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ABSTRACT
Work in organisations is o�en structured into business processes,
implemented using process-aware information systems (PAISs).
�ese systems aim to enforce employees to perform work in a
certain way, executing tasks in a speci�ed order. However, the
execution strategy may change over time, leading to expected and
unexpected changes in the overall process. Especially the unex-
pected changes may manifest without notice, which can have a
big impact on the performance, costs, and compliance. �us it is
important to detect these hidden changes early in order to prevent
monetary consequences. Traditional process mining techniques are
unable to identify these execution changes because they usually
generalise without considering time as an extra dimension, and
assume stable processes. Most algorithms only produce a single
process model, re�ecting the behaviour of the complete analysis
scope. Small changes cannot be identi�ed as they only occur in a
small part of the event log. �is paper proposes a method to de-
tect process dri�s by performing statistical tests on graph metrics
calculated from discovered process models. Using process models
allows to additionally gather details about the structure of the dri�
to answer the question which changes were made to the process.
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1 INTRODUCTION
�e analysis of event logs of process-aware information systems
(PAISs) using Process Mining [21] has become very popular. Process
Mining aims to extract valuable knowledge from recorded event
logs and consists of three major tasks: discovery, conformance
checking and enhancement of process models [21]. Many di�erent
algorithms have been proposed to discover “as-is” process models
from event logs, delivering a precise picture of the current execution
strategy of processes. �ese process models allow the analysis of the
actual use of process-aware systems, thus providing an internal and
objective perspective (e.g. “Where is a bo�leneck in the process?”
and “Where does the process di�er from the ideal world?”) of the
process. However, a major issue of most process mining approaches
is the assumption of a stable process over time [9], which does not
hold in most cases.

In comparison to the data mining and machine learning com-
munities where concept dri� [26] is a well known problem, process
dri� is a relatively rare research topic in process mining. Current
process discovery algorithms do not consider permanent or tempor-
ary changing processes which results in inaccurate process models.
However, processes are constantly in�uenced by many di�erent
hidden contexts such as seasonal changes, new regulations or organ-
isational changes. We cannot assume that processes behave stable
over a longer period of time because those di�erent in�uences have
an impact on the process execution behaviour. Currently, such pro-
cess dri�s cannot easily be detected or extracted with state of the
art process mining algorithms. For example, discovery algorithms
are applied over an event log that usually consists of data over a
longer period of time, thus these algorithms generalise over the
considered time span and do not provide a precise representation
of the actual process execution strategy. So resulting process model
will either additionally contain such changes, leading to more com-
plex process models, or they are completely hidden because the
occurred change is too li�le. In order to retain this knowledge it
is important to localise process dri�s in event logs to improve the
quality of automatically discovered process models.

Process dri�s can be characterised as planned and documented
(e.g. changes due to a change of guidelines or regularities), and
unexpected (e.g. changes due to new employees who do not perform
work as desired or changes due to a change of resource capacity
which may a�ect the process by reducing the amount of normally
required tasks) behaviour changes. In case of a planned process dri�,
organisations can check whether the desired change is correctly
executed or if, for example, further employee training is required.
Detecting unexpected behaviour changes helps organisations to
quickly identify process risks and helps them to take actions on
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critical executions to prevent monetary consequences (e.g. viola-
tions against governmental regulations). Process dri�s can occur
on all four process mining perspectives: functional, control-�ow,
organisational and data process [5]. In this paper we will focus on
the concept dri� in the control-�ow perspective.

�is paper proposes an algorithm that uses statistical signi�cance
tests to localise process dri�s in event logs. We use di�erent graph
metrics (e.g. number of nodes/edges, node centrality, network
degree etc.) calculated from discovered process models as the input
to detect process dri�s. Process models are calculated for smaller
sub-logs of the event log thus we can compare the graph metrics
for di�erent time spans. By using an adaptive window approach we
can automatically determine an optimal size of the smaller sub-logs
to detect process dri�s in event logs without prior knowledge of the
event log. Additionally, our approach extracts further knowledge
about detected process dri�s such as which events in the event
log are modi�ed, removed or added which is neglected by other
related work. Using our approach retains behavioural changes to
the process, allowing to detect expected and unexpected behaviour
in event logs over a longer period of time and can automatically
determine what changes have been made to the process.

