (i.e. j = 1 or j = 2), the closest two
buckets resolve 3 bits, and qi is given by

qij =

{
2d−3−b

1−i·2d−3−b , i ≤ 2
2d−4−b

1−3·2d−3−b−(i−3)·2d−4−b , i > 2.

Otherwise (i.e. j = 3), the two closest buckets resolve 4
additional bits, and

qij =

{
2d−4−b

1−2d−3−b−(i−1)·2d−4−b , i ≤ 2
2d−4−b

1−2d−3−b−2·2d−4−b−(i−3)·2d−3−b , i > 2.

This completes our derivation of an upper bound on the error
made by assuming that a target is found if the respective bucket
is empty.

Figure 4 displays the upper bounds for MDHT, iMDHT
and KAD, considering networks between 1,000 and 4,000,000
nodes. The upper bound error remains within certain bounds,
reaching its maximum and minimum once for each 2i addi-
tional nodes, since doubling the network size corresponds to
filling one more level in the routing table. For MDHT and
iMDHT, the error probability is below 10−5. The results for
the two DHTs are identical because only the higher levels have
a realistic change of containing empty buckets and these have
identical structures. The error probability for KAD is higher
due to having buckets on the same level, but is barely above
10−4.

D. Success Probability

We first consider the case C = ∅ both for the stan-
dard scheme and for our maximally-diverse contact selection
scheme. The idea is to summarize over the number of possible
nodes in the bucket closest to x. If there are m > 0 such nodes
and at most l ≤ m edges to those nodes, the probability that
one edge leads to the node responsible for x is l/m. If m = 0,
we assume that the responsible node is known to the routing
table owner, as motivated in Section V-C. x. Propositions 1
and 2 give the probability that the node responsible for x is
contained in a node’s routing table both for the standard and
for our modified scheme, respectively.

Proposition 1: The probability that a node v at bit distance
d to the target identifier x knows the responsible node given
the number of further resolved bits Ld is

P (Cnorm = ∅|D = d, Ld = l) ≈ (8)

B(n− 1, 0, 2d−l−b) +

n−1∑
m=1

B(n− 1,m, 2d−l−b) min{1, k/m}

when selecting contacts in a bucket uniformly at random from
all nodes in the region covered by the bucket.

Proof: The proof follows straightforward from the as-
sumption that n−1 nodes (all besides the routing table owner



who is known to be at distance d) choose their identifier uni-
formly at random from 2b identifiers. There are 2d−l identifiers
sorted in the same bucket as x, so that the probability of a node
to choose such an identifier is 2d−l−b. If there are less than k
identifiers in the region, the responsible node is contained in
the bucket, otherwise the contacts in the buckets are chosen
uniformly from all nodes in the region, i.e. with probability
k/m for m nodes.

Proposition 2: The probability that a node v at bit distance
d to the target identifier x knows the responsible node given
the number of further resolved bits Ld is

P (Cour = ∅|D = d, Ld = l)

≈ B(n− 1, 0, 2d−l−b) +

n−1∑
m=1

B(n− 1,m, 2d−l−b) (9)

·

B(m, 0, 2−q) min{1, k/m}+

m∑
j=1

B(m, j, 2−q)ρj


with

ρj =
1

j

+(1− 1

j
)

2q−1∑
i=1

(
2q−1
i

)(
m−j
i−1
)(

m−j+2q−2
2q−2

) min

{
1,

k + 2q − i− 1

max{1,m− i− 1}

}
when maximizing the diversity of the contact prefixes in the
bucket.

