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Abstract—Peer-to-Peer networks are divided into
two main classes: unstructured and structured.
Overlays from the first class are better suited for
exhaustive search, whereas those from the second
class offer very efficient key-value lookups. In this
paper we present a novel overlay, PathFinder,
which combines the advantages of both classes
within one single overlay for the first time. Our
evaluation shows that PathFinder is comparable or
even better in terms of lookup and complex query
performance than existing peer-to-peer overlays
and scales to hundreds of millions of nodes. Peers in
PathFinder are arranged as Erdis Renyi random
graph. Consequently, all overlay operations such
as key-value lookup, complex queries and main-
tenance messages greatly benefit from the short
average path length, the high number of alternative
paths and the robustness of the underlying random
graph topology.

Index Terms—Peer-to-Peer, Overlay-Network,
Key-Lookup, Exhaustive Search, DHT

I. INTRODUCTION

Peer-to-peer overlay networks can be classi-
fied into unstructured and structured networks,
depending on how they construct the overlay [1].

In an unstructured network the peers are free
to choose their overlay neighbors and what they
offer to the network.! In order to discover if a
certain piece of information is available a peer
must somehow search through the overlay. There
are several implementations of such search al-
gorithms. The original Napster used a central
index server, Kazaa relied on a hybrid network
with supernodes and the original Gnutella used a
decentralized flooding of queries [1]. The Bub-
bleStorm network [2] is a fully decentralized
network based on random graphs and is able to
provide efficient exhaustive search.

'In this paper we focus on networks where peers store and
share content, e.g., files, database items, etc.
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Structured networks, on the other hand, have
strict rules about how the overlay is formed
and where content should be placed within the
network. Structured networks are also often called
distributed hash tables (DHT) and the research
world has seen several examples of DHTs [3], [4],
[51, [6], [7], (8], [9]. DHTs are based on hashing
peer and object identifiers and distributing the ID
space among the peers. Typically, the number of
messages needed to locate an object in a DHT
grows logarithmically with the number of peers
in the system. Thus, DHTs are very efficient for
simple key-value lookups. Because objects are
addressed with their unique names, searching in a
DHT is hard to be made more efficient [10], [11],
[12]. However, wildcard searching and complex
queries either impose extensive complexity and
costs in terms of additional messages or are not
supported at all,

Given the attractive properties of both these
different network structures: (i) human-friendly
keyword searches in unstructured networks and
(ii) computer-friendly and efficient lookups in
DHTs, it is natural to ask the question: Is it
possible to combine these two properties in one
single network?

Our answer to the above question is PathFinder,
a peer-to-peer overlay which combines an un-
structured and a structured network in a single
overlay. PathFinder is based on a random graph
which gives it short average path length, large
number of alternative paths for fault tolerable,
highly robust and reliable overlay topology. Fur-
thermore, the number of neighbors in PathFinder
does not depend on the network size. Therefore,
the load of individual peers in PathFinder remains
constant even if the network grows up to 100
million or more peers. Our main contribution is
the efficient combination of exhaustive searching
and key-value lookups in a single overlay.



We evaluate PathFinder analytically and em-
pirically and investigate its resistance to churn
and its robustness. Our results clearly show that
PathFinder is highly scalable, fast, robust and
requires only a small per-peer state. In terms
of exhaustive search performance PathFinder is
comparable to BubbleStorm [2]. In terms of DHT-
like lookup performance, our results show that
PathFinder is at least as good as current DHTSs
and often requires even less overlay hops.

The rest of this paper is organized as follows.
In Section H we present an overview of Path-
Finder. Section III compares it to existing P2P
overlays. Sections IV and V discuss PathFinder’s
resistance to churn and attacks respectively. We
conclude in Section VL

II. PATHFINDER DESIGN

In this section we present the system model and
preliminaries of PathFinder. We also describe how
basic processes like key-value lookup and ex-
haustive search work as well as how our overlay
manages nodes joining/leaving the network and
handles crashed nodes. Finally, we discuss how
PathFinder can be built in a practical scenario,

A. Challenges

We designed PathFinder to be fully compliant
with the concept of BubbleStorm [2], namely an
overlay structure based on random graphs. We
augment the basic random graph with a determin-
istic lookup mechanism (see Section II-D) to add
efficient lookups into the exhaustive search pro-
vided by BubbleStorm. The challenge and one of
the key contributions of this paper is developing
a deterministic mechanism for exploiting these
short paths in order to implement DHT-lookups.

