
TR: Array Abstraction with Symbolic Pivots
Nathan Wasser,
Richard Bubel

and Reiner Hähnle
TU Darmstadt

Department of Computer Science
64289 Darmstadt, Germany

Email: {wasser,bubel,haehnle}@informatik.tu-darmstadt.de

Abstract—In this paper we present a novel approach to
automatically generate invariants for loops manipulating arrays.
The intention is to achieve deductive program verification without
the need for user-specified loop invariants. Many loops iterate and
manipulate collections. Finding useful, i.e., sufficiently precise
invariants for those loops is a challenging task, in particular,
if the iteration order is complex. Our approach partitions an
array and provides an abstraction for each of these partitions.
Symbolic pivot elements are used to compute the partitions. In
addition we integrate a faithful and precise program logic for
sequential (Java) programs with abstract interpretation using an
extensible multi-layered framework to compute array invariants.
The presented approach has been implemented.

Index Terms—loop invariant generation, program verification,
abstract interpretation, array abstraction

I. INTRODUCTION

Deductive program analysis and program verification must
often choose a trade-off between the complexity of the prop-
erties they ascertain for a given program, the precision of the
analysis, i.e., the percentage of issued false warnings, and the
degree of automation.

Improving automation for medium to complex properties
by maintaining an acceptable precision of the analysis requires
addressing one of the sources for interaction (or otherwise loss
of precision) with the underlying theorem prover of the analy-
sis tool. One kind of interaction stems from the elimination of
quantifiers, another is the provision of program specifications
like method contracts, loop invariants or assertions that serve
as hints for the theorem prover. Providing useful specifications,
in particular, loop invariants is a difficult task, which requires
experience and an education in writing formal specifications
on the part of the user. The necessary amount of work and
time hinders a wide-spread adoption pf formal verification in
industry.

In this paper we focus on the automatic generation of loop
invariants. We improve upon previous work [1] of some of the
co-authors in which a theoretical framework was developed
that integrates deductive reasoning and abstract interpretation.
We extend this by presenting a novel approach to automatically
generate invariants for loops manipulating arrays. The loop
invariant generation works by partitioning arrays automatically
using a new concept to which we refer as symbolic pivots. A

The work has been funded by the DFG priority program 1496 Reliably
Secure Software Systems

symbolic pivot expresses the symbolic value of a term (in
particular an array index) at the end of every loop iteration.
When these symbolic pivots have certain properties we can
generate highly precise partitions. The content of array parti-
tions is represented as an abstract value which describes the
value of the partition’s elements. An important feature is that
the degree of abstraction, that is, the precision is adaptable.

Further, we integrate a faithful and precise program logic
for sequential (Java) programs with abstract interpretation
using an extensible multi-layered framework to compute array
invariants. The presented approach has also been implemented
as a proof of concept based on the KeY verification system [2].

The paper is structured as follows: in Section II we in-
troduce the logic framework and basic notions and notations
needed to describe the array abstraction. Section III explains
how the loop invariants are generated. In Section IV we briefly
describe our implementation and demonstrate our approach
along a small example. We relate our approach to the work of
others in Section V and conclude the paper with Section VI
giving an outlook over future research.

II. BACKGROUND

A. Program Logic

Here we introduce our program logic and calculus, and
explain our integration of value-based abstraction based on
previous work [1] by some of the authors.

We want to stress that our implementation works for nearly
full sequential Java [2], although we restrict ourselves here to
a smaller fragment with integer arrays being the only kind of
objects. The program logic presented below extends the logic
in [1] by an explicit heap model and array types.

a) Syntax: The program logic is a first order dynamic
logic which is closely related to Java Card DL [2]. We begin
by defining its signature which is a collection of the symbols
that can be used to construct formulas.

Definition 1 (Signature). A signature Σ is a tuple
((T ,�),P,F ,PV,V) consisting of a set of sorts T together
with a type hierarchy �, predicates P , functions F , program
variables PV and logical variables V . The set of sorts contains
at least the sorts >, Heap, LocSet, int and int[] with >
being the top element and the other sorts being direct subsorts
of >.

Our logic consists of terms Trm (we write TrmT for terms
of type T), formulas For , programs Prog and updates Upd .
Besides some extensions we elaborate on below, terms and
formulas are defined as in standard first-order logic. Note,
there is a distinction between logical variables and program
variables. Both are terms themselves, the difference is that
logical variables must not occur in programs, but can be bound
by a quantifier. On the other hand, program variables can occur
in programs, but cannot be bound by a quantifier. Program
variables are flexible function constants, whose value can be
changed by a program.

Updates are discussed in [2] and can be viewed as gen-
eralized explicit substitutions. The grammar of updates is:
U ::= (U ‖U) | x := t, where x ∈ PV and t is a term
of the same type as x (or a subtype thereof). Updates can
be applied to terms and formulas, i.e., given a term t then
{U}t is also a term (analog for formulas). The only other non-
standard operator for terms and formulas in our logic is the
conditional term: let ϕ be a formula and ξ1, ξ2 are both terms
of compatible type or formulas, then if (ϕ) then (ξ1) else (ξ2)
is also a term or formula. There is a modality called box
[·]· which takes a program as first parameter and a formula
as second parameter. Intuitively the meaning of [p]φ is that
if program p terminates (uncaught exceptions are treated
as non-termination) then in its final state the formula φ
holds (our programs are deterministic). This means the box
modality is used to express partial correctness. The formula
φ → [p]ψ has the exact same meaning as the Hoare triple
{φ} p {ψ}. In contrast to Hoare logic, dynamic logic allows
nested modalities. The grammar for programs is:

p ::= x = t | x[t] = t | p;p
| if (φ) {p} else {p} | while (φ) {p}

where x ∈ PV , t, ϕ are terms/formulas. Syntactically valid
programs are well-typed and do not contain logic variables,
quantifiers or modalities.

We write if (ϕ) {p} as an abbreviation for
if (ϕ) {p} else {x = x}, where x ∈ PV is an
arbitrary program variable.

b) Semantics: Terms, formulas and programs are evalu-
ated with respect to a first order structure.

Definition 2 (First Order Structure, Variable Assignment).
Let D denote a non-empty domain of elements. A first order
structure M = (D, I, s) consists of

1) an interpretation I which assigns each
• sort T ∈ T a non-empty domain DT ⊆ D s.t. for
S � T ∈ T : DS ⊆ DT

• f : T1 × . . . × Tn → T ∈ F a function I(f) : DT1 ×
. . .×DTn → DT

• p : T1×. . .×Tn ∈ P a relation I(p) ⊆ DT1×. . .×DTn

2) a state s : PV → D assigning each program variable
v ∈ PV of type T a value s(t) ∈ DT . We denote the set
of all states by States .

We fix the interpretation of some sorts and symbols: I(int) =
Z, I(>) = D and the arithmetic operations +,−, /,%, . . .

as well as the comparators <,>,≤,≥, .= are interpreted
according to their standard semantics.