Proof: As in the proof of Proposition 1, we summarize
over the possible number of nodes m in the same region as
x. Furthermore, we summarize over the number j of the m
nodes that share additional q bits with x. j is binomially
distributed with parameters m and the 2−q , since there are
2q different prefixes. If j = 0, any of the m nodes with
a different prefix is responsible for x, corresponding to the
term B(m, 0, 2−q) min{1, k/m}. If j > 0, at least one node
with the same prefix as x is contained in the bucket, so the
probability that the responsible node is chosen by the one link
that is guaranteed to choose a node with such a prefix is 1/j.
In addition, there are links that do not have to be addressed to
any specific of the 2q prefixes if 2q < k or there are prefixes
that do not correspond to any existing node identifier. Let
i be the number of prefixes other than the prefix of x, for
which there is at least one node. Then there are m − i − 1
nodes that are not chosen by prefix-specific links, as well as
k − 2q − i − 1 links that can go to any of those nodes. So
if the responsible node is not chosen because of its common
prefix with x (probability 1− 1/j), it can still be chosen with
probability min

{
1, k+2q−i−1

max{1,m−i−1}

}
. It remains to show that

the probability that there are i prefixes for which there is a
node is (

2q−1
i

)(
m−j
i−1
)(

m−j+2q−2
2q−2

) .
Basically, we consider the problem of dividing m − j nodes
in 2q − 1 equally likely regions. An equivalent problem is to

arrange 2q − 2 borders in a set of m− j elements, assuming
that all elements before the i-th border are assigned to region i,
and the elements after the border 2q−2 are assigned to region
2q−1. So there are no elements within region i if border i+1
follows directly after border i. Using this equivalent problem
formulation, the above term follows from basic combinatoric.
Then the total number of possibilities to arrange the 2q − 2
borders within a set of m− j+ 2q−2 objects is

(
m−j+2q−2

2q−2
)
.

The factor
(
2q−1
i

)
refers to the possible arrangements of the

borders into i sets without any elements between borders of
the same set. Similarly, the factor

(
m−j
i−1
)

gives the number of
possibilities to divide m− j elements into i non-empty sets.

E. Maximizing the Diversity

The standard contact selection has been treated in [13], thus
we here only consider our modified scheme. We first consider
the case that only β = 2 closest nodes are of interest, and then
extend the result to α = 3 which is needed to determine the
initial distribution.

Consider the case that k = 2q and there are nodes for all
the 2q prefixes in the bucket. Then there is exactly one contact
in the bucket that has bit distance of less than d− l− q to x,
and the node is selected uniformly at random from all these
identifiers. The second closest contact is then the one that is
at bit distance d− l − q, i.e. the one for which the last bit of
the q-bit prefix is different. The third closest contact is chosen
to be at bit distance d− l− q+ 1, not sharing the last two bits
of the prefix with x. However, if k > 2q or there are prefixes
with no matching nodes, more than one contact can have a
bit distance less than d− l − q. Furthermore, the next closest
contacts not within distance d− l − q can be farther than for
the standard contact selection. Proposition 3 and 4 evaluates
how likely are these scenarios, summarizing over all possible
number of prefixes without matching nodes for the β = 2 and
α = 3 closest contacts, respectively.

Proposition 3: The probability that the two closest nodes
to x in the routing table of a node v at bit distance D = d to
x are at distances (δ1, δ2) to x is

P (Cown = (δ1, δ2)|D = d, Ld = l, C 6= ∅) = 0 (10)

if δ1 ≥ d− l − q, and setting η = d− l − δ2

P (Cown = (δ1, δ2)|D = d, Ld = l, C 6= ∅)

≈
2q−1∑
r=0

B(2q − 1, r, em(max{d− l − q − 1, 0}))

·B(r + k − 2q, 0, 1/(2q − r)) (11)
·Υ1((δ1),max{d− l − q − 1, 0}, 1)

Ξ(r, 2q − 1, 2q−η − 1)− Ξ(r, 2q − 1, 2q−η+1 − 1)



if δ2 ≥ d− l − q > δ1, and

P (Cown = (δ1, δ2)|D = d, Ld = l, C 6= ∅)

≈
2q−1∑
r=0

B(2q − 1, r, em(max{d− l − q − 1, 0}))

·
r+k−2q∑
a=0

B(r + k − 2q, a, 1/(2q − r))