PathFinder meets the following key-
requirements:

« Scalability: Average path length of an object
lookup grows with in(N)/in(c), where N
is the number of peers and c the average
number of neighbors per peer.

« Constant per-peer state: The list of neigh-
bors maintained by each peer does not de-
pend on the network size.

« Flexible exhaustive search: Thanks to its
underlying random graph topology, Path-
Finder supports exhaustive search with tun-
able success probability [2]. Any type of
queries are supported.

o Key lookup: Locating an object in the net-
work is competitive or even faster (in terms
of overlay hops) than in other DHTS.

B. System Model and Preliminaries

All processes in PathFinder benefit from the
properties of its underlying random graph and the
routing scheme built on top of it.

Erdds-Rényi random graphs®: Random graphs
have many attractive features, such as short aver-
age distance between the nodes and small diam-
eter (both increase only logarithmically with the
network size), high resistance against node fail-
ures, and the existence of several alternative paths
between every two nodes in the network [13]. The
average path length of a random graph can be
estimated by L = lﬁi((]\’c)), where c¢ is the average
number of neighbors per node and N the number
of nodes in the network. All these properties are
highly desirable in any peer-to-peer overlay.

The challenge in building a peer-to-peer over-
lay on top of a random graph is that they have
no structure, which implies that there is no rule
stating which peer is a neighbor of which other
peer. This is exactly the opposite of DHT over-
lays, which have construction principles allowing
each node in the network to compute its neighbors
in an unambiguous manner. This property enables
DHTs to perform extremely efficient key lookups.

PathFinder’s main contribution lies in defin-
ing a mechanism for reconstructing the neighbor
list of another node in an Erdds-Rényi random
graph. This gives us a very robust DHT network
topology with straight-forward exhaustive search
and exact key lookup mechanisms. Our solution
allows for a completely local reconstruction of
the neighbor lists; no additional network commu-
nication is required.

PathFinder construction principle: The basic
idea of PathFinder is to build a robust network
of virtual nodes on top of the physical peers (i.e.
actual physical nodes). Routing among peers is
carried out in the virtual network. The actual
data transfer still takes place directly among the
physical peers. PathFinder builds a random graph
of virtual nodes and then distributes them among
the actual peers. At least one virtual node is
assigned to each peer. From the routing point of
view, the data in the network is stored on the
virtual nodes.

21, the rest of the paper we use the term random graph.




When a peer B is looking for a particular piece
of information it has to find a path from one of
its virtual nodes to the virtual node containing
the requested data. Then B directly contacts the
underlying peer A which is responsible for the
targeted virtual node. B retrieves the requested
data directly from A. This process is described in
detail in Section II-D.

It is known that the degree sequence in a
random graph is Poisson distributed. We need
two pseudorandom number generators (PRNG)
which initialized with the same ID always pro-
duce a deterministic sequence of numbers. Given
a number c, the first generator returns Poisson dis-
tributed numbers with mean value c. The second
PRNG given a node ID produces a deterministic
sequence of numbers which we use as IDs for the
neighbors of the given node.

The construction principle of PathFinder is as
follows. First we fix a number c (see Section II-H
how to chose ¢ according to the number of peers
and how to adapt it once the network becomes
too small/large). Then, for each virtual node we
determine the mumber of neighbors with the first
number generator. The actual nodes IDs to which
the current virtual node should be connected are
chosen with the second number generator. The
number generator is started with the ID of the
virtual node. The process can be summarized in
the following steps:

1) The underlying peer determines how many
virtual nodes it should handle. See Sec-
tion II-F for details.

2) For every virtual node handled by the peer:

a) The peer uses the poisson number
generator to determine the number of
neighbors of the current virtual node.
The peer then draws as many pseudo
random numbers according to the
number drawn in the previous step.