In addition we need the notion of a variable assignment
β : V → D which assigns each to logical variable an element
of its domain.

Definition 3 (Evaluation). Given a first order structure
(D, I, s) and a variable assignment β, we evaluate terms t
(of sort T) to a value valD,I,s,β(t) ∈ DT , formulas ϕ to a
truth value valD,I,s,β(ϕ) ∈ {tt ,ff }, updates U to a function
valD,I,s,β(U) : S → S, and programs p to a set of states
valD,I,s,β(p) ∈ 2S with valD,I,s,β(p) being either empty or
a singleton set.

A formula ϕ is called valid iff valD,I,s,β(ϕ) = tt for all
interpretations I , all states s and all variable assignments β.

The evaluation of terms and formulas without programs and
updates is almost identical to standard first-order logic and
omitted for brevity. The evaluation of an elementary update
with respect to a first order structure (D, I, s) and variable
assignment β is defined as follows:

valD,I,s,β(x := t)(s′) =

{
s′(y) ,y 6= x
valD,I,s,β(t) , otherwise

The evaluation of a parallel update valD,I,s,β(x1 :=
t1 ‖ x2 := t2) maps a state s′ to a state s′′ such that s′′

coincides with s′ except for the program variables x1,x2

which are assigned the values of the terms ti in parallel. In
case of a clash between two sub-updates (i.e., when xi = xj
for i 6= j), the rightmost update “wins” and overwrites the
effect of the other. The meaning of a term {U}t and of a
formula {U}ϕ is that the result state of the update U should
be used for evaluating t and ϕ, respectively.

A program is evaluated to the set of states that it may
terminate in when started in s. We only consider deterministic
programs, so this set is always either empty (if the program
does not terminate) or it consists of exactly one state.1 The
semantics of a program formula [p]ϕ is that ϕ should hold in
all result states of the program p, which corresponds to partial
correctness of p wrt. ϕ.

c) Heap Model.: The only heap objects we support in our
program language (for this paper—implemented are all Java
reference types) are integer typed arrays. We use an explicit
heap model similar to [3]. Heaps are modelled as elements of
type Heap, with two function symbols store : Heap× int[]×
int × int → Heap to store values on the heap and select :
Heap× int[]× int→ int to retrieve values from the heap.

For instance, store(h,a,i, 3) returns a new heap which is
identical to heap h except for the the i-th element of array a
which is assigned the value 3. To retrieve the value of an array
element b[j] we write select(h,b,j). There is a special
program variable heap which refers to the heap accessed by
programs. We abbreviate select(heap, a, i) to simply a[i]. To
ease quantification about array indices, we use ∀x ∈ [l..r).φ

1While programs themselves are deterministic, we can introduce at least
some non-determinism through the symbolic input values, which while having
a single value in each model leave open which model is under consideration.

as abbreviation for ∀x.((l ≤ x ∧ x < r) → φ)). Further, we
write ∀x ∈ arr.φ for ∀x ∈ [0..arr.length).φ.

Closely related to heaps are location sets which are defined
as terms of sort LocSet. Semantically, an element of LocSet
describes a set of program locations. A program location is
a pair (a, i) with valD,I,s,β(a) ∈ Dint[], valD,I,s,β(i) ∈ Z
which represents the memory location of the array element
a[i]. Syntactically, location sets can be constructed by func-
tions over the usual set operations. We use some convenience
functions and write a[l..r] to represent syntactically the loca-
tions of the array elements a[l] (inclusive) to a[r] exclusive.
Further, we write a[∗] for a[0..a.length].

d) Calculus.: We use a sequent calculus to prove that
a formula is valid. Sequents are tuples Γ ⇒ ∆ with
Γ (the antecedent) and ∆ (the succedent) finite sets of

seq1 . . . seqn
seq

formulas. A sequent valD,I,s,β(Γ ⇒ ∆)
has the same meaning as the formula
valD,I,s,β(

∧
Γ −>

∨
∆). A sequent calculus rule is given

by the rule schemata (to the right) where seq1, . . . , seqn (the
premisses of the rule) and seq (the conclusion of the rule) are
sequents. A rule is sound iff. the validity of the conclusion
follows from the validity of all its premisses.

A sequent proof is a tree of which each node is annotated
with a sequent. The root node is annotated with the sequent to
be proven valid. A rule is applied by matching its conclusion
with a sequent of a leaf node and attaching the premisses as its
children. If a branch of the tree ends in a leaf that is trivially
true, the branch is called closed. A proof is closed if all its
leaves are closed.

All first-order calculus rules are standard, so we explain only
selected sequent calculus rules which deal with formulas in-
volving programs. Given a suitable strategy for rule selection,
the sequent calculus implements a symbolic interpreter. For
example, here is the assignment rule for a program variable:

assignment
Γ⇒ {U}{x := t}[r]ϕ,∆

Γ⇒ {U}[x = t; r]ϕ,∆

And the assignment rule for an array location:

assignmentarray
Γ⇒ {U}{heap := store(heap,a,i, t)}[r]ϕ,∆

Γ⇒ {U}[a[i] = t; r]ϕ,∆

The assignment rules move an assignment into an update.
Updates accumulate in front of modalities during symbolic
execution of the program. Once the program has been sym-
bolically executed, the update is applied to the formula behind
the modality computing its weakest precondition. Symbolic
execution of conditional statements split the proof into two
branches:
ifElse

Γ, {U}g ⇒ {U}[p1; r]ϕ,∆ Γ, {U} ! g ⇒ {U}[p2; r]ϕ,∆

Γ⇒ {U}[if (g) {p1} else {p2}; r]ϕ,∆

For a loop, the simplest approach is to unwind it. However,
loop unwinding works only if the number of loop iterations
is bound. For unbounded loops we can use, for example, a
loop invariant rule. To apply the loop invariant rule a loop

specification consisting of a formula (the loop invariant) Inv
and an assignable (modifies) clause mod is needed.

loopUnwind

Γ, {U}g ⇒ {U}[p; while (g) {p}; r]ϕ,∆
Γ, {U} ! g ⇒ {U}[r]ϕ,∆

Γ⇒ {U}[while (g) {p}; r]ϕ,∆

loopInvariant
Γ⇒ {U}Inv ,∆ initial
Γ, {U}{Vmod}(g ∧ Inv)⇒ {U}{Vmod}[p]Inv ,∆ preserves
Γ, {U}{Vmod}(¬g ∧ Inv)⇒ {U}{Vmod}[r]ϕ,∆ use case