·Υ2((δ1, δ2),max{d− l − q − 1, 0}, a+ 1)

(12)

if δ2 < d− l − q.
Proof: Eq. 10 holds since at least one node within bit

distance d − l − q − 1 of x is chosen. For the remaining
two cases, we summarise over the number r of prefixes with-
out any matching node. These are approximately binomially
distributed with parameters 2q − 1 for the number of other
prefixes, and the probability that there is no node with the
respective common prefix (strictly speaking the probability
that common prefixes are not taken by a node are not in-
dependent of, hence the approximation). Given r, the number
of additional contacts a within distance at least d− l−q−1 is
binomially distributed with parameters k−2q + r, the number
of potential additional contacts, and 1/(2q−r), the probability
that exactly the prefix of x is also a prefix of the identifier of
the contact. Eq. 11 considers the case a = 1: If only one link
leads to a node with the same prefix as x, the first at distance
δ1 with probability Υ1((δ1),max{d− l−q−1, 0}, a+1). The
second node is chosen as the closest of the 2q − 1 remaining
prefixes. Note that there are 2q−i − 1 prefixes that agree with
x’s prefix in the first i bits. If the closest prefix of an existing
node identifier is at distance δ2, we have i = η + 1, and all
closer 2q−η−1 prefixes are chosen from the r prefixes without
any node identifier, but the closest 2q−η+1− 1 are not chosen
from those r. The probability that m ∈ {2q−µ − 1, 2q−µ+1}
prefixes are chosen from a set of r given that there are
2q − 1 prefixes to choose from is given by Ξ(r, 2q − 1,m),
so that Eq. 11 follows. If a, the number of additional contacts
within distance at least d − l − q − 1, is at least 1, there
are at least two nodes within distance d − l − q − 1 of x,
and the probability distribution of their distance is given by
Υ2((δ1, δ2),max{d− l− q − 1, 0}, a+ 1) as derived in [13].
This accounts for Eq. 12 and completes the proof.

Proposition 4: Assume that the prefix diversity of the rout-
ing table entries is maximized. The probability that the three
closest nodes to x in the routing table of a node v at bit
distance D = d to x are at distances (δ1, δ2, δ3) to x is

P (Cown = (δ1, δ2, δ3)|D = d, Ld = l) = 0 (13)

if δ1 ≥ d− l − q, and setting ηi = d− l − δi, as well as

p(r) =

(
2q−1−r

1

)(
r−2q−η2+1
2q−η2−1

)(
2q−2q−η2

2q−η2

) ,

P (Cown = (δ1, δ2, δ3)|D = d, Ld = l)

=

2q−2∑
r=0

B(2q − 1, r, em(max{d− l − q − 1, 0}))

· B(r + k − 2q, 0, 1/(2q − r))
·Υ1((δ1),max{d− l − q − 1, 0}, 1) (14)
· Ξ(r, 2q − 1, 2q−η2 − 1)

[(1− Ξ(r − 2q−η2 + 1, 2q − 2q−η2 , 2q−η2)− p(r))
+p(r)(1− B(k − 2q + r, 0, 1

2q−r−1 )
]
,

if η2 = η3

p(r)B(k − 2q + r, 0, 1
2q−r−1 )(

Ξ(r − 2q−η2 + 2, 2q − 2q−η2+1,
∑q−η3
i=q−η2+2 2i)

−Ξ(r − 2q−η2 + 2, 2q − 2q−η2+1,
∑q−η3+1
i=q−η2+2 2i)

)
if η2 6= η3

if δ3 ≥ δ2 ≥ d− l − q > δ1,

P (Cown = (δ1, δ2, δ3)|D = d, Ld = l)

=

2q−2∑
r=0

B(2q − 1, r, em(max{d− l − q − 1, 0}))

·B(r + k − 2q, 1, 1/(2q − r))
·Υ2((δ1, δ2),max{d− l − q − 1, 0}, 2)