The peer selects the virtual nodes with
IDs matching to those numbers as
neighbors for its current virtual node.

b)

c)

The following is a pseudo code implementa-
tion: The function nextPoisson is initialized
with the current virtual node ID and returns a
pseudorandom number from a Poisson distribu-
tion to determine the number of neighbors. The
function nextRandom is initialized with the
current virtual node ID as well and returns a de-
terministic random numbers uniformly distributed
between 0 and N, where IV is the number of

virtual nodes in the network.

for each vNode.ID do
numNeighbrs=nextPois (¢,vNode.ID);
ran_seed=init_ran_seed (vNode.ID);
while 1 < numNeighbors do
neighID=random_seed.nextRan ()
vNode. store (neigh.ID);
i=1i+ 1;
end while
end for

The construction mechanism of PathFinder al-
lows the peers to build a random graph out of
their virtual nodes. It is of crucial importance
that a peer only needs a PRNG to perform that
operation. There is no need for network commu-
nication. Similarly, any peer can determine the
neighbors of any virtual node, by simply seeding
the pseudo random number generator with the ID
corresponding to the virtual node.

Now we have both, a random graph topology
suited for exhaustive search and a mechanism
for each node to compute the neighbor list of
any other node. As we will discuss in detail in
Section II-D, that is sufficient for any peer to
contact any other targeted peer in the network
by traversing just one single path, i.e. we can
guarantee an efficient DHT behavior within the
PathFinder overlay.

Note that neighbor links in the random graph
are directed. The routing table of a peer is de-
termined by the neighbors of its virtual nodes.
It contains all the direct neighbors of all of its
virtual nodes in the random graph. These tables
are easy to maintain, because all peers hold only
between one and two virtual nodes on average
(i.e. ¢ to 2¢ neighbors). As our results show, value
of ¢ = 20 is sufficient for good performance and
better performance can be obtained for higher
values of ¢. One entry in the routing table contains
the virtual node ID and its IP address. Hence,
the value of ¢ could possibly be set much higher,
routing tables with more than hundred entries are
common in e.g. Kademlia, Pastry etc.

Routing table example of PathFinder: Figure 1
shows a small sample of PathFinder with a rout-
ing table for the peer with ID 11. The random
graph has 5 virtual nodes (1 through 5) and there
are 4 peers (with IDs from 11 through 14). Peer
11 handles two virtual nodes (4 and 5) and all
the rest of the peers have 1 virtual node each.
The arrows between the virtual nodes show the
directed neighbor links.

Each peer keeps track of its own outgoing




Routing Table Peer 11

Outgoing Links | Incoming Links
Node 1D 3 1 -3
Peer 13 12 13

Fig. 1. A small example of PathFinder.

links as well as incoming links from other virtual
nodes. A peer learns the incoming links when
the other peers attempt to connect to it. Keeping
track of the incoming links is strictly speaking
not necessary, but makes key lookups much more
efficient (see Section T-D). The routing table
of peer marked as 11 therefore consists of all
outgoing links from its virtual nodes 4 and 5
and the incoming link from virtual node 3. In
general, every peer is responsible for keeping only
its outgoing links alive. In contrast to established
DHTs, the maintenance costs of PathFinder does
not depend on the network size as the average
number of neighbors in the random graph is fixed.

C. Storing Objects

An object is stored on the virtual node (i.e. on
the peer responsible for the virtual node) which
matches the object’s identifier. If the hash space is
larger than the number of virtual nodes, then we
map the object to the virtual node whose identifier
matches the prefix of the object hash.

There is no need for an additional lookup ser-
vice. When a peer is looking for an exact object,
like a concrete file, it uses the hash function
to compute the object identifier. Then the peer
performs an efficient key lookup to the corre-
sponding virtual node (DHT similar behavior).
When the peer is looking for a range of objects,
like all files containing a given regular expression
in their titles, the peer performs exhaustive search
which returns the object and its identifier (un-
structured overlay similar behavior). Subsequent
retrievals as well as parallel requests to replicas
of the same object can be done by using the
identifier to perform a lookup (Section II-D). This
is a strong advantage of PathFinder as soon as
one copy of a desired data object is found with
exhaustive search, all remaining copies can easily
be accessed using a subsequent key lookup.

D. Key Lookup

Key lookup is the process when a peer contacts
another peer possessing a given data of interest.
Using the structure of the network, the requesting
peer traverses only one single and usually short
path from itself to the target peer.

Key lookup is the main function of a DHT.
In order to perform quick lookups, the average
number of hops between peers as well as the
variance needs to be kept small. We now show
how PathFinder achieves efficient lookups and
thus behaves as any other DHT. Suppose that
peer A wants to retrieve an object O. Peer A
determines that the virtual node w is responsible
for object O by using the hash function described
above. Now A has to route in the virtual network
from one of its virtual nodes to w and directly
retrieve O from the peer responsible for w.