�e paper is structured as follows. In section 2 we introduce
related work. Section 3 presents the approach for detecting process
dri�s in event logs. In section 4 we evaluate our approach using
generated synthetic event logs. Section 5 discusses and concludes
our work.

2 RELATEDWORK
Although much work is related to make processes more �exible [17,
18] or to help organisations to optimise their processes, most work
in process mining assumes a stable process [9]. While concept dri�
is well known in the data mining and machine learning community,
li�le work related to process mining can be found.

In [6] the authors use process model change logs to mine changes
of processes in PAISs. �e presented approach allows to analyse the
in�uences of process changes by providing an aggregated view of all
happened changes. However, having such a change log implies that
the approach is unable to identify hidden process dri�s. Changes
must be documented in the change log in order to be able to analyse
them.

Bose et al. [2, 3] only use event logs as the input to identify
process dri�s by introducing di�erent global and local features.
However, the approach is not fully automated and it is unable
to detect all classes of changes. �e user needs some knowledge
about the event logs and the process dri�s in order to be able to
correctly set the required window size in which the algorithm
searches for process dri�s. Se�ing the optimal size of the window
heavily in�uences the accuracy of the approach. Maaradji et al.
[12] use an adaptive sliding window approach to overcome the
issue of selecting the optimal window size. �ey perform statistical
hypothesis testing on partial ordered runs to determine whether a
process dri� occurred by comparing two consecutive windows. A
run is a higher level representation of traces which considers the
concurrency of events in the event log. A modi�ed feature set was
used in [16] to detect dri�s from event streams in unpredictable
business processes. Instead of using complete runs Ostovar et al. use

theα+ relations to model the behaviour of the process which de�nes
�ve relations: con�ict, concurrency, causality, length-two loop and
length-one loop. Manoj Kumar et al. [13] use event correlation
strength instead of runs to perform process dri� detection.

A di�erent approach is used in [1, 8]. �e authors aim to detect
process dri�s by clustering event log traces. For each trace the dis-
tances between each event pairs are calculated, thus the structure
of the process regarding the order of events is considered for dri�
detection. Here, also a window size has to be set which in�uences
the number of detected process dri�s. Carmona et al. [4] propose
a real-time approach which learns internal representations of the
event log. �e approach estimates the faithfulness of this represent-
ation using an adaptive window approach to automatically detect
process dri�s in event logs.

In [10] Lakshmanan et al. determine di�erences between two
sets of traces by performing a graph spectral analysis. �e graph
model is generated from the distances between trace vectors which
represent the connectivity between events. However, the authors
do not consider analysing the change of processes over time.

Related work shows that there exist some approaches addressing
the detection of process dri�s. In comparison with related work
we use discovered process models to detect dri�s which allows to
provide explicit explanations for each dri�. None the related work
addresses this problem yet.

3 PROCESS DRIFT DETECTION
Detecting process dri�s in an time-sorted event log requires us
to characterise what a dri� actually is. We de�ne a process dri�
as a signi�cant behavioural change of the process execution that
occurred over some time (it may be temporary or permanent) and
that most traces in an event log follow. In comparison to the normal
distribution of di�erent traces (e.g. noisy event logs) we are looking
for a process dri� that in�uences almost all traces (e.g. an event
is not executed any more). Trace equivalence which is a popular
notion of equivalence in the process mining community is too
sensitive to detect process dri�s. It compares all possible traces
in a process model which would lead to a process dri� if any of
the possible traces have slightly changed. Besides not being too
sensitive to smaller changes we also need to take care of concurrent
events. For example two traces may be equivalent if two events
are executed in parallel although the traces are di�erent regarding
the order of events. If there exists a trace where a is followed by
b and another trace where b is followed by a, then both traces are
not the same although the process is the same because a and b
might be executed in parallel. �is is why we use process models
discovered by a process mining algorithm to determine a signi�cant
behavioural change of the process because the algorithm takes care
of concurrency and noisy event logs.

Our idea is to compare the structure of “as-is” process models
to identify process dri�s. �ese precise process models can be
easily extracted from event logs by using existing process mining
discovery algorithms which overcome the issues to determine equi-
valence of processes. For example, if we begin skipping an event
at some point in time and create a process model before and a�er
this change, we will see that the change is also re�ected in one of
the discovered process models. To detect process dri�s we look
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for graph-metrics changes over time. Another advantage of using
process models is that we use the model to extract the structure
of the change without much more calculation because we already
gather the process model.

