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A b s t r a c t Finding reliable partners for interactions is one of the chal­
lenges in ubiquitous computing and P2P systems. We believe, that this 
problem can be solved by assigning trust values to entities and allowing 
them to state opinions about the trustworthiness of others. In this paper, 
we introduce our vision of trust-aided computing, and we present a trust 
model, called CertainTrust, which can easily be interpreted and adjusted 
by users and software agents. A key feature of CertainTrust is that it is 
capable of expressing the certainty of a trust opinion depending on the 
context of use. We show how trust can be expressed using different rep­
resentations (one for users and one for software agents) and present an 
automatic mapping to change between the representations. 

1 Introduction 

In [1], Bhargava et al. point out tha t "trust [...] is pervasive in social systems" 
and tha t "socially based paradigms will play a big role in pervasive-computing 
environments". Pervasive or ubiquitous computing is characterized by a very 
large number of smart devices, e.g., PDAs, mobiles, intelligent clothes etc., v^hich 
come with different communication capabilities, storage, or bat tery power. Both 
the basic idea of ubiquitous computing and the heterogeneity of these devices 
call for interaction with and delegation to other devices. 

Ubiquitous computing environments are unstructured and many service pro­
viders are available only locally or spontaneously. On the one hand, the inter­
actions with foreign devices include uncertainty and risk, since a safe prediction 
of the behavior of those devices is not possible. On the other hand, the interac­
tions with reliable partners are the basis for the services ubiquitous computing 
environments can provide. But how to select reliable interaction partners who 
behave as expected? Selecting only tamper-proof devices, which belong to the 
same manufacturer, requires the manufactures to be trusted, and unnecessar­
ily reduces the potential of ubiquitous computing. Due to the great number of 
interactions with many different partners - some well-known, others not - and 

'^ The author's work was supported by the German National Science Foundation 
(DFG) as part of the PhD program "Enabhng Technologies for Electronic Com­
merce" at Darmstadt University of Technology 



52 S. Ries, J. Kangasharju and M. Muhlhauser 

the claim of ubiquitous computing of being a calm technology, we need a non-
intrusive way to cope with this challenge. We believe that the concept of trust, 
which has shown to work well in real life, is a promising solution, since it allows 
to make well-founded decisions in context of risk and uncertainty. Assuming 
recognition of entities, trust allows to express an expectation about the future 
behavior of an entity based on evidence from past engagements. Furthermore, 
trust needs representations which are meaningful not only to the software agents 
to enable automatic trust evaluation, but also to the end user, who needs to be 
able to understand the state of the trust model and to take part in the decision 
making process, if necessary. 

In this paper, we provide a decentralized trust model, named CertainTrust^ 
which allows agents to choose trustworthy partners for risky engagements. For 
our trust model, we propose two representations. The first one serves as a basis 
for a human trust interface. It represents trust using two independent param­
eters consisting of an estimate for the probability of trustworthy behavior in a 
future engagement, and of a parameter expressing the certainty of this estimate. 
Since we believe that trust is context-dependent, we also enforce the context-
dependency of the certainty parameter of a trust value. The second representa­
tion is based on the Bayesian approach using beta probability density functions. 
This approach is well-established to express trust. It serves as a basis for the 
trust computation and as an interface for evidence-based feedback integration. 
Finally, we provide a mapping between both representations, and operators for 
'consensus' and 'discounting'. 

The remainder of this paper is structured as follows. In Sect. 2, we summa­
rize our notion of trust and introduce our concept for the integration of trust in 
applications. Sect. 3 presents the trust model and the operators for trust prop­
agation. In Sect. 4, we give an example showing how trust is represented and 
calculated using CertainTrust. Sect. 5 presents a summary of the related work, 
and Sect. 6 summarizes our contribution and outlines aspects of our future work. 

2 Our Notion of Trust 

From our point of view, trust is the well-founded willingness for a potentially 
risky engagement. Trust can be based on direct experience, recommendations, 
and the reputation assigned to the partner involved in an engagement. We model 
trust as the subjective probability that an entity behaves as expected based on 
experiences from past engagements. 