Denote with V the set of virtual nodes managed
by the peer A. For each virtual node in V, A
calculates the neighbors of those nodes. (Note
that this calculation is already done, since these
neighbors are the entries in peer A’s routing
table.) A checks if any of those neighbors is the
virtual node w. If yes, A contacts the underlying
peer to retrieve O. If none of peer A’s virtual node
neighbors is responsible for O, A calculates the
neighbors of all of its neighbors, i.e. its second
neighbors. Because the neighbors of each virtual
node are pre-known (see Section II-B), this is a
simple local computation. Again, peer A checks if
any of the new calculated neighbors is responsible
for O. If yes, peer A sends its request to the
virtual node whose neighbor is responsible for
O. If still no match is found, peer A expands its
search by calculating the neighbors of the nodes
from the previous step and checks again. The
process continues until a match is found. In worst
case, A will have to calculate several neighbors,
but a match is guaranteed.

For an average degree of ¢ per virtual node, the
above process requires us to compute ¢ nodes
for each step 4. This becomes unwieldy for large
networks which may require a large number of
steps. For example, with ¢ = 20 and 100 million
nodes we need about 8 steps, i.e., 208 = 2.5 10%0
nodes. We mitigate this problem by expanding the
search rings from both A and w simultaneously,
as shown in Figure 2.

Because peer A is able to compute w’s neigh-
boring virtual nodes, A can expand the search
rings locally from both the source and target




Fig. 2. Key lookup with local expanding ring search from
source and target

sides, which is called forward and backward
chaining. In every step the search depth of the
source and target search ring is increased by one.
In that way the number of rings around the source
are divided between the source itself and the
target. This leads to exponential decrease in the
number of node IDs that have to be computed.

Now assume that the virtual node v is the
intersection among the search rings around the
source and the target. Recall that the edges among
virtual nodes are directed, but that the underlying
peers also keep track of their incoming links. That
is, we now have a path from one of the virtual
nodes of A to v and a path from w to v. All
the nodes between w and v keep track of their
incoming links. Therefore, they can also traverse
the path backwards from v to w and thus provide
A with a routing path to w.

The discovered path is passed along with the
lookup message. Thus, every peer on the path
knows immediately to which of its neighbors it
should forward the query. In essence, PathFinder
uses source routing for key lookups. Note that the
whole computation of the path happens locally
on the source peer. No additional messages have
to be communicated. All costs come in the form
of memory usage and computation time on the
source peer. Those are however negligible for
any regular computer: around 3.2 Megabytes of
memory storage and simple integer computations
on hashtables with several thousand entries. That
was the maximum computer power required for
carrying out the experiments described below.

We generated various PathFinder networks
from 103 up to 10% nodes with average degree
20. In all of them we performed 5000 arbitrary
key lookups. It turned out that, expanding rings of
depth 3 or 4 (i.e., path length between 6 and 8) is
sufficient for a successful key lookup, as shown in
Figure 3. In the figure the x-axis shows the path
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Fig. 3. Distribution of complete path length for 5000 key
lookups with ¢ = 20

length and the y-axis shows the cumulative frac-
tion of observed paths. For example, for 1 million
nodes the average path length is concentrated
around 6. The theoretical average shortest path
length for a random graph with 1 million nodes
and average degree 20 is 4.6. The slight difference
is caused by the forward/backward chaining.

Figure 3 also shows that increasing the net-
work size by a factor of 100 leads only to
two additional hops for key lookups. The key
lookup performance depends mainly on the av-
erage number of neighbors ¢ and only slightly
on the number of virtual nodes V. It has been
shown that the average path length scales with
O(In{(N)/ In(c)) [13].

E. Searching with Complex Queries

PathFinder supports searching with complex
queries with tunable success rate almost identical
to BubbleStorm [2]. In fact, since both Path-
Finder and BubbleStorm are based on random
graphs, we implemented the search mechanism
of BubbleStorm directly into PathFinder. In Bub-
bleStorm both data and queries are sent to some
number of nodes, where the exact number of
messages depends on how we set the probability
of finding the match. We use exactly the same
algorithm in PathFinder for searching and the
reader is referred to [2] for details. The only
difference is that the success probability in Path-
Finder is known in advance because it depends
on the size of the random graph. The size of the
random graph of virtual nodes is known.