1 Reference and Detection Window

Reference Window Detection Window

Actual Process DriftInstances of Event Log

2 Compute Graph-Metrics / Edge and Node Occurrence

𝑟𝑖 = [0, 3, 2, 0.98, 2, 8, …]Reference

Detection 𝑑𝑖 = [1, 3, 2, 0.96, 1, 8, …]

3 Perform a Statistical G-Test to Detect Process Drifts

𝑝𝑣𝑎𝑙𝑢𝑒 = 𝐺 − 𝑇𝑒𝑠𝑡(𝑟𝑖 , 𝑑𝑖)

0

1
Localize the process drift by
searching in the detection window.

4 Determine Structure of the Process Drift

!

Figure 1: Overview of our Process Dri� Detection Approach

Our approach works on top of event logs and is divided into four
main steps (cf. �gure 1) which are repeated until the whole event
log is scanned for process dri�s:

(1) First we use two consecutive adaptive windows to split the
given event log into two smaller sub-logs (reference and
detection window),

(2) Second we calculate process models from these two res-
ulting sub-logs and calculate various graph-metrics (e.g.
edge and node occurrence, graph-degree, number of edges,
node-degree etc.) from the process model,

(3) �en we perform a statistical G-test between the graph
metrics of the two consecutive sub-logs to detect process
dri�s and

(4) Lastly, we extract the di�erences of the process models to
characterise what has actually changed.

In the following sections we will describe the four steps of our
approach in detail.

3.1 Splitting Event Log into Reference and
Detection Window

An event log consists of multiple traces which again consists of
multiple events. Each trace represents a single instance of a process
execution and speci�es in which order events have been executed.
Let us consider that we have an time-sorted event log W ⊆ T ∗

where T is a set of events. An event log consists of a set of traces
ρ ∈ W , namely ordered lists of events ρ = t0, t1, ti , . . . , tn with
i ∈ {0, 1, . . . ,n}. n is varying for each trace as each trace can have
di�erent lengths.

In order to detect process dri�s in the event log, we perform
statistical signi�cance tests over graph metrics of adjacent process
models which are generated using a process mining discovery al-
gorithm. �e statistical signi�cance test uses two populations of
the same size from two consecutive sub-logs of the event log to de-
termine signi�cant di�erences in the distribution. In the following,
we will call the �rst sub-log the reference window and the second
sub-log the detection window [12]. Reference and detection window
are adjacent to each other but they are not overlapping (cf. �gure 1
(1)). �ey build a composite window of 2 ·w traces of the event log
such that P1 = ρ0, ρ1, ..., ρw and P2 = ρw+1, ρw+2, ..., ρ2w where
ρi are traces inW . Using the statistical signi�cance test we evaluate
the hypothesis whether the population of the reference window
(P1) is similar to the population of the detection window (P2). If
this is not the case we assume a process dri� between the reference
and the detection windows. To detect all process dri�s in the event
log, we iteratively move both windows over the traces in the event
log until all traces have been visited. Each time the signi�cant
test evaluates negative (both populations are not similar) we mark
the point between the reference and the detection window as a
potential process dri�.

Because we have no prior knowledge about the event log, �nd-
ing the right windows size w is an essential part of our approach
because it highly in�uences the accuracy. So we use an adaptive
window that automatically adjusts itself (lines 29-39). We start our
approach by using a window size of 100 traces and increase the
window size by the factor 1.2 if the result of the statistical test is
negative. If we reached the maximum window size (we use 200
traces), we consider that there is no process dri� present in the
event log for the scanned traces and move the reference window to
the start of the detection window which also reduces the computa-
tion time. We shrink the window size again to the minimum size
and repeat the statistical test. If the statistical test is positive, we
consider a process dri� in the detection window.