Γ⇒ {U}[while (g) {p}; r]ϕ,∆

The first premise (initial case) ensures that the loop invariant
Inv is valid before entering the loop. The second premise
(preserves case) ensures that Inv is preserved by an arbitrary
loop iteration, while for the third premise (use case), we
have to show that after executing the remaining program, the
desired postcondition ϕ holds. In contrast to standard loop
invariants, we keep the context (Γ,∆) in the second and third
premise, following [2]. This is sound, because we use an
anonymizing update Vmod = (Vvars

mod ‖ V
heap
mod) which is con-

structed as follows: Let x1, . . . ,xm be the program variables
and a1[t1], . . . ,an[tn] be the array locations occurring on the
left-hand sides of assignments in the loop body p. For each
i ∈ {1..n} let li, ri : int be chosen such that valD,I,s,β(ti) at
the program point ai[ti] = t; is always between valD,I,s,β(li)
(inclusive) and valD,I,s,β(ri) (exclusive). Then ai[li..ri] are
terms of type LocSet describing all array locations of ai
which might be changed by the loop. The anonymizing updates
are:

Vvars
mod := {x1 := c1 ‖ . . . ‖ xm := cm}

Vheap
mod := {heap := anon(. . . anon(heap,a1[l1..r1], anonH1), . . . ,

an[ln..rn], anonHn)}

where the ci are fresh constants of the same type as xi and
anonHeapi are fresh constants of type Heap. The function
anon(h1, locset, h2) takes two heaps h1, h2 and a location
set (locset) and returns a heap that is equal to h1 except for
the locations mentioned in locset whose values are set to the
values of these locations in h2. Informally, the anonymizing
updates assign all program variables that might be changed
by p and all locations enumerated in mod an unknown value
about which only the information provided by the invariant
Inv is available.

Updates can be simplified and applied to terms and formulas
using the set of (schematic) rewrite rules given in [2], [4].

B. Integrating Abstraction

We summarize from [1] how to integrate abstraction into
our program logic. This integration provides the technical
foundation for generating loop invariants.

Definition 4 (Abstract Domain). Let D be a concrete domain
(e.g., of a first-order structure). An abstract domain A is a
countable lattice with partial order v and join operator t
and without infinite ascending chains.2 It is connected to D
with an abstraction function α : 2D → A and a concretization
function γ : A→ 2D which form a Galois connection [5].

2The limitation to only finite ascending chains ensures termination of our
approach without the need to introduce widening operators. An extension to
infinite chains with widening would be easily realizable, although we have
not yet deemed it necessary.

Instead of extending our program logic by abstract elements,
we use a different approach to refer to the element of an
abstract domain:

Definition 5 (γα,Z-symbols). Given an abstract domain A =
{α1, α2, . . .}. For each abstract element αi ∈ A there a) are
infinitely many constant symbols γαi,j ∈ F , j ∈ N and
I(γαi,j) ∈ γ(αi), b) is a unary predicate χαi

where I(χαi
)

is the characteristic predicate of set γ(αi).

The interpretation I of a symbol γαi,j is restricted to one of
the concrete domain elements represented by αi, but it is not
fixed. This is important for the following notion of weakening:
with respect to the symbols occurring in a given (partial) proof
P and a set of formulas C, we call an update U ′ (P,C)-weaker
than an update U if U ′ describes at least all state transitions
that are also allowed by U . Formally, given a fixed D, then
U is weaker than U ′ iff for any first order structure M =
(D, I, s, β) there is a first order structure M ′ = (D, I ′, s, β)
with I and I ′ being two interpretations coinciding on all
symbols used so far in P and in C and if for both structures
valM (C) = tt and valM ′(C) = tt holds, then for all program
variables v the equation valM ({U}v) = valM ′({U ′}v) must
hold.

Example 1. An abstract domain for integers:
Let P be a partial proof with γ≤,3 not occurring in P . Then
update i := γ≤,3 is (P, ∅)-weaker than update i := −5 or
update i := c with a constant c (occurring in P) provided
χ≤(c) holds.

>

∅

≤ ≥

0neg pos

γ(>) = ZZ

γ(≤) = {i ∈ ZZ | i ≤ 0}
γ(≥) = {i ∈ ZZ | i ≥ 0}
γ(neg) = {i ∈ ZZ | i < 0}
γ(pos) = {i ∈ ZZ | i > 0}
γ(0) = {0}
γ(∅) = {}

The weakenUpdate rule from [1] allows abstraction in
our calculus:

weakenUpdate
Γ, {U}(x̄ .

= c̄)⇒ ∃γ̄.{U ′}(x̄ .
= c̄),∆ Γ⇒ {U ′}ϕ,∆

Γ⇒ {U}ϕ,∆

where x̄ are all program variables occurring as left-hand sides
in U and c̄ are fresh skolem constants . The formula ∃γ̄.ψ is
a shortcut for ∃ȳ.(χā(ȳ) ∧ ψ[γ̄/ȳ]), where ȳ = (y1, . . . , ym)
is a list of fresh first order variables of the same length
as γ̄, and where ψ[γ̄/ȳ] stands for the formula obtained
from ψ by replacing all occurrences of a symbol in γ̄ with
its counterpart in ȳ. Performing value-based abstraction thus
becomes replacement of an update by a weaker update. In
particular, we do not perform abstraction on the program, but
on the symbolic state.

III. LOOP INVARIANT GENERATION FOR ARRAYS

We refine the value-based abstraction approach from the
previous section for dealing with arrays. Rather than intro-
ducing an explicit abstract domain for arrays (e.g., abstracting
an array to its length), we extend the abstract domain of the
array elements to a range within the array. Given an index set
(range) R, an abstract domain A for array elements can be
extended to an abstract domain AR for arrays by copying the
structure of A and renaming each αi to αR,i. The αR,i are
such that γαR,i,j ∈ {arr ∈ Dint[] | ∀k ∈ R.χαi

(arr[k])}.

Example 2. Extending the sign domain for integers gives for
each R ⊆ IIN:

γ(>R) = Dint[]

γ(≤R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] ≤ 0}
γ(≥R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] ≥ 0}
γ(negR) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] < 0}
γ(posR) = {arr ∈ Dint[] | ∀k ∈ R. arr[k] > 0}
γ(0R) = {arr ∈ Dint[] | ∀k ∈ R. arr[k]

.
= 0}

γ(∅R) = {}

>R

∅R

≤R ≥R

0RnegR posR

Fixing R = {0, 2}, we have γ(≥{0,2}
) = {arr ∈ Dint[] | arr[0] ≥
0 ∧ arr[2] ≥ 0}. Importantly, the ar-
ray length itself is irrelevant, provided
arr[0] and arr[2] have the required
values. Therefore the arrays (we devi-
ate from Java’s array literal syntax for
clarity) [0, 3, 6, 9] and [5,−5, 0] are
both elements of γ(≥{0,2}).

Of particular interest are the ranges containing (at least)
all elements modified within a loop. One such range is
[0..arr.length). This range can always be taken as a fallback
option if no more precise range can be found.

A. Loop Invariant Rule with Value and Array Abstraction

We present the rule invariantUpdate, which splits the
loop invariant of the rule loopInvariant into an abstract
update U ′ and an invariant Inv :

Γ, {U}(x̄ .
= c̄)⇒ ∃γ̄.{U ′}(x̄ .