E Node Join and Leave

We now describe how peers join and leave the
PathFinder overlay. The following invariants must
hold at any time:

« All virtual nodes must be assigned to peers.




« Outgoing links must be maintained by the

responsible peer.

o Incoming links are kept in the peer’s state.

The purpose of the node join process is to
integrate a new peer into the PathFinder overlay.
The join process can also be used to automatically
rebalance the network load, because virtual nodes
may be unevenly distributed among the peers.
When a new peer B wants to join the network
it contacts a peer A that is already part of the
network. The first virtual node assigned to B
is calculated as a hash of its IP address. Peer
A routes the join request using the key lookup
procedure (Section II-D) to the virtual node which
matches B’s identifier. Let this node be handled
by the peer C'. C hands one or more of its virtual
nodes over to B and informs the neighbors about
the new peer B. In Section II-H we consider the
case where C has no excess virtual nodes and B
has to contact other peers to find a free virtual
node and how the network adapts to such cases.

A successful join means that (i) a peer releases
some of its virtual nodes to the new peer, but
keeps at least one for itself and (ii) the new peer
has successfully established connections to its
neighbors. After the join process is completed, the
new peer has at least one virtual node and an up-
to-date neighbors table. The three invariants hold
through the whole join procedure in the absence
of node failures. We handle them shortly.

When a peer leaves the network properly,
he/she hands all his/her virtual nodes over to
his/her neighbors, which are then responsible for
establishing connections to the underlying peers.

Observation: Peer joining/leaving the network
causes on average ¢ + In(NV)/In(c) messages.

The peer joining the network is routed to an
arbitrary position determined by the hash function
of its IP address. This costs one key lookup,
which on average takes In(IN)/In(c) messages.
The outgoing neighbors are directly transfered
from the issuing node. Then, on average ¢ incom-
ing links transferred from the issuing node need to
be updated, which causes additional ¢ messages.

G. Node Crash

A node crash is the sudden departure of a peer
from the network without correctly following the
departure protocol from above. A crash violates
the invariants from Section II-F and neighbors
tables are no longer correct.
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Fig. 4. Repair costs for network with 5,000 peers

The absence of the failed peer is recognized
by its neighbors when they stop receiving keep-
alive messages from it. The time for detecting
a failed peer depends on the interval used for
keep-alive messages. When a peer detects another
failed peer it calculates locally all neighbors of
its virtual node(s). The first peer in the sorted
neighbor list has to take over the abandoned
virtual node(s). Therefore the peer which has
detected the failed peer sends the first peer in
the list its own IP address and a message that
it should start a recovery process. If the first
peer in the neighbor list is not responding, it is
replaced by the next peer in the list. Each peer
which has detected the missing peer and still has
not received a recovery message, also follows the
above protocol. In case of concurrent attempts
for taking over the abandoned virtual node, the
peer with the smallest position in the neighbor
list continues the recovery process.

After a responsible peer has been determined a
new routing table for the failed virtual node has
to be generated. For this purpose ¢ key lookups
are performed. After this step, which needs cll%(%)
hops on average, a routing table of all outgoing
links of the abandoned virtual node is established.

The remaining incoming links are recovered
automatically by the nodes pointing to the failed
node. They notice timeouts of keep-alive pings
sent to the failed node, because they still have
the IP address of the crashed peer. They update
their routing tables by performing a regular key
lookup to the virtual node. This reveals the IP
address of the new responsible peer in c%%%)
steps on average.

Observation: A failed
2¢(In(N)/In(c)) messages on
repair the network overlay.

peer  causes
average to

Figure 4 shows the recovery messages volume




for a simulated PathFinder network with 5,000
peers and different fractions of crashed peers. The
x-axis shows the time in steps from the crash to
full recovery. One step is at least one roundtrip
time between two peers in real time. The y-axis
shows the total amount of maintenance messages
for each step in the whole system. The crash
occurs at step 0 when the failed peers, 10-50%
of all peers, disappear at once.

Moderate crashes (up to 30% crashed peers)
are healed in about 100 simulated time units, and
even a crash of half the peers is practically healed
in 300 time units. The message load also remains
reasonable, with about 36 messages per peer on
average (half of 5,000 peers crashed in worst case
and total number of messages in system is under
18,000). Considering the real-world time to heal
the system, if 1 time unit is 120 milliseconds then
the system would heal itself in 12 seconds for
the smaller crashes and in 36 seconds for the
50% crash. The main determining factor is the
ability of peers to send all the required messages
in one step, so the recovery could potentially
take longer. However, recovery times are still
very short, on the order of a few minutes at
maximum. Similar performance was observed as
well in BubbleStorm [2].