2.1 Trust-Aided Computing 

The integration of trust in ubiquitous computing applications seems to be a 
promising concept to cope with the new challenges of unstructured environments 
and dynamically changing interaction partners. In our vision of trust-aided com­
puting (TAG) the applications are enabled to explicitly reason about trust. TAG 
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Figure 1. Trust-aided computing architecture 

keeps track of the available entities, it collects information about direct experi­
ences with other entities and information as recommendations and reputation. 
Thus, TAG allows applications to adapt to changes in the infrastructure and keep 
user preferences for interaction with entities which are already trusted. Not only 
relying on direct experience, but also on recommendations and reputation infor­
mation, allows for building trust in entities with which no or only little direct 
experience is available. Since trust is subjective, this allows not only automated, 
but personalized decision making. 

TAG disburdens the user from constantly being asked for the same deci­
sion in the same context. Furthermore, it disburdens the application developers 
from providing hard-coded strategies, which allow automated decision making, 
but cannot or can only hardly be personalized and do not take advantage of 
information collected in past engagements. 

Trust-aided computing can be integrated in applications like P2P file sharing 
or packet routing in ad hoc networks to cope with malicious nodes. For ubiq­
uitous computing trust-aided computing allows to find trustworthy devices in 
smart environments. On a higher level of abstraction trust-aided applications can 
help user to (semi-)automatically recognize trustworthy partners in virtual com­
munities, e.g., to find reliable sellers in online auction platforms, or to evaluate 
recommendations provided by members of social networks (e.g., FilmTrust [4]). 
The trust-aided computing architecture has four main components (see Fig. 1): 

— The trust-aided applications are able to reason about trust in a uniform way. 
They support the users since TAG allows to autonomously select trustworthy 
interaction partners. Yet, in critical cases, which can be identified, when 
reasoning about trust and risk, the user can be informed about the state of 
the system and asked for interaction. 

— The trust management component focuses on the collection and filtering of 
evidence. Therefore, it is necessary to monitor the devices which are avail­
able, and to collect evidence from those devices. Furthermore, it is necessary 
to filter the collected evidences and recommendations based on policies to in­
crease the level of attack-resistance. Other aspects of trust management are 
the evaluation of the context and the risk, which is associated to an engage­
ment. Gurrent trust management approaches are usually based on policies, 
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in which users can state which entities they consider as trustworthy. The 
approaches in [3,5] already allow for the integration of trust levels. 

— The trust modeling component concentrates on the reasoning about trust­
worthiness based on the available evidence. It provides the representational 
and computational models of trust. Since the users need to be able to set up, 
control and adjust the trust parameters, there is the need for a user inter­
face, which can be used intuitively. Furthermore, there is the necessity for an 
interface, which is suitable for software agents allowing for automated inte­
gration of feedback and for autonomous evaluation of trust-relevant informa­
tion. The computational model defines the aggregation of recommendations, 
reputation information and direct experience to a single opinion. For highly 
dynamic environments, which may contain a very large number of entities, 
e.g., ubiquitous computing environments, we cannot expect the end user to 
set up policies for each entity and for each context. Thus, the computational 
trust model itself has to provide some robustness towards attacks. 

— The decision making component is often treated as a part of trust manage­
ment. Since it is a very important aspect, and the users probably will judge 
the performance of a trust-based system, in the quality of its decisions, we 
like to mention it separately. The decision making has to consider the col­
lected information about trust as well as the information about the expected 
risk. Although, we like to automate the decision process as far as possible, 
there must be the possibility of user interaction, to support the user to get 
used to TAG, and to be able to interact with the system in critical cases. 