·
(
Ξ(r, 2q − 1, 2q−η3 − 1)− Ξ(r, 2q − 1, 2q−η3+1 − 1)

)
(15)

if δ2 < d− l − q ≤ δ3, and

P (Cown = (δ1, δ2)|D = d, Ld = l)

=

2q−1∑
r=0

B(2q − 1, r, em(max{d− l − q − 1, 0}))

·
r+k−2q∑
a=2

B(r + k − 2q, a, 1/(2q − r))

·Υ3((δ1, δ2, δ3),max{d− l − q − 1, 0}, a+ 1)

(16)

if δ3 < d− l − q.
Proof: The only difference in contrast to returning two

contacts is that potentially two nodes are not chosen from
the set of nodes with bit distance at most d − l − q − 1, i.e.
Eq. 14. These can be either at the same bit distance to x
or not. In the first case, there are two possibilities: (i) the
prefixes of those two nodes are different. Then at least two
of the 2q−η2 prefixes for nodes at distance δ2 are prefixes to
existing nodes. The probability is computed by subtracting the
probability that there are none or one such prefix from 1. (ii)
if the prefixes are the same, at least one of the k − 2q + r
remaining contacts has the same prefix. Given that there is
only one contact in the bucket with the same prefix as x, the
k−2q+r contacts are chosen from 2q−1−r prefixes, leading
to the term 1− B(k − 2q + r, 0, 1

2q−r−1 ). This completes the
first case in Eq. 14. If δ2 6= δ3, the probability is obtained by
considering the events:
• A1: there is exactly one prefix within the 2q−η2+1 − 1

closest prefixes that is a prefix of a node, but there are
no further contacts selected with that prefix,



• A2: there are at least two nodes within the 2q−η3 closest
prefixes,

• A3: there are at least two nodes within the 2q−η3+1

closest prefixes.
The second part of the case distinction in Eq. 14 then is given
by P (A2)P (A4 \ A3|A2). The actual terms follow by the
same combinatoric reasoning as for Eq. 11, conditioned on the
event that there are node identifiers with the closest 2q−η2 −1
prefixes.

This completes the derivation of our model. We validate the
model against simulations of three Kademlia-type systems in
Sec. VI-A.

VI. EVALUATION

In this Section, we aim to assess the impact of our modified
neighbour selection scheme on the lookup performance in
Kademlia-type systems. In particular, we answer the following
three questions: (i) How much improvement over the default
lookup performance can be gained if all system nodes imple-
ment the new scheme?, and do simulations validate our model?
(Sec. VI-A), (ii) What is the impact of churn on the gained
improvement? (Sec. VI-B), and (iii) How much improvement
can be gained by a partial deployment for the new scheme in
a real Kademlia-type system? (Sec. VI-C).

The lookup’s hop count here refers to the number of edges
on the shortest path traversed during the lookup process. In
Kademlia, each routing hop (i.e. step) represents a transition
from a set of queried contacts to either another set of queried
contacts or routing termination [13].

A. Lookup Performance of a Full Deployment Without Churn:
Model vs. Simulations

We discuss here the performance results of a full deploy-
ment for our approach (i.e. all system nodes incorporate the
proposed neighbour selection scheme) as predicted by our
model and validate them against simulations. We focus on
three exemplary Kademlia-type systems: MDHT, iMDHT, and
KAD, as they are described in Sec. II.

1) Simulation environment and setup: Note that none of
the well-known P2P simulators (e.g. PeerSim [26], Peerfact-
Sim.KOM [27], or OverSim [28]) has exact implementations
for the aforementioned three systems. However, the modular
design of the widely-used simulator, OverSim, allows to easily
add new P2P overlays. We hence chose to develop MDHT,
iMDHT, and KAD and their respective modified versions
as new P2P overlays in OverSim. We use the source code
of eMule as a basis for our implementation. Please note
that eMule implements a loose parallel lookup whereas our
theoretical model assumes a strict parallel lookup (Sec. ??:
Assumption 4). However, since our current model assumes no
churn, the two lookup techniques shall perform similarly [8].