= c̄),∆
Γ,old

.
= {U}heap⇒ {U}Inv ,∆

Γ,old
.
= {U}heap, {U ′mod}(g ∧ Inv), {U ′mod}[p](x̄

.
= c̄)

⇒ ∃γ̄.{U ′mod}(x̄
.
= c̄),∆

Γ,old
.
= {U}heap, {U ′mod}(g ∧ Inv)⇒ {U ′mod}[p]Inv ,∆

Γ,old
.
= {U}heap, {U ′mod}(¬g ∧ Inv)⇒ {U ′mod}[r]ϕ,∆

Γ⇒ {U}[while (g) {p}; r]ϕ,∆

where U ′mod := (U ′ ‖ Vheap
mod) (Vvars

mod is not needed, as this is
included in the abstract update U ′), x̄, c̄, γ̄ and ∃γ̄ϕ are defined
as in the weakenUpdate rule and old is a fresh constant
used in Inv to refer to the heap before loop execution.
U ′ can contain updates x := γαi,j which combine the
anonymization of Vvars

mod with an invariant based on the ab-
stract domain. Inv contains invariants related to the heap.
Intuitively U ′mod and Inv together express all states in which

U ′ = (U ‖ i := γ≥,1 ‖ j := γ≥,2)

Inv = (∀k ∈ [0..j). χ>(a[k]))

∧ (∀k ∈ [0..i). χ≥(b[k]))

∧ (∀m ∈ c. (m < 2 ∗ i ∧m%2
.
= 0)

→ χ0(c[2 ∗m]))

∧ (∀m ∈ c. ¬(m < 2 ∗ i ∧m%2
.
= 0)

→ (c[m]
.
= select(old,c,m)))

Vheap
mod = heap := anon(anon(heap,b[0..i], anonHeap1),

c[∗], anonHeap2)

Fig. 1. Values for invariantUpdate

the program could be before or after any iteration of the
loop. The first two branches ensure that the abstract up-
date U ′mod and the invariant Inv are a valid weakening of

Listing 1. Example
i = 0; j = 0;
while(i < a.length) {
if (a[j] > 0) j++;
b[i] = j;
c[2*i] = 0;
i++;

}

the original update U . The next
two branches ensure that U ′mod
and Inv express an invariant
(for any given interpretation of
U ′mod satisfying Inv executing
the loop body results in an
abstract state no weaker than
U ′mod in which Inv remains
valid). The last branch is the use case, where ϕ must be
proven based on the state after exiting the loop and executing
the remaining program. Given the program p in Listing 1,
we can apply the assignment rule to Γ⇒ {U}[p]ϕ,∆ which
leads to Γ⇒ {U ‖ i := 0 ‖ j := 0}[while...]ϕ,∆. Now
invariantUpdate can be applied with the values in Fig. 1:
The update U ′ is equal to the original update U except for the
values of i and j which can both be any non-negative number.
The arrays b and c have (partial) ranges anonymized, while
a is not anonymized as it is not changed by the loop. The
invariants in Inv express that a) a contains positive values at
all positions prior to the current value of j, b) the anonymized
values in b3 (cf. Vheap

mod) are all non-negative, and c) the
anonymized values in c are equal to their original values (if
the loop does not or has not yet modified them) or are equal
to 0.

B. Computation of the Abstract Update and Invariants

We generate U ′, Vheap
mod and Inv automatically in a side

proof, by symbolic execution of single loop iterations until
a fixpoint is found. For each value change of a variable the
abstract update U ′ will set this variable to a value at least
as weak as its value both before and after loop execution. We
generate Vheap

mod and Inv by examining each array modification4

3Note choosing the range [0..i) for the array b is sound even when i ≥
b.length, as an uncaught ArrayIndexOutOfBoundsException is
treated as non-termination.

4Later we also examine each array access (read or write) in if-conditions to
gain invariants such as ∀k ∈ [0..j). χ>(select(heap,a, k)) in the example
above.

and anonymizing the entire range within the array (expressed
in Vheap

mod) while adding a partial invariant to the set Inv . Once
a fixpoint for U ′ is reached, we can refine Vheap

mod and Inv by
performing in essence a second fixpoint iteration, this time
anonymizing possibly smaller ranges and potentially adding
more invariants.

Our first step is to generate U ′ (with valid but imprecise
Vheap
mod and Inv). For this we use Algorithm 1 with input seq =

(Γ⇒ {U}[while (g) {p}; r]ϕ,∆).

Algorithm 1: Generating an abstract update and in-
variant fixpoint

input : the sequent seq
output: the fixpoint U ′ with valid Vheap

mod and Inv , as
(U ′m, Inv)

1 U ′m ← U ;
2 while no fixpoint found do
3 /* seq is of the form:

Γ⇒ {U ′m}[while (g) {p}; r]ϕ,∆ */
4 U∗ ← U ′m; Inv ← Γ∪!∆;
5 seq ←

(Γ, {U ′m}g ⇒ {U ′m}[p;while(g){p};r]ϕ,∆);
6 perform symbolic execution on seq;
7 /* all branches are either closed

or loop entry reached again */
8 foreach Γi ⇒ {Ui}[while (g) {p}; r]ϕ,∆i

representing an open branch do
9 // see Def. 6 for ṫ

10 (Inv ,U∗)← (Inv ,U∗) ṫ (Γi∪!∆i,Ui);
11 end
12 if U ′m is (P,Inv)-weaker than U∗ then
13 return (U ′m, Inv);
14 end
15 U ′m ← U∗; Γ← Γ ∪ {U ′m}Inv ;
16 seq ← (Γ⇒ {U ′m}[while (g) {p}; r]ϕ,∆);
17 end

In [1] a concrete implementation for joining updates
(C1,U1) tabs (C2,U2) with

tabs : (2For ×Upd)× (2For ×Upd)→ Upd

was computed as follows: For each update x := v in U1 or
U2 the generated update is x := v, if {U1}x

.
= {U2}x under

C1, C2 respectively. Otherwise it is x := γαi,j for some αi
where C1 ⇒ χαi

({U1}x) and C2 ⇒ χαi
({U2}x) are valid.

For a simple heap abstraction this returns (for some n ∈ IIN)
heap := γ>,n for any non-identical heaps.

Definition 6 (Joining Updates). As we wish to join the heaps
meaningfully, which leads to the generation of constraints, our
update join operation has the signature

ṫ : (2For ×Upd)× (2For ×Upd)→ (2For ×Upd)

and is defined by the property: Let U1 and U2 be arbitrary
updates in a proof P and let C1, C2 be formula sets repre-
senting constraints on the update values. Then for (C,U) =

(C1,U1) ṫ (C2,U2) the following holds for i ∈ {1, 2}: a) U
is (P, Ci)-weaker than Ui, b) Ci ⇒ {Ui}

∧
C, and c) ṫ is

associative and commutative up to first-order reasoning.

Let C1,U1 and C2,U2 be constraint/update pairs.
(C1,U1) ṫupd (C2,U2) computes the update Ures and
the set of heap restrictions as shown in Algorithm 2.