H. Network Size Adaptation

Because virtual nodes can easily be transferred
between peers, PathFinder is able to adapt itself
to the current workload. Weaker peers may give
up virtual nodes to stronger peers. To keep a rea-
sonable ratio between peers and virtual nodes we
have to keep track of the number of peers in the
network. We estimate the number of peers in the
PathFinder overlay with the push-sum gossiping
protocol [14]. In [15] this procedure was extended
to make it applicable for peer-to-peer networks.

The probability of finding a peer with more
than one virtual nodes can be described through
the hypergeometric distribution f(1;N,m,c). A
peer can ask any of its ¢ neighbors for virtual
nodes and success depends on the number of
peers () with more than 1 virtual nodes within
the network. When the ratio of peers in the
network to average number of neighbors N/c
is higher than 0.95, which is true in most of
the cases, the process can also be approximated
through the binomial distribution. A ratio of vir-
tual nodes to peers of 1.15 establishes a successful
join for 80% of all requests within 10 hops
(B(10,0.15)) and over 96% after 20 hops.

We want to keep the cost for a join reasonable.
Therefore, when the threshold of 1.15 virtual
nodes per peer is reached, the network starts a
transition phase in which the amount of virtual
nodes is doubled. Assume that a virtual node w
has just run the gossiping protocol and notices
that the above threshold is reached. Then w starts
the transition phase by generating two new virtual
nodes, wi and wsq, by adding a new bit to the left
of its own ID. The IDs of wy and ws are computed
by attaching O respectively 1 to the old ID.

Now w; and wq have to calculate their neigh-
bors. They proceed as in Section II-B, but use
the new ID space. The IDs of the calculated
neighbors also have one extra bit. Let z; be one of
the neighbors wy has calculated. At this moment
wy still does not have a routing table and cannot
route to x1. Therefore, wy disregards the left-most
bit of x1’s ID and uses the routing table of w to
determine the node x corresponding to this ID.

The peer responsible for = will be responsible
for x1 when the transition phase is over. This is
because the ID of z; is the ID of z with one bit
added on the lefthand side. Therefore, w; now
adds this peer to its new routing table. If = has
not yet started the transition phase, then it does so
now. When the above procedure is carried for all
new neighbors of wy and we, the transition phase
for w is completed. When all virtual nodes have
completed the transition, the old routing tables
are abandoned.

Shrinking the ID space is also possible and
works similarly. If the virtual node to peer ratio
is higher than 4/1, the amount of virtual nodes
can be reduced in order to improve lookup perfor-
mance. The procedure is the reverse of expanding
the network, whereby peers will strip one bit from
left of their IDs. In case two different peers map
to the same shorter ID (quite likely), the one who
had bit 0 as the first bit takes over. The peer who
had bit 1 must find another virtual node to take
over. If we set the threshold of shrinking high
enough, over 4/1, then there are enough virtual
nodes for all peers, but a peer might have to
search for a free one.

III. COMPARISON AND ANALYSIS

Most DHT overlays provide the same function-
ality, since they all support the common interface
for key based routing. The main differences be-
tween various DHT implementations are average
lookup path length, resilience to failures, and load
balancing. In this section we compare PathFinder




to other DHTs presented in the literature. We
perform the comparisons both with simulations
and analytically for networks which are too large
to simulate (over 1 million nodes). All simu-
lations were performed with the P2P simulator
PlanetSim [16].

The lookup path length of Chord is well
studied [17]. It is asymptotically: Lqyg(N) =
1Fd) bg(lid)_dbg D log N, where N is the num-
ber of peers in the network., The parameter d
tunes the finger density. Usually Chord has finger
density d = 1 and therefore Lgyg = %M. The