1 while ( i < |W| − wSize ) {
2 p v a l = t e s t (W[ i : i + wSize ] ,W[ i + wSize : i + wSize ∗ 2 ] )
3
4 i f ( p v a l < t h r e s h o l d ) { / / a p o t e n t i a l d r i f t was found ?
5 found = f a l s e
6
7 newWSize = wSize / 2
8 l a s t I = i + wSize ∗ 2
9

10 for ( j = i + wSize − newWSize ;
11 j < i + wSize ∗ 2 − newWSize ) {
12
13 l a s t I = i + newWSize ∗ 2
14
15 p v a l 2 = t e s t (W[ j : j +newWSize ] , / / p e r f o rm g− t e s t on
16 W[ j +newWSize : j +newWSize ∗ 2 ] ) / / sm a l l e r windows
17
18 i f ( p v a l 2 b e f o r e − p v a l 2 < −0 . 5 )
19 break
20
21 p v a l 2 b e f o r e = p v a l 2
22
23 i f ( p v a l 2 < t h r e s h o l d ) {
24 c h a n g e P o i n t s <− j + newWSize ∗ 2 / / change p o i n t found
25 i = j + newWSize ∗ 2
26 found = true
27 }
28 }
29 i f ( ! found ) {
30 wSize = wSize ∗ l a s t I / ( i + wSize ∗ 2 )
31 i = i + wSize
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32 }
33 } e l se {
34 wSize = wSize ∗ 1 . 2 / / i n c r e a s e window s i z e
35 }
36 i f ( wSize >= maxSize ) {
37 wSize = 100 / / no change p o i n t found
38 i = i + maxSize / / r e s e t and s e t new r e f e r e n c e window
39 }
40 }

Listing 1: Pseudocode of the adaptive window approach.

To specify the position of the process dri� more precisely we
repeat the statistical testing with reduced window sizes (lines 10-28)
and restrict the search scope to the detection window. �e current
window sizes are divided by two and kept �x. Both smaller windows
are moved over the restricted search scope to re�ne the position of
the potential detected process dri�. If the statistical test is positive
we mark this point as a process dri�, otherwise we repeat testing in
the search scope. If the statistical test is never positive we adjust the
window size of the original windows and move both windows one
window size forward. To reduce the amount of statistical testing
we use an early stopping heuristic (line 18) which depends on the
p-value of the statistical tests.

3.2 Compute Graph-Model and Metrics
A�er the event log is split into a reference and a detection window,
we can discover process models for both windows by applying an
existing process mining discovery algorithm. For this work we use
the heuristics miner [24] because it delivers a good abstraction of
the event log, it is fast and it automatically handles the concurrency
of events. �e heuristics miner takes an event log as the input and
produces a heuristic net which re�ects the dependencies between
events by analysing the followed by relation. Let a,b ∈ T two
di�erent events from an trace ρ ∈ T ∗. If a is directly followed by b
then |a >w b | is the number of times where a is directly followed
by b. �e dependency graph can be built by using the following
formula:

a ⇒w b =
|a >w b | − |b >w a |
|a >w b | + |b >w a | + 1

A high value of A⇒w B is an indicator for a strong dependency
relation between A and B. As this value is calculated for each
possible event combination, we can construct a dependency graph
that re�ects the execution strategy of events. Nodes correspond to
events and edges correspond to the dependency relation “directly
followed by”. �e heuristics miner additionally contains heuristics
to detect loops, AND/XOR-splits/joins, non-observable tasks and
long distance dependencies, which will not be explained here but
can be found in [24]. �e result of the heuristics miner is a graph
model that represents the “as-is” execution strategy based on the
observed traces and the dependencies between events.

We compute the process model using the heuristics miner for
the reference and the detection window. �e basic idea is that if we
can observe a change of the process model within two consecut-
ive windows the process execution strategy has changed. Minor
changes and noisy event logs are automatically handled by the
heuristics miner so the resulting process model will contain no or
only minor changes thus our approach is also robust against those

issues. We determine the deviation of both observed process mod-
els by applying a statistical signi�cance test over di�erent graph
metrics:

• Number of nodes / edges
• Graph Density

D = |E |
|V | ·( |V |−1)

• In- and out-degree of each node
• Occurrence of node / edges

Each graph metric is an indicator for a speci�c change in the
process execution strategy. �e number of nodes indicates if the
number of executing events has changed, either new events were
added or events were skipped. A change of the number of edges
or of the graph density is an indicator for a more or less complex
process model due to an in- or decrease of process variants over
time. �e in- and out-degree of each node allows us to identify the
events which have mostly changed, and which control �ows have
been added or removed. Lastly, the occurrence of nodes and edges
can be used to determine if the distribution over each event and
transition has changed. With these graph metrics we are able to
describe any change of the process model to identify process dri�s
in the event log.