Algorithm 2: Concrete update join ṫupd
input : ((C1,U1), (C2,U2))
output: the weaker constraint/update pair (C,Ures)

1 // the heap update h’ will be ignored
2 (Ures ‖ heap := h′)← (C1,U1) tabs (C2,U2);
3 // see Def. 7 for t̂
4 (C, h)← (C1, {U1}heap) t̂ (C2, {U2}heap);
5 Ures ← (Ures ‖ heap := h);
6 return (C,Ures)

Definition 7 (Joining Heaps). The heap join operator has the
signature

t̂ : (2For×TrmHeap)×(2For×TrmHeap)→ (2For×TrmHeap)

and is defined by the property: Let h1 and h2 be arbitrary
heaps in a proof P, C1, C2 be formula sets representing
constraints on the heaps (and possibly also on other update
values) and let U be an arbitrary update. Then for (C, h) =
(C1, h1) t̂ (C2, h2) the following holds for i ∈ {1, 2}:
a) (U ‖ heap := h) is (P, Ci)-weaker than (U ‖ heap := hi),
b) Ci ⇒ {U ‖ heap := hi}

∧
C, and c) t̂ is associative and

commutative up to first-order reasoning.

We define the set of normal form heaps HNF ⊂ TrmHeap

to be only those heap terms based on heap with any number
of preceding stores and/or anonymizations. For a heap term
h ∈ HNF we define

writes(h) :=

{
∅ if h = heap

{h} ∪ writes(h′) if h = store(h′, a, idx, v)

{h} ∪ writes(h′) if h = anon(h′, a[l..r], h′′)

A concrete implementation t̂heap of t̂ is given as follows:
We reduce the signature to t̂heap : (2For ×HNF)× (2For ×
HNF) → (2For × HNF). This ensures that all heaps we
examine are based on heap and is a valid assumption when
taking the program rules into account, as these maintain this
normal form. As both heaps are in normal form, they must
share a common subheap (at least heap). The largest common
subheap of h1, h2 is defined as lcs(h1, h2) and all writes per-
formed on this subheap can be given as writes lcs(h1, h2) :=
writes(h1) ∪ writes(h2) \ (writes(h1) ∩ writes(h2)). Algo-
rithm 3 shows how the join of heaps (C1, h1) t̂heap (C2, h2)
is calculated.

Example 3. With a given precondition such as
P = ∀n ∈ b. select(heap,b, n)

.
= −1 and the program

in Listing 1, we demonstrate the first steps of Algorithm 1
with seq = P ⇒ {i := 0 ‖ j := 0}[while...]ϕ: After

Algorithm 3: Concrete heap join t̂heap
input : ((C1, h1), (C2, h2))
output: the weaker constraint/heap pair (Cres, hres)

1 hres ← lcs(h1, h2); Cres ← ∅;
2 W ← writes lcs(h1, h2);
3 foreach anon(h, a[l..r], anonHeap) or

store(h, a, idx, v) ∈W do
4 hres ← anon(hres, a[∗], anonHeap′);
5 i1, i2 ← the indices of the smallest αij such that

Cj ⇒ ∀k ∈ a. χαij
(select(hj , a, k));

6 Cres ←
Cres ∪ {∀k ∈ a. χαi1tαi2

(select(heap, a, k))}
7 end

initialization Inv = {P} and U∗ = (i := 0 ‖ j := 0). At
line 8 of Algorithm 1 we have two open branches:

P, {U∗}g,¬(select(heap,a, 0) > 0)⇒
{i := 1 ‖ j := 0 ‖ heap := store(store(heap,b, 0, 0),c, 0, 0)}

[while...]ϕ (1)
P, {U∗}g, select(heap,a, 0) > 0⇒

{i := 1 ‖ j := 1 ‖ heap := store(store(heap,b, 0, 1),c, 0, 0)}
[while...]ϕ (2)

We can use Algorithm 2 to compute the update join of the
original ({P},U∗) with ({P, {U∗}g,¬(select(heap,a, 0) >
0)},i := 1 ‖ j := 0 ‖ heap := h1) provided by
(1), where h1 = store(store(heap,b, 0, 0),c, 0, 0). This
produces (Cres,i := γ≥,1 ‖ j := 0 ‖ heap := hres),
where (Cres, hres) is a heap join of ({P},heap)
and ({P, {U∗}g,¬(select(heap,a, 0) > 0)}, h1).
Algorithm 3 can compute this as follows: The largest
common subheap is h′ = heap, so we have W =
{store(store(heap,b, 0, 0),c, 0, 0), store(heap,b, 0, 0)},
therefore:

Cres = {∀m ∈ b. χ≤(select(heap,b,m)),

∀n ∈ c. χ>(select(heap,c, n))}
hres = anon(anon(heap,b[∗], anonH1),c[∗], anonH2)

At line 10 of Algorithm 1 it holds that
U∗ = (i := γ≥,1 ‖ j := 0 ‖ heap := hres) and
Inv = Cres. Now the algorithm joins updates with the
second open branch, checks if a fixpoint has been found (it
has not) and enters the next iteration.

C. Symbolic Pivots

Algorithm 1 computes an abstract update U ′ expressing
the state of all non-heap program variables before and after
each loop iteration, in particular before entering the loop. It
also computes Vheap

mod and Inv , which give information about
the state of the heap before and after each loop iteration.
However, due to the chosen heap join in Algorithm 3, this
information is relatively weak as it assumes any update to an
array element could cause a change at any index. With the

generated U ′, however, we can refine Vheap
mod and Inv , keeping

the anonymizations in Vheap
mod to a minimum, while producing

stronger invariants Inv .
Consider the sequent Γ⇒ {U}[while(g){p}; r]ϕ,∆.

The update (U ′ ‖ heap := {U}heap) remains weaker
than U , as U ′ is weaker than U . For the sequent
Γ⇒ {U ′ ‖ heap := {U}heap}[while(g){p}; r]ϕ,∆
following Algorithm 1 we reach open branches
Γi ⇒ {Ui}[while (g) {p}; r]ϕ,∆i. Aside from the
values for heap, U ′ is weaker than Ui, as U ′ is a fixpoint.
We therefore do not have to join any non-heap variables
when computing (U∗, Inv), as fixpoints for these are already
calculated and will not change.

When joining constraint/heap pairs we distinguish between
three types of writes (see Sect. III-B): a) anonymizations,
which are kept, as well as any invariants generated for them
occurring in the constraints, b) stores to concrete indices, for
which we create a store to the index either of the explicit value
(if equal in both heaps) or of a fresh γi,j of appropriate type,
and c) stores to variable indices, for which we anonymize a
(partial) range in the array and give stronger invariants.

Given a store to a variable index store(h, a, idx, v), the in-
dex idx is expressible as a function index(γi0,j0 , . . . , γin,jn).
These γix,jx can be linked to program variables in the update
U ′, which contains updates pvx := γix,jx .We can therefore
represent idx as a function sp(. . .pvx . . .).