maximum path length of Chord is {3, The

average path length of PathFinder is ll%g—gé(]:—)), where
¢ is the average number of neighbors. In other
words, even for relatively small ¢, PathFinder has
much shorter path length than Chord. The path
length of the Pastry model can be estimated by
[loggw(IN)] [6], where b is a tunable parameter.
The authors recommend b = 4. In this model,
there are logy (V) levels and 2% — 1 neighbors
per level. This results in 96 neighbors for a
network of 50 million peers. PathFinder achieves
comparable results with only ¢ = 20 neighbors
on average. For ¢ = 50 the average path length
of PathFinder drops to 2/3 the path length of
Pastry. Theoretically, PathFinder should achieve
Pastry’s performance for ¢ = 16 (for b = 4).
Since our results show that PathFinder matches
Pastry already for ¢ = 20, we suspect that Pastry’s
real-world performance for large networks would
not be quite as good as the theoretical model let
one expects. The Symphony overlay is based on
a small world graph. This leads to key lookups
in O(lﬁgik@—)) hops [18]. The variable k refers
only to long distance links. The actual amount
of neighbors is indeed much higher [18]. The
diameter of CAN is %—dN i with a degree for
each node 2d, with a fixed d. With large d
the distribution of path length becomes gaussian,
like Chord. The butterfly network has close to
optimal diameter and average path length. The
average distance in a butterfly network is given
by [19]: pg = ﬁg%'ﬂv—). An implementation of
the butterfly network, Viceroy [5], has an average
path length of 3logy (V). The theoretical average
path length of PathFinder is L = %gg%%z. This is
a property of its underlying random graph.

In summary, most well known DHTs and
PathFinder have a path length scaling (up to
a multiplicative factor) as log N. In this sense,
PathFinder performs similar, but it does have a
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Fig. 5. Average number of hops for 5,000 key lookups in
different DHTs

small and fix number of neighbors, independent
from the actual network size.

We use simulations to evaluate the practical
effects of the individual factors. We compare
PathFinder with Pastry, Chord, Symphony, and
SkipNet. Figure 5 shows the results for a 20,000
nodes network. We perform 5,000 lookups among
random pairs of nodes and measure the number
of hops each DHT takes to find the object.

Pastry and PathFinder have very similar per-
formance, with the maximum number of hops
being around 4. Chord and SkipNet perform
worse, requiring on average 7 additional hops.
Symphony’s performance is extremely poor, with
some lookups requiring up to 40 hops (not shown
in the figure). CAN and Viceroy performed even
worse and were dropped from further comparison.

We also perform an analytical comparison us-
ing the equations from the literature summarized
above. Our goal is to gain some idea about how
well the different networks scale to hundreds of
millions of peers. We compare PathFinder with
Pastry and Chord. We ignored Symphony because
of its poor performance in the earlier experi-
ment and SkipNet because of the lack of well-
understood analytical model for its performance.
We also used a DeBruijn-graph, because they are
known to have optimal diameter.

Note that PathFinder results come from actual
simulation, not analytical calculations. For the
other overlays we have to resort to analytical
modeling in order to estimate scalability for net-
work sizes > 10% peers. Figure 6 displays the
results. The x-axis shows the system size and
the y-axis shows the average path length. As
expected, Chord’s performance is clearly poorer
than that of Pastry and PathFinder. Pastry and
PathFinder are very similar in performance for
¢ = 20. Rising c to 50 gives PathFinder a similar
to Pastry neighbors tables and yields about 1
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Fig. 6. Average number of hops for different DHTs mea-
sured analytically. Numbers for PathFinder are simulated.

hop less in systems over 100 million nodes. The
line for the DeBruijn graph shows the ultimative
possible shortest path for the PathFinder network
with ¢=20. PathFinder needs just ca. 1 hop more.

To summarize, with respect to average path
length PathFinder performs very similar and at
least as good as other known DHTs. In terms
of scalability it benefits from the small and fix
number of neighbors per peer and even network
sizes of up to several millions of peers do perform
well with 20 neighbors on average.

PathFinder also inherits the exhaustive search
mechanism of BubleStorm. Hence, as an unstruc-
tured overlay it performs identical to BubleStorm
and the reader is referred to [2] for thorough
comparison to other unstructured systems.

IV. RESILIENCE AGAINST FAILURES

High churn rates [20] are common in peer-to-
peer networks. Therefore, alternative paths may
be needed to find a particular node. This is where
PathFinder benefits from its random network
topology. There are always as many alternative
independent routes between any two nodes as the
minimum of their degrees [13].

The challenge then is: How difficult is it to
find a valid alternative path? Note that a peer A
is not aware if there is a failed node on its path to
peer B. Tt is first when A tries to reach B when A
notices that it has to search for an alternative path.
Due to the high number of alternative independent
paths (paths which have only common start and
end node) between each two nodes, the number
of the required retries is very small.