M∗ =

(m0 m1 . . . mn

W ∗r ef erence 1 5 . . . 0.99
W ∗detect ion 3 5 . . . 0.95

)
All computed metrics are summarised in two vectors (for ref-

erence and detection window) which contain the values for each
metricmi ∈ M . �e size of the vector is speci�ed by the number of
nodes in the graph.

3.3 Perform a G-Test on the Graph-Metrics
A�er we have gathered the graph-metrics for the reference and the
detection window, we perform a statistical G-Test to determine if the
process model of the detection window is signi�cantly di�erent to
the model of the reference window. �e G-test [14] is a distribution
free maximum likelihood statistical signi�cance test which can be
used to compare observed distributions with expected distributions.
We use the occurrence of edges as the input for the statistical tests
which is the number of traces that follow this speci�c edge. �e
statistical null hypothesis is that the observed distribution over the
edges in the detection window is equal to the distribution in the
reference window. �e formula for calculating the p-value of the
statistical test is the following:

G = 2
∑
i
Oi · ln

Oi
Ei

where Oi is the observed occurrence of an edge and Ei is the ex-
pected occurrence under the null hypothesis. �e sum is only
calculated for all non-zero counts. �e result of the G-test is the sig-
ni�cance probability (P-value). A possible process dri� is detected
if the probability is less than the signi�cance level α (threshold).

In our experiments it turned out that performing statistical tests
over the occurrence of edges works be�er than any other graph-
metric mentioned above. However, we keep all graph-metrics as
they are used later to determine the structure of the change (see
section 3.4). For the α value we used 0.0001 as the signi�cance level
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which provided the most accurate results. It turned out that using
the occurrence of edges is a very precise indicator for process dri�s
thus we can select a really low signi�cance level leading to a low
change of a false positive.

For each possible detected process dri� we perform additional
statistical tests using di�erent reference and detection windows
(see section 3.1) to localise the position of the process dri� more
precisely. In addition to the signi�cance test of the distribution
of the edges, we also test the signi�cance of the distribution of
observed nodes. If both signi�cance tests are positive then our ap-
proach marks the position between the reference and the detection
window as a process dri�. A�er detected a process dri�, we move
the reference and detection window forward to detect the next dri�
in the event log until all traces have been visited.

3.4 Determine the Process Dri�s
A�er we have identi�ed the locations of the process dri�s we gather
more details about the structural change and what modi�cations
were detected within the transition from the reference to the detec-
tion window. We gather this knowledge by comparing the graph
metrics from the previous step. Due to the fact that the process
model and their graph metrics are already calculated, we do not
need to perform much additional work to extract the structural
changes.

In the �rst step we gather the di�erence of the in- and out-degree
of nodes in the graph to determine which events have changed
between the reference and the detection window. �is allows us to
determine how the graph has changed, for example, which edges
or nodes have been added or removed from the graph. For any
change that happened to the in- and out-degree of nodes we collect
the number of traces that follow the changed edge of this node to
determine how many traces now follow a di�erent path through
the graph. Using this information we can determine the e�ect of
the detected process dri� and return this information to the user.

Payment
Purchase
Request

Purchase
Request
rejected

Purchase
Request
Approval

Purchase Order Goods Receipt

Purchase
cancelled

Cancel

Approve

Figure 3: Example process model with a modi�cation
(marked as red).

Let us consider a simple example process (see �gure 3) where
a new edge from Purchase Order to Payment was added to the
process graph while the event Goods Receipt is now skipped. �e
example is a simple procurement process where an Purchase Request
is Approved before an Purchase Order can be created. A�er the order
was made, a Goods Receipt is created before the Payment is executed.
In the example the event Goods Receipt is now bypassed thus a�er
the order is created the invoice is directly paid without creating a
goods receipt. When applying our described approach we will get
the following graph metric changes:
NETWORK DEGREE = -1.0
NUMBER OF EDGES = -2.0
NUMBER OF NODES = -1.0

INDEGREE: Goods Receipt = -1.0
INDEGREE: Payment = -1.0
OUTDEGREE: Purchase Order = -1.0
OUTDEGREE: Goods Receipt = -1.0