We call idx = sp(. . .pvx . . .) a symbolic pivot, as it
expresses what elements of the array can be changed based
on which program variables and allows us to partition the
array similar to pivot elements in array algorithms. Symbolic
pivots split the array into an already modified partition and an
unmodified partition, where (parts of) the unmodified partition
may yet be modified in later iterations.

Let P (W) be defined for an arbitrary symbolic pivot sp
as: P (W) := ∀k ∈ [{U}sp..{W}sp). {W}χαj (select(heap, arr, k))

Then P (U) is trivially true, as we are quantifying over an
empty set. Likewise, it is easy to show that the instance Q(U)
of the following is valid:

Q(W) :=∀k 6∈ [{U}sp..{W}sp).
select({W}heap, {W}arr, k)

.
= select({U}heap, {W}arr, k)

Therefore, anonymizing an array arr with
anon(h, arr[∗], anonHeap) and adding invariants P (U∗)
and Q(U∗) for the contiguous range [{U}sp..{U∗}sp) is
inductively sound, if P (U ′) ⇒ P (Ui) and Q(U ′) ⇒ Q(Ui).
The same is true for the range [{W}sp..{U}sp), we therefore
assume in the following w.l.o.g. that {W}sp ≥ {U}sp and
therefore only use the range [{U}sp..{W}sp).

Definition 8 (Iteration affine). Given a sequent
Γ⇒ {U}[p]ϕ,∆ where p starts with while, a term
t is iteration affine, if there exists some step ∈ ZZ such
that for any n ∈ IIN, if we unwind and symbolically
execute the loop n times, for each branch with sequent
Γi ⇒ {Ui}[p]ϕ,∆i it holds that there is some value v, such
that Γi∪!∆i ⇒ {Ui}t

.
= v and Γ∪!∆⇒ {U}t+n∗ step .

= v.

TABLE I
TEST SUITE RESULTS.

Method LocSets modified Array Invariants
arrayInit a[0..i] ∀j1 ∈ [0..i). a[j1]

.
= 0)

arrayMax - ∀j7 ∈ [0..i). a[j7] ≤ max5

arraySplit b[0..j] , c[0..k]

∀j5 ∈ [0..j). b[j5] > 0)

∀j6 ∈ [0..k). c[j6] ≤ 0)
firstNotNull - ∀j0 ∈ [0..i). a[j0]

.
= 0

sentinel - ∀j11 ∈ [0..i). a[j11] 6= x

After unwinding the loop body once we can posit a symbolic
pivot sp as iteration affine, using step := ({U ′}sp)−({U}sp),
where U ′ is the program state after executing the loop body.
We then add the constraint n ≥ 0 ∧ ({U}sp) + n ∗ step .

= v
for a fresh n in further fixpoint iterations while ensuring
({U ′}sp) .

= v + step. If this ceases to hold, sp is not
iteration affine and we remove the constraint in further fixpoint
iterations. Otherwise, once a fixpoint is found we know the
exact array elements that may be modified, as sp is iteration
affine. As expressing the affine range as a location set is non-
trivial, we anonymize the entire array and create the following
invariants for the modified and unmodified partitions (using the
symbols of Def. 8):

∀k ∈ arr. M → P (k) (3)
∀k ∈ arr. ¬M → arr[k]

.
= select({U}heap, arr, k) (4)

where M := (k ≥ {U}sp∧k < sp∧ (k−{U}sp)%step .
= 0).

Finally, we can also add invariants for array accesses which
influence control flow. For each open branch with a condition
C(select(h, arr, idx)) not already present in the sequent lead-
ing to it, we determine the symbolic pivot for idx and create
an iteration affine or contiguous invariant for it. In Fig. 1 the
invariants (3) and (4) are generated for the array c, while the
control flow influencing access of a[j] allows generation of
an invariant for the array a.

IV. IMPLEMENTATION

The presented approach has been implemented as a proof-
of-concept (available at www.key-project.org/fmcad15-albia/)
and integrated into a variant of the KeY verification system for
Java, which focuses on checking programs for secure infor-
mation flow. In this context the requirements on the invariants
is less than for functional verification and the precision of
the generated invariants should be strong enough for many
programs.

In addition to the array invariants we have shown can
be generated for Listing 1, we created a small test suite
out of some examples given in related work [6], [7] and
display the resulting array invariants produced by these tests
in Table I. The generation time is still quite high, ranging from
a few seconds to ten minutes. The relatively long runtime
is due to the current status of the implementation, which

5Relational abstract domains are not directly possible in our approach, but
we can generate invariants containing terms such as χ≤(a[j7]−max), which
is equivalent to the relational invariant a[j7] ≤ max.

does not perform any caching and is instrumented with debug
statements. In addition, the implementation currently uses
solely the internal proof producing theorem prover for the
invariant computation. Switching to an SMT solver for pure
first-order steps should increase speed significantly. As soon
as our implementation is stable, we will perform a systematic
benchmarking of our approach. One additional reason for long
runtimes is that in addition to the invariants generated for
the array elements themselves, we also generate some useful
invariants only semi-related to the array elements, such as the
following for the arraySplit example:

i ≤ a.length

j =

i−1∑
q=0

(a[q] > 0 ? 1 : 0)

k =

i−1∑
q=0

(a[q] > 0 ? 0 : 1)

, where

(b ? t : t′) =

{
t , if b
t′ , if ¬b

V. RELATED WORK

To find a fixpoint for non-heap variables we perform some-
thing akin to array smashing [8] for any array modifications
in loops. Our refinements based on symbolic pivots later
remedy much of this lost precision. In [9] invariants based
on linear loop-dependent scalars (i.e. variables which can be
modified by a loop) are computed. In [10] variables within
a loop are specified according to a number of properties:
increasing, dense, etc. There are similarities between iteration
affine variables and linear loop-dependent scalars as well as
the variables determined in [10]. Our approach uses symbolic
execution to determine iteration affine terms, in particular in
array indices, which do not have to coincide with iteration
affine variables. In [11] abstract domains need to be explicitly
supplied for the array indices, offering more possibilities than
our approach. However, our notion of iteration affine indices
offers the equivalent of an infinite number of abstract domains
for array indices which do not need to be explicitly supplied.
Their approach also does not allow for additional information
to be added about array elements without overwriting old
information. In contrast to CEGAR [12] which starts abstract
and refines the abstraction stepwise, we start with a fully
precise modeling and perform abstraction only on demand and
confined to a part of the state. In [13] arrays are modeled as
(many) contiguous partitions, while we allow both contiguous
partitions as well as affine ranges. In [6] templates are used to
introduce quantified formulas from quantifier-free elements,
while we allow the underlying abstract domain to function
as a ”template.” In [7] modification of array elements is
modeled by abstracting the program: the array is replaced by
multiple array slices containing abstract values. The text of
the program is used to influence which slices are generated.
By abstracting only program states, we can keep much higher
precision. Further, our use of symbolic execution lets us view
the result of the loop body, rather than just the text, allowing
two equivalent loop bodies to be treated the same with our
approach.