2.2 Properties of Trust 

Having introduced an architecture which shows how to integrate trust in software 
applications, we focus on trust modeling for the rest of the paper. Our model 
expresses the following properties of trust: Trust is subjective, i.e., the trust of 
an agent A in an agent C does not need to be the same as trust of any other 
agent ^ in C Furthermore, we cannot expect the behavior of A towards C to 
be the same as the behavior of C towards A, thus trust is asymmetric. Trust is 
context-dependent. Obviously, there is a difference in trusting in another agent 
as provider of mp3-files or as provider of an online banking service. It also is 
a difference in trusting in someone as service provider or as recommendation 
provider. If A trusts B in the context of providing recommendations about a 
good service provider, e.g., for file-storing, this does not necessarily imply that A 
trusts in 5 as a good peer to store files at, and vice versa. Trust is non-monotonic, 
i.e., experience can increase as well as decrease trust. Thus, we need to model 
both positive and negative evidence. Trust is not transitive in a mathematical 
sense, but the concept of recommendations is very important. Recommendations 
are necessary to introduce trust in agents with which no or only little direct 
experience is available. Moreover, we do not think of trust as finite resource, 
e.g., as done in flow-based approaches like EigenTrust [9]. It should be possible 
to increase trust in one entity without decreasing trust in another one. 



Modeling Trust for Users and Agents in Ubiquitous Computing 55 

2.3 Trust & Certainty 

As in [6,10,12], we believe that it is necessary to express the (un-)certainty or 
rehabihty of an opinion stating trustworthiness. We also believe that the cer­
tainty of an opinion increases with the number of evidence, on which an opinion 
is based. Modeling the certainty of an opinion allows us to provide information 
on how much evidence an opinion is based, or to state that there is not any 
evidence available. Furthermore, it is possible to express that one opinion might 
be supported by more evidence than another one. We believe that the certainty 
value needs to be context-dependent because of the following reasons. 

— In ubiquitous computing environments trust models can be used to automate 
decision making in many different contexts. In some contexts, there might 
be a great number of encounters, other contexts might be related to high 
risk, considering legal or financial implications. In these contexts, it seems 
reasonable, that users want to collect a great number of evidence, before they 
would think about an opinion to be certain. If forced to make a decision 
about an engagement involving high risk, one might choose to reject the 
engagement, although there is positive but too little evidence. 

— In contexts in which the number of encounters is lower, or the associated 
risk is lower, users may be satisfied with a lower number of evidence to come 
to a well-founded decision. 

To model the context-dependency for the certainty of an opinion, we assume 
there is a maximal number of expected evidence per context, which corresponds 
to the maximal level of certainty. For example, the maximal number of expected 
evidence can be defined as 5, 10, 100, or 1000. 

3 Trust Model - CertainTrust 

Let the contexts be denoted by corii i G {1 ,2 , . . . } , e.g., coni = filesharing. 
For providing recommendations for a context corii, we define a special context, 
which is denoted as reci. Let agents be denoted by capital letters A, i ? , . . . , and 
propositions by small letters x, y, The opinion of agent A about the truth 
of a proposition x in context corii is denoted as o^{coni). For example, in Fig. 2 
the proposition x can be interpreted as x = "Agent C behaves trustworthily in 
context coni\ The opinion of agent A about 5 's trustworthiness for providing 
recommendations for a context coui is denoted as o^{reCi). If the context is clear 
or not relevant, we use o^ and o^. The maximal number of expected evidence 
(see Sect. 2.3) is denoted as e{coni) or e. Since the evidence model is partly 
derived from ideas presented in [6], we use the same terminology when possible. 

We assume that evidence is collected and stored locally, and that recommen­
dations are provided on request. The propagation of recommendations is done 
based on chains of recommendations, as shown in Fig. 2. We propose special 
operators for consensus (aggregation of opinions) and discounting (weighting of 
recommendations). For simplicity, opinions are assumed to be independent. 
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Figure 2. Trust chains 

Our model provides two representations for opinions to express trust. The 
first representation is a pair of trust value and certainty value which serves as 
a base for a human trust interface. The second representation is based on the 
number of collected evidence and allows us to easily integrate feedback and forms 
the base of the computational model. 