We performed simulations with three system sizes: 10,000,
15,000, and 20,000 nodes. At the beginning of simulations,
nodes are added to the system until the target size is reached.
After the system has stabilized (i.e. the nodes have populated
their routing table buckets with contacts), the statistics of

interests, i.e. the hop counts, are obtained. All simulation
results are averaged over ten runs.

2) Results: Fig. 5 shows the resulting CDFs of hop count
distributions for the three standard systems as well as for the
respective modified ones, each with 10,000 nodes, both from
the model predictions and from simulations. Table I shows the
hop count values predicted by the model, and for simulations,
the respective sample average values, the 95% confidence
intervals (using the Student’s t-distribution), and the median
values, in addition to the hop count gain achieved by the
modified scheme. The hop count gain values of simulations
represent: (i) the difference between standard hop count−
CI and modified hop count + CI , and (ii) the minimum
and maximum hop count gain values. These results represent
systems without churn (as assumed by the current model).

All in all, the results show the following: (i) The three
modified systems achieve improved hop counts, i.e. they
outperform the respective standards systems, which confirms
the utility of the proposed scheme. (ii) The model predictions
and simulation results are very close to each others, which
indicates that both the model derivations and implementation
of simulations are correct. These conclusions apply for the
other experimented system sizes, that we exclude here due
to space constraints. As for the impact of network size, the
average hop count increased in the larger sizes, which is to
be expected. However, the size had no large impact on the
improvement gained by the new scheme.

It can be seen also that the highest performance gain is
achieved by iMDHT, whereas the lowest is achieved by KAD.
More precisely, in this example with 10,000 nodes, iMDHT
improves the hop count by a bit higher than 7%, whereas
KAD improves only about 1.5%, and MDHT is in between by
about 4.5%. We attribute this disparity to the different routing
table structures in the three systems: On the one hand, KAD
implements some form of diversity by default, as described in
Sec. IV-A, which limits the impact of the additional diversity
enabled by the new scheme. On the other hand, MDHT and
iMDHT do not have such feature in their default designs, and
therefore they are expected to benefit from the new scheme
more than KAD. In addition, the larger bucket sizes at the top
four routing table levels (i.e. the mostly used ones) in iMDHT
can contain more diverse contacts, and thus achieve a higher
performance gain, than MDHT.

B. Impact of Churn

We aim here to evaluate the impact of churn on the lookup
performance of systems incorporating the new neighbour se-
lection scheme. As mentioned in Sec. V, the current version of
our model supports only static scenarios (i.e. without churn).
We hence perform the evaluations only by simulations. More
precisely, the simulations apply the churn model proposed in
[29], as implemented in OverSim. We simulated with two
different average session lengths: 20,000 seconds and 10,000
seconds.

Table II summarizes the results. Comparing the sample
average with the 95% confidence intervals (using the Stu-



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4

P
(H

o
p

s
 <

=
 X

)

Hops

Model (s)
Simulation (s)

Model (m)
Simulation (m)

(a) MDHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4

P
(H

o
p

s
 <

=
 X

)

Hops

Model (s)
Simulation (s)

Model (m)
Simulation (m)

(b) iMDHT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3

P
(H

o
p

s
 <

=
 X

)

Hops

Model (s)
Simulation (s)

Model (m)
Simulation (m)

(c) KAD

Fig. 5: CDFs of hop count dist. (simulations vs. model expectations) for three exemplary Kademlia-type systems of size 10,000, without churn: (a) MDHT, (b) iMDHT, (c) KAD.
(s: standard system; m: modified system)

TABLE I: Sample average hop count with 0.95 CI (t-value) and median values for simulations vs. model expectations for three exemplary Kademlia-type systems
of size 10,000, without churn: Standard systems, modified systems, and the achieved hop count gain (+ : ”modified + CI” to ”standard - CI” and [min , max]).

