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∗Telecooperation Group
TU Darmstadt / CASED, Germany

firstname.lastname@cased.de

† Networking and Security Group
International Computer Science Institute, USA

mfischer@icsi.berkeley.edu

§ National Advanced IPv6 Center,
Universiti Sains Malaysia (USM),

Malaysia

I. INTRODUCTION

Many of recent cyber crime activities such as Distributed
Denial of Service (DDoS) and banking credential thefts are
executed using botnets that consist of malware-infected com-
puters, so-called bots, throughout the world. These bots receive
orders from the botmaster, which instructs them to execute
malicious activities. The high income generated by botnets
renders them as important assets to the botmasters. For this
reason, botmasters take precautions to safeguard their invest-
ments by deploying more and more unstructured P2P-based
botnets, e.g., P2P Zeus [1] and Sality [2]. Their unique self-
organizational capabilities render them more resilient against
takedowns. As a result, these botnets are often under particular
surveillance of researchers and law enforcement agencies. As
part of this monitoring activities, they are constantly crawled
[3] and infiltrated by sensor nodes [4]. Crawling allows to re-
trieve a graph of all routable nodes in a botnet, but falls short in
identifying nodes behind NAT. Sensor nodes, in contrast, allow
the enumeration of all bots in the botnet. Information gathered
from such monitoring is then used to execute takedowns, e.g.,
via sinkholing attacks, on the botnets. In particular, sensor
nodes are important for conducting sinkholing attacks as such
attacks require to know every bot in the botnet in advance.
In the actual attack, bots are tricked to believe that all other
bots are no longer responsive, except designated sinkholing
server(s), i.e., a sensor variant. If the attack is successful, the
botmaster cannot communicate further with his bots.

Since monitoring threatens the ecosystem of botnets, recent
P2P botnets implemented anti-monitoring countermeasures to
prevent sinkholing, e.g., the P2P Zeus botnet uses a blacklist-
ing mechanism [5] to detect and blacklist crawlers as well as
to limit the information that can be obtained via crawling. To
circumvent these measures, researchers often have to spend
valuable time on developing new monitoring techniques [6],
[3]. However, it is just a matter of time before the botmasters
adapt to them with new countermeasures.

In this paper, we anticipate future botnet countermeasures
to prepare the development of enhanced monitoring mecha-
nisms. For that, we first introduce the membership manage-
ment in P2P botnets and describe related work in Section II.
In Section III, we describe a mechanism for detecting sensor
nodes as the main contribution of this paper. To the best of
our knowledge, we were the first to introduce a theoretically-
sound mechanism that is able to distinguish sensors in a P2P
botnet. Section IV provides evaluation results on an active
botnet, called Sality [2], and Section V concludes the paper.

II. BOTNET MEMBERSHIP MANAGEMENT

Each bot in a botnet maintains a Neighbor List (NL),
that contains information of a subset of other known bots in
the botnet and that is maintained according to the botnet’s
membership management protocol. Amongst others, the mem-
bership management specifies that a bot regularly probes all
entries in its NL for responsiveness. If some of the probed bots
are no longer alive, i.e., bots that went offline or that have
been cleaned from the infected machine, they are removed
and/or replaced with information of other responsive bots to
ensure a connected botnet overlay. New bots are discovered
by requesting NLs from other responsive bots. As P2P botnets
experience churn, bots tend to retain more NL entries of other
reliable bots, i.e., bots that were responsive in the past. As
a result, a backbone of reliable nodes is formed. Bots within
the backbone are usually very popular amongst all bots in the
botnet, which is usually the same for deployed sensor nodes.

Sensors are usually popularized by frequently announcing
them to as many bots as possible [7]. However, to remain
popular within NLs of bots, sensors need to reliably respond
to all incoming probing requests from other bots. Although
sensors usually exhibit a characteristic of being popular within
the botnet, unfortunately, this behavior is indistinguishable
with those of the backbone nodes. Furthermore, sensor nodes
usually refuse to participate in regular bot-activities like com-
mand dissemination and NL exchanges, due to legal issues.
Hence, detecting sensors as bots that do not share neighbors is
easy. However, sensors can easily circumvent this by returning
spoofed entries to the requesters. As a result, it is often
not possible to distinguish sensors from benign bots. In the
next section, we propose a mechanism that uses a novel
approach in detecting sensor nodes based on network-specific
characteristics that can distinguish them from normal bots.