3.1 Human Trust Interface 

The human trust interface (HTI) is used to represent trust as opinions. In the 
HTI an opinion o is a 2-tuple o = {t,c)^^^ e [0,1] x [0,1], where HTI refers 
to the representational model. The opinion o^{reCi) — {t^{reci)^c^{reci))^^^ 
expresses the opinion of A about the trustworthiness of B in the context reci. The 
value of t^{reci) represents the probability that A considers the proposition "I 
believe, B to be trustworthy for providing recommendations for the context corii^ 
to be true. This value is the trust value. The value c^{reci) is the certainty or 
certainty value. This value expresses, which certainty the provider of an opinion 
assigns to the trust value. A low certainty value expresses that the trust value 
can easily change, and a high certainty expresses that the trust value is rather 
fixed. The values for trust and certainty can be assigned independently of each 
other. For example, an opinion o^{reci) — (1,0.1)^-^'^ states that A expects B 
to be trustworthy in providing recommendations for coni.^ but that A is not at 
all certain about this opinion. 

For the moment, we express both the values for trust and certainty as contin­
uous values in [0,1]. Since humans are better in assigning discrete (verbal) values 
than continuous ones, as stated in [4,8], we want to point out, that both values 
can easily be mapped to a discrete set of values, e.g., to the natural numbers 
in [0,10], or to set of labels, as "very trusted" (vt), "trusted" (t), "undecided" 
(ud), "untrusted" (u), and "very untrusted" (vu). We assume that the trust and 
certainty values are independent, since the HTI then allows the users to easily 
express and interpret an opinion based on labels (see Fig. 3 (right side)). This is 
important since it allows users to check the current state of the model, and to 
set up and adjust those values according to personal preferences. 

3.2 Evidence Model 

The second representation, the evidence model, is based on beta probability 
density functions (pdf). The beta distribution Beta{a,f3) can be used to model 
the posteriori probabilities of binary events. The beta pdf is defined by: 
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J[P\cy,P) r{a)r{pf ^ ^^ ' (1) 

where 0 < j) < 1, a > 0, /3 > 0 . 

Furthermore, we use r = a + 1 and s — /3 + 1, where r > 0 and 5 > 0 
represent the number of positive and negative evidence, respectively. The number 
of collected evidence is represented by r + s. 

In the evidence model, an opinion o can be modeled using the parameters a 
and (3. We denote this representation as o = (a, /3)^^. If the opinion is represented 
by the parameters r and s, we use the notation o — (r, sY^. 

For r + 5 / 0 the mode t of the distribution Beta{a, P) is given as: 

. = mode(a,/?) = ^ ^ ^ = ^ (2) 

For any c G R \ {0} holds 

mode{{r, sf^) = mode{{c -r^c- sf^) . (3) 

The main feature of this model is the easy integration of feedback in the 
trust model. Assuming that feedback fh can be expressed as real number in 
[—1; 1], where '—I'is a negative experience and ' 1 ' is positive, the update of an 
opinion is done by recalculating the parameters Vnew — ^oid + 0.5 * (1 + fb) and 
Snew = ôZd + 0-5* (1 —/&) (cf. [7]). If the feedback is generated automatically, we 
can update the trust model without user interaction. Furthermore, the software 
agents can use all statistical information from the beta distribution, e.g., mean 
value and variance, as basis for decision making. 

3.3 Mapping Between Both Representations 

Trust value t of an opinion o = (a, /3)^^ is defined as the mode of the corre­
sponding beta distribution. The certainty value c of an opinion o = (a, y^)^^ in 
a context corii is defined as follows: The maximal number of expected evidence 
can be denoted by e{coni) = a^ax + &max - 2, where Oi^nax and ^rnax fulfill: 

^ ^max (A\ 
meaucoii := ^ = —^ =: rneaumax [V 

Ck, -\- p OLffidx \ Hmax 

Then the certainty c is calculated as: 

/{meancoii | a,/3) - 1 

J [TneQUmax \ ^max'j Pmax) -*-
(5) 

Definition 1 (Mapping) (a,/?)^^ = (t,c)^^^, ifft = mode{a, P) and the cer­
tainty c fulfills Eq. 5. 
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Figure 3. Mapping: Evidence - Agent Interface (pdf) - User Interface (HTI) 