Purchase Order -> Goods Receipt = -16.0 (0.0)
Goods Receipt -> Payment = -16.0 (0.0)
Purchase Order -> Payment = 14.0 (24.0)

In the given example we can see that there are two edges less and
one node less a�er the detected process dri�. �e in-degree of the
nodes Goods Receipt and Payment has decreased by 1 which means
that two incoming edges were removed. �e out-degree of the nodes
Purchase Order and Goods Receipt has also decreased by 1 which
means that two outgoing edges were removed. Now one would
wonder why the in- and out-degree of Purchase Order and Payment
have changed although only a node was removed in the before
and a�er process model. In the given example our approach has
detected the process dri� at trace number 1020 (original dri� was
at 1000), thus the before model additionally contains 20 traces that
already have changed. �e result is that the before model is build
like depicted in �gure 1 including the red marked modi�cations
and in the a�er model the node Goods Receipt is missing. However,
we can still extract the exact change that happened.

We can use change of the amount of traces that follow the edges
in the graph: On the one hand the dri� has reduced the amount
of traces on the edge Purchase Order to Goods Receipt from 16 to
0 and on the edge Goods Receipt to Payment from 16 to 0. On the
other hand we can see an increase of traces on the edge Purchase
Order to Payment from 10 to 24. From all this collected information
we can reason that there were two edges from Purchase Order to
Goods Receipt and from Goods Receipt to Payment removed Now
more traces follow the edge Purchase Order to Payment.

�is additional knowledge can help analysts to evaluate the
process dri� and explains why a speci�c point in time was marked
as a process dri�. Instead of just returning the process dri� our
approach delivers an explanation which also allows further analysis.

4 EVALUATION
We implemented our proposed approach as a ProM [23] plug-in
and used the implementation to evaluate the performance of our
approach. ProM is a framework developed by the University of
Eindhoven for researchers to rapid prototyping process mining
speci�c algorithms and methods. Our plug-in reads the given event
log and automatically determines process dri�s and extracts the
change (e.g. the modi�cations to the process model) that happened
before and a�er the dri�. �e output of the plug-in is a list of
potential process dri�s, the corresponding process models and the
structural change that happened.

4.1 Setup
To determine the performance of our approach, we measure the
F1-score which is the harmonic mean of recall and precision. �e F1-
score is an indicator whether our approach can correctly identify
the process dri�s in the given event log (precision returns the
probability that a detection is correct and recall is the probability
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Figure 2: Example process model of the base model of the synthetic event log [12] used in the evaluation.

that we recognised a correct change [7]). Additionally, we calculate
the average delay between the actual and the detected process dri�
which is an indicator for how early our approach is able to detect
an actual change.

For evaluating our approach we used synthetic event logs (see
�gure 2) to determine the accuracy of our approach. We used
the same benchmark of 72 event logs used in [12] where di�erent
parameters were varied. Event logs were generated from a base
model which consists of 15 events and was modi�ed systematically
to generate process dri�s. �ese modi�cations are classi�ed into
di�erent change pa�erns (cf. table 1) and categorised into insertion
(“I”), resequentialisation (“R”) and optionalisation (“O”). To create
more complex change pa�erns, the simple change pa�erns were
combined thus resulting in additional event logs (“IOR”, “IRO”,
“OIR”, “ORI”, “RIO”, “ROI”).

Table 1: Change patterns of the synthetic event logs [12].

# Change Pattern
re Add/remove fragment I
cf Make two fragments conditional/sequential R
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
cb Make fragment skippable/non-skippable O
cm Move fragment into/out of conditional branch I
cd Synchronise two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I
fr Change branch frequency O

Each synthetic event log is composed of a �xed number of al-
ternating instances generated from the base model, followed by a
�xed number of instances of the modi�ed model, such that each
used event log consists of exact 9 process dri�s. Also the size of the
event logs was varied: 2500, 5000, 7500 and 10000. �e event logs
are annotated with the dri�s such we can easily calculate precision,
recall and average delay.

4.2 Accuracy Results
We imported the set of synthetic event logs into ProM and used our
plug-in to compute the process dri�s. Figure 4 reports the F1-score
for each change pa�ern averaged over the four di�erent event log
sizes compared with existing approaches [2, 3, 12]. For Bose et al.
a �xed window size of 100 was used and for Maaradji et al. the
superior adaptive window approach was used.