VI. CONCLUSION AND FUTURE WORK

We presented a novel approach to generate loop invariants
for loops that perform operations on arrays. The presented
approach integrates nicely into a framework which combines
deduction and abstract interpretation. As future work we intend
to improve the flexibility of the partitioning by supporting
more shapes than affine ranges and on improvements needed
for the treatment of nested loops. We will also extend our
approach to the diamond modality 〈·〉·, which expresses total
correctness. We investigate several speed ups including avoid-
ance of repeated symbolic execution by reusing the symbolic
execution tree of one general run, cache strategies for joins and
use of an SMT solver for pure first-order reasoning steps. We
intend to integrate our approach into the framework presented
in [14] to avoid their need for user specified loop invariants.

REFERENCES

[1] R. Bubel, R. Hähnle, and B. Weiß, “Abstract interpretation of symbolic
execution with explicit state updates,” in 7th Intl. Symposium on Formal
Methods for Components and Objects (FMCO 2008), ser. LNCS, vol.
5751. Springer, 2009, pp. 247–277.

[2] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification of Object-
Oriented Software: The KeY Approach, ser. LNCS. Springer, 2007, no.
4334.

[3] B. Weiß, “Deductive verification of object-oriented software —
Dynamic frames, dynamic logic and predicate abstraction,” Ph.D.
dissertation, KIT, January 2011. [Online]. Available: http://digbib.ubka.
uni-karlsruhe.de/volltexte/documents/1600837

[4] P. Rümmer, “Sequential, parallel, and quantified updates of first-order
structures,” in Logic for Programming, Artificial Intelligence and Rea-
soning, ser. LNCS, vol. 4246. Springer, 2006, pp. 422–436.

[5] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in 4th Symposium on Principles of Programming Languages
(POPL). ACM, 1977, pp. 238–252.

[6] S. Gulwani, B. McCloskey, and A. Tiwari, “Lifting abstract interpreters
to quantified logical domains,” SIGPLAN Not., vol. 43, no. 1, pp.
235–246, jan 2008. [Online]. Available: http://doi.acm.org/10.1145/
1328897.1328468

[7] N. Halbwachs and M. Péron, “Discovering properties about arrays in
simple programs,” SIGPLAN Not., vol. 43, no. 6, pp. 339–348, jun
2008. [Online]. Available: http://doi.acm.org/10.1145/1379022.1375623

[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival, “The essence of computation,” T. A.
Mogensen, D. A. Schmidt, and I. H. Sudborough, Eds. Springer, 2002,
ch. Design and Implementation of a Special-purpose Static Program
Analyzer for Safety-critical Real-time Embedded Software, pp. 85–108.
[Online]. Available: http://dl.acm.org/citation.cfm?id=860256.860262

[9] I. Dillig, T. Dillig, and A. Aiken, “Fluid updates: Beyond strong vs.
weak updates,” in Proc. of the 19th European Conf. on Programming
Languages and Systems, ser. ESOP’10. Springer, 2010, pp. 246–266.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-11957-6 14

[10] L. Kovács and A. Voronkov, “Finding loop invariants for programs
over arrays using a theorem prover,” in Proc. of the 12th Intl.
Conf. on Fundamental Approaches to Software Engineering, ser.
FASE ’09. Springer, 2009, pp. 470–485. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00593-0 33

[11] P. Cousot, R. Cousot, and F. Logozzo, “A parametric segmentation
functor for fully automatic and scalable array content analysis,” in
Proc. of the 38th Symposium on Principles of Programming Languages,
ser. POPL ’11. ACM, 2011, pp. 105–118. [Online]. Available:
http://doi.acm.org/10.1145/1926385.1926399

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer aided verification.
Springer, 2000, pp. 154–169.

[13] D. Gopan, T. Reps, and M. Sagiv, “A framework for numeric analysis
of array operations,” SIGPLAN Not., vol. 40, no. 1, pp. 338–350, jan
2005. [Online]. Available: http://doi.acm.org/10.1145/1047659.1040333

[14] M. Hentschel, S. Käsdorf, R. Hähnle, and R. Bubel, “An interactive
verification tool meets an IDE,” in Integrated Formal Methods -
11th International Conference, IFM 2014, Bertinoro, Italy, September
9-11, 2014, Proceedings, 2014, pp. 55–70. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-10181-1 4

APPENDIX

A. Proofs

Lemma 1. (tabs is an update join operator returning an
empty constraint set).

Proof. We must prove for all C1, C2, C3,U1,U2,U3 that for
U = (C1,U1) tabs (C2,U2):

1) For j ∈ {1, 2} U is (P, Cj)-weaker than Uj
This has already been proven in [1].

2) For j ∈ {1, 2} Cj ⇒ {Uj}
∧
∅

This is trivially true.
3) tabs is commutative with regard to semantics

Let (C2,U2) tabs (C1,U1) = UB . Then for all program
variables x either {U1}x = {U2}x in which case

{U}x = {U1}x = {UB}x

or {U}x and {UB}x are γ-symbols for an abstract
element αi1 t αi2 resp. αi2 t αi1 , which represent the
same abstract element, as t is a join operator on a lattice
and therefore commutative.

4) tabs is associative with regard to semantics
Let ((C1,U1) tabs (C2,U2)) tabs (C3,U3) = UA and
(C1,U1) tabs ((C2,U2) tabs (C3,U3)) = UB . Then for
all program variables x one of the following holds:

a) {U1}x = {U2}x = {U3}x in which case

{U}x = {U1}x = {UB}x

b) {U1}x = {U2}x 6= {U3}x. Let αa be the abstract
element for {U1}x and αb be the abstract element
for {U3}x. Then {U}x is a γ-symbol for the abstract
element αa t αb, while {UB}x is a γ-symbol for the
abstract element αa t (αa t αb). These represent
the same abstract element, as t is associative and
idempotent.

c) {U1}x 6= {U2}x = {U3}x. This is analogous to 4b.
d) {U1}x 6= {U2}x 6= {U3}x in which case {U}x

and {UB}x are γ-symbols for an abstract element
(αi1 t αi2) t αi3 resp. αi1 t (αi2 t αi3),
which represent the same abstract element, as t is a
join operator on a lattice and therefore associative.

Lemma 2. (The order in which the elements of W are iterated
in Algorithm 3 is irrelevant for the output with regard to
semantics).