MDHT iMDHT KAD
Simulations

Model
Simulations

Model
Simulations

Model
Sample Avg. ± CI Median Sample Avg. ± CI Median Sample Avg. ± CI Median

Standard 2.89185 ± 0.00019 2.89180 2.88697 2.31113 ± 0.00032 2.31121 2.30470 1.98609 ± 0.00028 1.98607 1.98609
Modified 2.76774 ± 0.00074 2.76755 2.75416 2.14716 ± 0.00106 2.14699 2.12828 1.95610 ± 0.00035 1.95621 1.95535

+ (%)
4.32376

- 4.60025
7.15366

- 7.65508
1.54158

- 1.54760
[4.22405 , 4.33964] [7.00106 , 7.19749] [1.45703 , 1.58457]

dent’s t-distribution) and median hop count values of the
two simulation settings both to each others and to the static
scenario (Table I), the results show the following: (i) The
results without churn are always better (i.e. achieve shorter
hop counts), and those with the lower churn rate (i.e. with
longer average session lengths of 20,000 seconds) outperform
those with higher churn rate (10,000 seconds). These results
are to be expected (see [30], [31] for explanation). (ii) More
interestingly, it can be seen that for MDHT and KAD, the hop
count gain increases with churn (only the gain from the new
scheme, not the hop count itself). This can be explained as
follows: Since the frequency of the routing table maintenance
increases with higher churn rates, there is a chance in that case
to discover more contacts, and hence to increase the buckets’
diversity degrees. KAD achieves the highest improvement
because its routing table size is not a power of 2. As for
iMDHT, the observation above does not hold, i.e. the churn
has almost no impact on the results. The reason for this can
probably be found in the extremely large bucket size on the
high levels (i.e. mostly used ones): It takes very long to fill
these buckets, and hence it is hard to keep the contacts alive
under churn, so that the high stale entry rate impairs further
improvement.

C. Lookup Performance of a Partial Deployment: Measure-
ments of Modified KAD Clients

We provide here an additional evaluation for the impact
of the new scheme on the lookup performance by measuring
it in a real Kademlia-type system. However, a large-scale
deployment of the new scheme in a lifelike Kademlia-type
system does not exist. Therefore, measuring the performance
gain of a full deployment is infeasible. Instead, we measured
the lookup performance on modified nodes (implementing

the new scheme), during their participation in a standard
Kademlia-type system. In this setting, the modified nodes
are expected to benefit from the modified scheme, but the
benefit is expected to be less pronounced than for a complete
implementation.

1) Measurement environment and setup: We performed
our measurements in KAD, using two clients: the first uses the
standard KAD code as implemented in the eMule software,
while the second implements the new neighbour selection
scheme.

During each measurement run, each client issued 500
lookup requests, one request every three seconds. The target
identifiers are selected such that they are uniformly distributed
over the identifier space. In particular, we used 500 keywords
from the list of Steiner et al. [9]. During measurements, the
clients recorded the following information: (i) the number of
hops traversed by each lookup request, and (ii) the diversity
degrees of routing table buckets at level 4.

2) Results: We performed 40 measurement runs at sev-
eral times of the day. Fig. 6 shows the CDFs of hop count
distributions both for the standard client and for the mod-
ified client. The median values for the standard client and
the modified client were: 3.39669 hops and 3.22624 hops,
respectively. The corresponding sample average with the 95%
confidence intervals (using the Student’s t-distribution) were:
3.39862 hops (±0.0.01583) and 3.23172 hops (±0.01310).
In this example, the achieved hop count reduction (computed
as the difference between standard hop count − CI and
modified hop count + CI) is 4.07861%, with a minimum
of 3.36571% and a maximum of 7.68003%.