We can see that for 16 out of 18 change pa�erns our approach
gathers an F1-score between 1.0 and 0.9 (cf. table 2). We gather an
overall F1-score of 0.9466. For 11 change pa�erns our approach
delivers be�er performance than the related work. Only for the
change pa�erns lp and OIR related work is signi�cantly be�er than
our approach. For all other change pa�erns our approach is almost
as good as the approaches compared. Further analysis reveals that
for change pa�ern lp we only gather F1-scores above 0.87 for log
size 2500 and 5000. For the larger size event logs our approach only
delivers F1-scores of 0.61. It turns out that the signi�cance test does
not deliver a high probability thus the detection does not consider
these points as process dri�s.

In �gure 5 the mean distance between the actual and the detec-
ted process dri� is depicted. As our approach performs a second
statistical hypothesis test on the potential process dri�s, we can
optimise the position of the process dri�. We can also see that the
di�erence is very small and for some cases we perform be�er than
the related work (cb, cm, cp, fr, IOR, IRO, RIO, ROI, rp).

In summary, our approach delivers a high performance regarding
the F1-score (above 0.9) and the average distance (23.65) in the used
synthetic event logs. In comparison with the related work we gather
a be�er performance for 11 event logs and a lower average distance
for 9 event logs.

4.3 Reason Extraction Results
Besides the actual detection of process dri�s in event logs our
approach provides additional information about the dri� such as
which events and/or edges have been added or removed. �is
information can help to understand the actual process dri� allowing
to perform further analysis. To evaluate the reasons for process
dri�s extracted using our approach, we manually compared the
changes made to the event logs (based on the process model that
was used to add process dri�s to the event logs) with the results of
our approach. Because each change pa�ern (cf. table 1) has made
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Figure 4: F1-score for di�erent change patterns (higher is better) and compared with Bose et al. (green) [3] and Maaradji et al.
(blue) [12]. Lines in the graph correspond to the value range which have been observed for di�erent event log sizes.

Figure 5: Average delay for di�erent change patterns (lower is better). Lines in the graph correspond to the value range which
have been observed for di�erent event log sizes.
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Table 2: Synthetic dataset: Results of the process dri� detec-
tion methods compared to related work. It shows the aver-
age F1-score and the mean distance.

# Change Point Bose [3] Adwin [12]
F1 Dist. F1 Dist. F1 Dist.

fr 0.9853 19.92 0.4420 165.00 0.7677 51.56
cb 0.9722 18.94 - - 0.8985 54.72
cd 0.9546 28.69 1.0000 20.00 0.6599 32.35
cf 0.9853 34.62 0.8950 36.00 0.9868 19.08
cm 0.9722 19.24 - - 0.8833 40.91
cp 0.9853 17.59 0.6395 36.00 0.9444 18.65

IOR 0.9606 13.00 0.7805 38.00 0.9444 16.71
IRO 0.9487 27.22 0.5612 82.00 0.9167 43.81
lp 0.7618 48.03 0.6484 41.00 1.0000 46.25

OIR 0.7331 28.06 1.0000 20.00 0.8603 43.67
ORI 0.9869 14.25 0.7805 38.00 1.0000 12.97
pl 0.9575 26.33 1.0000 20.00 0.9722 36.53

pm 0.9869 24.78 0.7805 69.00 0.9265 12.87
re 0.9036 33.02 1.0000 17.00 1.0000 38.11

RIO 0.9722 20.77 0.5612 60.00 0.9591 25.08
ROI 1.0000 7.31 1.0000 20.00 0.9559 19.79
rp 0.9722 12.67 0.7500 40.00 0.9194 16.99
sw 1.0000 29.61 0.7805 39.00 0.9167 20.79

avg. 0.9466 23.56 0.7011 41.17 0.9173 30.60

di�erent changes to the process we can identify what structural
changes can be correctly identi�ed by our approach.