Proof. As Cres is a set, it is plain that the order in which
elements are added to it is irrelevant. As generated elements
do not rely on previously generated elements it is therefore
clear that Cres will always be the same no matter how W is
iterated through. The resulting hres is influenced by the order

in which the elements of W are iterated, but we show that
this is not relevant with regard to semantics, i.e. I(hres) is
not influenced by the ordering. hres has the form

anon(. . . anon(h′, a1[0..a1.length], anonH1) . . . ,

an[0..an.length], anonHn)

where all anonHi are fresh and therefore can be exchanged
with oneanother freely without changing the semantic mean-
ing. If I(ai) = I(aj) for some i < j, we can replace
anon(hi, ai[0..ai.length], anonHi) with hi without chang-
ing the semantic meaning, as only the outermost anonymiza-
tion has an effect visible from the outside. However, as in both
cases the entire array is anonymized, we could instead replace
anon(hj , aj [0..aj .length], anonHj) with hj with the same
result. We can therefore rearrange hres to:

anon(. . . anon(h′, ai1 [0..ai1 .length], anonH1) . . . ,

aim [0..aim .length], anonHm)

where ij 6= ik → I(aij) 6= I(aik). In this case the semantic
meaning is unchanged if we exchange the ordering of the
anonymizations, as they all refer to different arrays and can
therefore be anonymized in parallel.

Lemma 3. (t̂heap is a heap join operator on the reduced
signature (2For ×HNF)× (2For ×HNF)→ (2For ×HNF)).

Proof. We must prove for all C1, C2, C3, h1, h2, h3 and an
arbitrary update U that for (C, h) = (C1, h1) t̂heap (C2, h2):

1) For j ∈ {1, 2} (U ‖ heap := h) is (P, Cj)-weaker than
(U ‖ heap := hj)
For all program variables x 6= heap this is trivially true,
as {U ‖ heap := h}x = {U ‖ heap := hj}x. As for
heap, the untouched subheap lcs(h1, h2) in h is equal
to the matching subheap in hj , while any changes on that
subheap are merely anonymizations which can obviously
only weaken the heap. Therefore h is even (P, ∅)-weaker
and in particular (P, Cj)-weaker than hj .

2) For j ∈ {1, 2} Cj ⇒ {U ‖ heap := hj}
∧
C

As all elements of C are being evaluated in the update
U ‖ heap := hj , they each have the form

∀k ∈ [0..a.length). χαi1
tαi2

(select(hj , a, k)).

Furthermore, we know from line 5 in Algorithm 3 that

Cj ⇒ ∀k ∈ [0..a.length). χαij
(select(hj , a, k)).

As t is the join operator of a lattice, χαi1
tαi2

(x) must
hold whenever χαij

(x) holds for any x.
3) t̂heap is commutative with regard to semantics

Let (C2, h2) t̂heap (C1, h1) = (CB , hB). With Lemma 2
we can choose the ordering such that h is identical to hB .
Further, for each element F ∈ C (F ∈ CB), F has the
form

∀k ∈ [0..a.length). χαi1
tαi2

(select(heap, a, k))

and there is a matching formula G ∈ CB (G ∈ C):

∀k ∈ [0..a.length). χαi2
tαi1

(select(heap, a, k))

As t is the join operator of a lattice, it is commutative
and therefore the formulas are equivalent.

4) t̂heap is associative with regard to semantics
Let ((C1, h1) t̂heap (C2, h2)) t̂heap (C3, h3) = (CA, hA)
and (C1, h1) t̂heap ((C2, h2) t̂heap (C3, h3)) = (CB , hB).
With Lemma 2 we can choose the ordering such that hA
is identical to hB . Further, for each element F ∈ CA, F
has the form

∀k ∈ [0..a.length). χ(αi1tαi2)tαi3
(select(heap, a, k))

and there is a matching formula G ∈ CB :

∀k ∈ [0..a.length). χαi1t(αi2tαi3)(select(heap, a, k))

As t is the join operator of a lattice, it is associative
and therefore the formulas are equivalent. This holds
analogously for all F ′ ∈ CB .

Lemma 4. (ṫupd is an update join operator).

Proof. We must prove for all C1, C2, C3,U1,U2,U3 that for
(C,U) = (C1,U1) ṫupd (C2,U2):

1) For j ∈ {1, 2} U is (P, Cj)-weaker than Uj
For all program variables x 6= heap we have:

{U}x = {(C1,U1) tabs (C2,U2)}x

From Lemma 1 we know that (C1,U1) tabs (C2,U2)
is (P, Cj)-weaker than Uj . Further, we know
that (C1, {U1}heap) t̂heap (C2, {U2}heap) =
(C, {U}heap). We therefore know that for some
updates U∗,U∗j it holds that U = (U∗ ‖ heap := h)
is (P, Cj)-weaker than (U∗ ‖ heap := hj), which
is (P, Cj)-weaker than (U∗j ‖ heap := hj) = Uj .
As (P, Cj)-weaker is transitive, it follows that U is
(P, Cj)-weaker than Uj .

2) For j ∈ {1, 2} Cj ⇒ {Uj}
∧
C

As (C, h) = (C1, {U1}heap) t̂ (C2, {U2}heap) and t̂
is a heap join operator, we know that

Cj ⇒ {U∗ ‖ heap := hj}
∧
C

for hj = {Uj}heap and all updates U∗. As the update
Uj is equivalent to an update (U ′ ‖ heap := hj) for
some update U ′, it therefore must also hold that:

Cj ⇒ {Uj}
∧
C.

3) ṫupd is commutative with regard to semantics
Let (C2,U2) ṫupd (C1,U1) = (CB ,UB ‖ heap := hB)
and U = (UA ‖ heap := hA). Then from line 4 of
Algorithm 2 it follows that

(C, hA) = (C1, {U1}heap) t̂ (C2, {U2}heap)

(CB , hB) = (C2, {U2}heap) t̂ (C1, {U1}heap)

As t̂ is a heap join operator (C, hA) and (CB , hB) are
equivalent with regard to semantics. For any program
variable x 6= heap:

{UA}x = {(C1,U1) tabs (C2,U2)}x
{UB}x = {(C2,U2) tabs (C1,U1)}x

As tabs is an update join UA and UB are also equivalent
with regard to semantics. As C and CB are equivalent and
the updates (UA ‖ heap := hA) and (UB ‖ heap :=
hB) behave equally, ṫupd is commutative with regard to
semantics.

4) ṫupd is associative with regard to semantics
Let ((C1,U1) ṫupd (C2,U2)) ṫupd (C3,U3) = (CA,UA)
and (C1,U1) ṫupd ((C2,U2) ṫupd (C3,U3)) = (CB ,UB)
for some updates U∗A,U∗B with UA = (U∗A ‖ heap := hA)
and UB = (U∗B ‖ heap := hB). Then for all program
variables x 6= heap:

{U∗A}x = {((C1,U1) tabs (C2,U2)) tabs (C3,U3)}x
{U∗B}x = {(C1,U1) tabs ((C2,U2) tabs (C3,U3))}x

With regard to semantics U∗A and U∗B are equivalent
as tabs is associative. With hi = {Ui}heap for i ∈
{1, 2, 3} we have:

(CA, hA) = ((C1, h1) t̂ (C2, h2)) t̂ (C3, h3)

(CB , hB) = (C1, h1) t̂ ((C2, h2) t̂ (C3, h3))

So (CA, hA) and (CB , hB) are also equivalent as t̂ is
associative with regard to semantics. Therefore ṫupd is
associative with regard to semantics.