Unfortunately, the measurement results cannot be compared
to model predictions because the model does not support



TABLE II: Median and sample average hop count with 0.95 CI (t-value) for simulations of size 10,000, with churn (two different average session lengths):
Standard systems, modified systems, and the achieved hop count gain (+ : ”modified + CI” to ”standard - CI” and [min , max]).

MDHT iMDHT KAD
Avg. session time 20,000 sec. 10,000 sec. 20,000 sec. 10,000 sec. 20,000 sec. 10,000 sec.

Standard (Median) 3.21465 3.32382 2.57720 2.69044 2.21886 2.31689
Modified (Median) 3.01307 3.11266 2.38905 2.49321 2.09163 2.17313

Standard (Sample Avg. ± CI) 3.21380 ± 0.00109 3.32362 ± 0.00092 2.57716 ± 0.00029 2.69084 ± 0.00183 2.21842 ± 0.00103 2.31668 ± 0.00121
Modified (Sample Avg. ± CI) 3.01311 ± 0.00025 3.11264 ± 0.00203 2.38908 ± 0.00161 2.49309 ± 0.00128 2.09151 ± 0.00580 2.17308 ± 0.00182

+ (%)
6.20486 6.26100 7.22454 7.23849 5.41489 6.07047

[6.16229 , 6.30019] [6.19498 , 6.49519] [7.14763 , 7.44761] [7.22199 , 7.49043] [4.77028 , 6.19054] [6.00419 , 6.34748]
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Fig. 6: CDFs of hop count distributions from measurements of standard and modified
KAD clients. (s: standard client; m: modified client)

churn, nor to simulations because the simulator cannot scale
to relatively very large sizes like the size of the real KAD
system3. Since only our modified client implements the new
neighbour selection scheme, while the rest are standard clients,
one can expect the gain of the new scheme to be lower than
what is achieved. However, when looking on the diversity de-
grees, the modified client could improve the diversity degrees
of its buckets4: The modified client achieved a diversity degree
of 7.37 (which is very close from the maximal value), on
average, compared to 4.68 for the standard client (see also
the results of measured diversity degrees of a large sample
of standard clients in Sec. IV-B: Fig. 3). This increase in the
diversity degrees can explain the achieved improvement, and
confirms the utility of increasing the diversity.

We attribute the obtained increase in the diversity degrees
to the expected high frequency of executing the routing table
maintenance processes in the real system, due to the high ratio
of stale routing table entries. For instance, in [32] we reported
88% as the ratio of stale routing table entries, computed on
almost complete and instantaneous graph snapshots of KAD.
As explained in Sec. VI-B, the higher the churn rate in
KAD (i.e. more frequent maintenance for routing tables) the
higher the chance to discover new neighbours that increase the
buckets’ diversity degrees.

VII. CONCLUSION

We proposed, modelled, and evaluated a new neighbour se-
lection scheme for Kademlia-type systems. It aims to improve
the lookup performance, almost without extra cost, by only

3Recently, [3] counted more than 300,000 concurrent online nodes in KAD.
4For the reasons that we mentioned in Sec. IV-B, we restricted our analysis

here also only to the buckets located at the fourth routing table level.

attempting to maximize the identifiers’ diversity within each
routing table bucket.

Our model predictions, in very close agreement with simu-
lations, as well as measurements of modified KAD clients,
confirm the positive impact of our scheme on the lookup
performance, in form of reduction in the average hop count.
The simulation results also show that the systems with small
bucket sizes (namely: MDHT and KAD) can benefit more
from our approach in the dynamic scenarios (i.e. with churn).
We have attributed this to the resulting high frequency of
routing table maintenance processes which are utilized by
our scheme to improve the performance. Nevertheless, the
dynamic scenario cannot be captured by the current version
of the model, and therefore those results still require fur-
ther study. Consequently, our plans for future work include
modelling the impact of churn, network size, and the partial
deployment scenario (where only part of the nodes implements
our scheme). In addition, we have started studying the idea
of extending our approach by integrating it to notable prior
improvements like [18] and [33].
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