We evaluated the performance of PathFinder
under churn by generating a network of 50,000
virtual nodes and then consequently failing dif-
ferent fraction of them. Then we perform a key
lookup using the procedure from Section II-D
between each pair of remained nodes. For each
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Fig. 7. Required lookup retries between each couple of
nodes under churn in a network with 50,000 virtual nodes.

pair we count the number of retries we have to
make to get from the one node to the other. The
results are shown in Figure 7. One observes that
5 retries are sufficient to connect over 90% of the
remaining node pairs even when 25% of all nodes
in the network have failed. In case that almost half
of the nodes have failed, then 12 retries lead to
successful lookup in 80% of the cases. In both
cases the success rate is quite good. Note that
in our tests we perform no maintenance in the
overlay. After repairing all failed virtual nodes
the number of retries drops back to zero.

Next, we address one crucial question remain-
ing: How does the average path length change
with the number of failed nodes?

In Figure 8 we plot the average shortest path
length for N = 50,000 and different values of c.
The x-axis shows the fraction of failed nodes and
y-axis shows the average shortest path length. As
one can see, the increases are minimal, even if
half of the nodes suddenly disappear.

From Section II we know that key lookups not
always follow the shortest paths. Therefore, we
also evaluated the average lookup length under
node failures of 26% and found that the maximum
number of required hops for N = 50,000 and
¢ = 20 increases merely from 6 to almost 7.

In short, the average path length and the num-
ber of required retries for key lookups in Path-
Finder stays stable even for severe fraction of
failed nodes. Such a robust resilience is more than
desirable in any peer-to-peer overlay.

V. SECURITY AND OTHER ISSUES

In terms of security, PathFinder faces the same
challenges as most of the DHTs presented in
the literature. Peers get their virtual node IDs as
a hash of their IP address, which is the same
as in other DHTs. Note that an attacker with
access to a large pool of IP addresses may place
herself/himself in a strategic position and discard
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Fig. 8. Average shortest path length under churn.

or alter messages on their way to the destination.
This is a common weakness of all DHTs.

If a malicious peer drops messages that are
routed through it, the sending peer will eventually
notice this because it does not get a reply. Recall
from Section IV that there are as many node-
disjoint paths between the sender and receiver as
the minimum of their degrees. Thus, the sender
can simply try again using a different path. The
attacker is unlikely to be present on all the
alternative paths. A simple approach to detecting
malicious peers is to send a message always using
two different paths. Given the short average path
length of PathFinder a second or third parallel
request does not impose high load on the overlay
network, e.g. the P2P overlay network Kademlia
sends parallel lookup requests by default. A com-
parison of the results will immediately suggest if
the original message/reply have been modified.

Because PathFinder builds an overlay network
with randomly selected neighbors, it is very likely
that the virtual nodes do not match well with the
underlying IP network. That is, first neighbors
in the the overlay may be very remotely placed
actual peers and messages among them have to
travel significant distances. Other DHTs suffer
from the same problem as well, since their routing
algorithms also require contacting arbitrary peers
in the network. DHT routing is typically opti-
mized by selecting neighbors with small round
trip times (RTT), with the goal of reducing the
overall path latency. Similar approach works for
PathFinder as well. When a peer needs to route
a message in PathFinder it computes the shortest
path as in Section II-D. If the peer notices that
another of its neighbors has considerably shorter
RTT than the “correct” peer, it can send the
message to that neighbor. This may increase the
path length in terms of hops as well as the
required computational effort per peer, but might
reduce the latency.

VI. CONCLUSIONS

In this paper we have presented PathFinder,
an overlay which combines efficient exhaustive
search and efficient key-value lookups in the
same overlay. Combining these two mechanisms
in the same overlay is very desirable, since it
allows efficient and overhead-free implementation
of natural usage patterns. PathFinder is the first
overlay to combine exhaustive search and key-
value lookups in an efficient manner.

Our results show that PathFinder has perfor-
mance comparable or better to existing overlays.
It scales easily to millions of nodes and its key
lookup performance is in large networks better
than in existing DHTs. Because PathFinder is
based on a random graph, we are able to directly
benefit from existing search mechanisms (e.g.,
BubbleStorm) for enabling efficient exhaustive
search. We have shown the excellent performance
and robustness of PathFinder both through simu-
lations and by analytical means.
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