For convenience we use a detailed evaluation example to show
the results of our approach on a single change pa�ern and then
show the results of all change pa�erns summarised. Let’s take
the cb change pa�ern which added a new conditional edge to the
process model. In �gure 6 we can see that an additional edge was
created from the event Assess eligibility to the end of Check if home
insurance quote is requested. Our approach delivers the following
reasons for the observed process dri�:

OUTDEGREE Assess eligibility=1.0,
OUTDEGREE Check if home insurance qu... = -1.0

Assess eligib...->Prepare acceptance... = -8.0 (16.0)
Assess eligib...->Send home insuranc... = 10.0 (10.0)
Assess eligib...->Reject application = -7.0 (26.0)
Check if home...->Send home insuranc... = -12.0 (0.0)
Check if home...->Send acceptance pa... = -3.0 (9.0)

From the computed result we can see that the events Assess
eligibility and Check if home insurance quote is requested were in-
volved in the process dri�. �e edge from Assess eligibility to Send
home insurance quote is completely new (increase from 0 to 10) and
the edge from Check if home insurance quote is requested to Send
home insurance quote is completely removed. In this case a new
conditional branch was added to the process model with allows to
bypass events Prepare acceptance pack and Check if home insurance
quote is requested.

Table 3 shows the reasons for each change pa�ern extracted us-
ing our approach. We mark a reason correct (3) if the modi�cation
to the event log correspond to the events identi�ed as the reasons
for the process dri�. If our approach was unable to �nd the correct
reason then we marked this as an error (7).

Table 3: Reasons extracted from our approach for each
change pattern.

# Reason
re Remove of Assess eligibility 3

cf Send acceptance pack and Send home insurance 3

quote are sequential
lp - 7

pl Check credit history, Assess Loan risk and 3

Appraise property are sequential
cb New edge from Check if home insurance quote is 3

requested to Send home insurance quote
cm Check if home insurance quote is requested 3

followed by Prepare acceptance pack
cd New edge Appraise property to Assess loan risk 3

Remove edge Appraise property to Assess eligibility
cp Detection of a loop 7

pm New edge Check if home insurance quote is 3

requested to Prepare acceptance pack
New edge Prepare acceptance pack to Verify
repayment agreement

rp Replace events 3

sw Remove edge Send acceptance pack to Verify 3

repayment agreement
Remove edge Assess eligibility to Prepare
acceptance pack
Remove edge Send home insurance quote to Verify
repayment agreement
Add edge Send home insurance quote to Prepare
acceptance pack
Add edge Send acceptance pack to Prepare
acceptance pack
Add edge Assess eligibility to Verify
repayment agreement

fr - 7

In three cases our approach is unable to extract the correct reason
for the process dri�. In two cases our approach could not �nd any
reason at all. For all other simple change pa�erns we can provide
additional information that helps to understand the process dri�.

5 DISCUSSION AND FUTUREWORK
In this paper, we proposed an automatic process dri� detection
approach which uses process models discovered from event logs to
identify and localise dri�s. Our main contribution is the usage of
graph metrics to localise process dri�s in event logs and that our
approach provides further information about the structural change
that was detected. We described the four steps of our approach in
detail and how all these components work together to deliver ac-
curate process dri� detection results. In our evaluation we showed
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Figure 6: Process model of the cb change pattern event log [12].

that we can achieve really good results using our approach and that
the provided information about detected process dri�s is able to
describe the actual change.

However, there is also some room for improvement for the
presented approach. One possible improvement is to change to
a di�erent process mining discovery algorithm to a more recent
and robust method. It turns out that the heuristics miner is not
able to correctly identify long loops thus we cannot detect process
dri�s that are caused because of loops in the process execution. By
using a di�erent discovery approach, we can improve the detection
of process dri�s without having to change any other components
[11, 25]. Additionally, we need to investigate in process dri�s that
do not occur suddenly but slowly. We think that the approach
could potentially detect such changes when increasing the max-
imum window size. However, this will have an in�uence on the
detection of sudden dri�s. One possible future research direction
here is trying to maximize the size of the reference window which
could potentially improve the detection of slowly increasing dri�s.
However, �nding the right larger window size is quite challenging
as we have no prior knowledge about the event log, thus we do not
know if the process has not been altered for a longer time.

One drawback of the current implementation of our approach is
the lack of visualisation for the extracted process dri� reasons. A
textual representation of the changes is not very convenient and
a more visual approach would help to be�er understand why a
process dri� occurred. Further we can imagine that in combination
with other analysis methods [15, 19, 20, 22] we can gather a lot
more information that helps to identify the root cause for a process
dri�.
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