III. SENSOR DETECTION MECHANISM

Our detection mechanism exploits the observation in un-
structured P2P botnets that reliable nodes, i.e., nodes that are
responsive and available most of the time, often establish
neighborhood relationships among themselves and form a
backbone. Furthermore, as backbone nodes are very popular in
the NLs of most bots in the botnet, there is a high probability
that an ordinary bot has multiple backbone bots in its NL.
The degree of interconnectivity of a bot’s neighbors’ can be
represented by the clustering coefficient (cc) metric. The cc is
often used to express the density of network. We use the local
clustering coefficient (lcc) [8] to express the connectivity of a



node’s neighbors by computing the degree of interconnectivity
of its neighbors. Extreme values of 0.0 and 1.0 indicate that
the neighbors are not connected amongst each other at all or
that they are completely meshed respectively.

To detect sensors, our mechanism crawls the botnet and
produces snapshots of its overlay topology. On that basis, we
calculate the directed variant of the lcc for each bot x, lcc+(x),
to analyze the interconnectivity of its neighbors by using Eq.
(1). E is the set of all edges in the network and NLx represents
the NL of a bot x. Naturally, we set lcc+(x)=0.0 if |NLx| = 0
or 1, since the numerator will fast-evaluate to 0.

lcc+(x) =
|{(u, v) ∈ E : u, v ∈ NLx, u 6=v}|

|NLx| × (|NLx| − 1)
(1)

In the analysis, benign bots will exhibit a similar degree of in-
terconnectivity in their neighborhood, because of the presence
of the backbone. However, as mentioned in Section II, sensor
nodes are usually not participating in bot-activities. They will
not share or give away information of legitimate bots when
they receive a NL request. Thus, their lcc+ will differ from
benign bots. A sensor has three possible behaviors on receiving
a NL-request: i) return no neighbors or ignore the request.
This will lead to lcc+(x) = 0.0. ii) return invalid neighbors.
As invalid neighbors will also not be interconnected, again
lcc+(x) = 0.0 holds. iii) return responsive sensors. If each
of the returned sensor return each other as their neighbors,
lcc+(x) = 1.0 will hold since the sensors are connected as a
full mesh, i.e., forming a clique. However, if the connectivity
between the returned sensors is as in a directed cycle or not
connected at all, it will lead to lcc+(x) = 0.0. As stated
earlier in this section, due to the tendency of connecting to the
backbone, benign bots will not have these extreme lcc+-values.
Therefore, we classify bots that exhibit extreme lcc+-values as
potential sensors.

IV. RESULTS

We evaluated our proposed mechanism on a Sality [2]
botnet crawl dataset that consisted of continuous multi-session
crawling from 03/23/2015 to 03/29/2015. In each crawl ses-
sion, our crawler sent 30 NL requests to each discovered node.
We also identified and sanitized churn-affected nodes from
our dataset. For our evaluation, we categorized the sanitized
dataset into chunks of hourly aggregated crawl snapshots that
each consists of an average of 42 crawl sessions. To increase
the efficiency of our mechanism, we further picked only the
chunk that has seen the least number of total nodes in a day,
which was consistently the 24th chunk of the day, i.e., 23:00
CET, for the whole week. Our proposed mechanism is then
executed on the selected chunks.

The result of our analysis is depicted in Figure 1 that shows
the lcc+ value in dependence on the node popularity in the
network for the chunk on 03/25/2015. As can be observed
at the bottom right corner of the figure, many nodes have a
value of lcc+ = 0.0, although having very high popularity.
These were verified as sensors deployed by researchers. To
evaluate the accuracy of our detection mechanism, we repeated
the analysis on all seven selected chunks. We were able
to construct a list of nodes that have been marked by our
mechanism for having extreme values as explained in Section
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Fig. 1. lcc+ Analysis (03/25/2015)
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Fig. 2. Sensor Verification Analysis

III. We then manually verified each of the marked nodes
by looking at the raw datasets and by analyzing their past
and future behavior. The results are given in Figure 2 that
shows the number of marked and verified sensors respectively
for the whole week. We detected an average of 20 verified
sensors daily with an average false positive rate of 0.2. 62%
of all verified sensors were observed to return no neighbors
when requested, while the remaining returned only responsive
sensor nodes. We also looked at outliers in our analysis, i.e.,
lcc+ 6= 0.0 and lcc+ 6= 1.0, and were able to verify that they
were benign bots.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel sensor node detection
mechanism that is able to detect sensor nodes with an average
false positive rate of 0.2. From our analysis, we were able to
conclude that many existing sensor implementations are sus-
ceptible to be detected by our mechanism. The findings from
our work should be carefully considered by other researchers
conducting monitoring activities to avoid being detected by
botmasters. As future work, we are focusing on improving our
mechanism to detect more sophisticated sensors that may have
eluded our current proposal. Moreover, we are also looking
into the direction of developing strategies for sensors to evade
such a sensor detection mechanism.
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