This mapping provides the translation between both representations (see Fig. 
3). The interpretation of an opinion in the HTI by users has to be as close as 
possible to the interpretation of the same opinion in the evidence model by a 
software agent. This way, a user can interpret and adjust opinions based on evi­
dence collected by a software agent and vice versa. Fig. 3 shows an opinion which 
is based on 27 positive and 9 negative pieces of evidence. The maximal number 
of expected evidence is 100. The mapping between the collected evidence and 
the agent interface is done using beta density functions. The mapping between 
the agent interface and the user interface is the one defined by Def. 1. 

Intuitively, a human would set the trust value close to the observed relative 
frequency. Since the mode of a pdf is equal to the relative frequency of the 
observed event, the trust value t is close to the intuitive value set by the user. 
When no evidence is available, the mode of the pdf is not defined. In this case 
it can be reasonable to assume either a trust value of 0.5, or to infer the trust 
value based on the past experiences with formerly unknown entities. 

The certainty value is intuitively linked to the number of collected evidence [6, 
10,12]. A greater number of collected evidence leads to higher confidence, and to 
a higher certainty value. The maximal number of expected evidence e{coni) (see 
Sect. 2.3) is the maximal certainty value. Similar to [12], we want the certainty to 
increase adaptively with the number of collected evidence, i. e., the first pieces of 
evidence increase the certainty value more than later ones. As shown in Fig. 4, our 
certainty value fulfills these properties. In the absence of information (r + 5 = 0), 
the certainty value is c = 0, and c = 1 if the number of collected evidence is equal 
to the expected number of evidence. Between the two extremes, the certainty 
value increases adaptively. If the number of collected evidence is greater than 
the number of expected evidence, there is a normalization, which preserves the 
trust value and scales the certainty to c = 1 (see Eq. 6). 

Normalization If an opinion o — (r, sY^ is based on more than the maximal 
number of expected evidence, it will be scaled to this maximum. The normaliza­
tion preserves the mode of the pdf (see Eq. 3), and therefore, does not change 
the trust value. The normalized opinion norm{o) will be used as input for the 
discounting described above. 

norm{{r^sY^) 
{r,sY' if r + s < e 

else . 
(6) 
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3.4 Trust Propagation 

For trust propagation we define two operators, similar to the ones defined by 
J0sang in [6]. We also call our operators 'consensus' for the aggregation of opin­
ions and 'discounting' for the recommendation of an opinion. The consensus 
operator is identical with the one presented in [6]. We define a new discounting 
operator based on our evidence model. 

Definition 2 (Consensus) Let o^ = {r^.s'^Y^ and of ^B ^B\rs ,s^Y' he the 
opinions of A and B about truth of the proposition x. The opinion o^'^ = 
{T^'^, s^'^y^ which combined the experiences of A and B, is defined as: 

of'̂  = of •of = (r^+rf,; B\rs st) (7) 

The '^' symbol denotes the consensus operator. The operator can easily be 
extended for the consensus between multiple opinions. 

Definition 3 (Discounting) Let o^ = {rB^^Bf ^^^ ^f = i^x^^xY'- ^^ 
denote the opinion of A about x based on the recommendation of B as o^^ and 
define it as: 

r.AB oi^ .o^,={dir^,dis^,r . where di^tici . (8) 

The '®' symbol denotes the discounting operator. In a chain of recommenda­
tions, we start at the end of the chain, e.g., o^^^ = o^ ® {OQ 0 O^) . 

Discounting reduces the number of evidence taken into account, since d^ G 
[0; 1]. The discounting factor d^ increases with positive evidence. That is, if ^ 
and C have the same amount of total evidence with B^ but A has more positive 
evidence, then A gives a stronger weight to the recommendation of B than C. 

Furthermore, the discounting factor increases with the number of collected 
evidence. That is, if A and C have the same ratio of positive and negative 
evidence with JB, but A has more evidence in total, then A gives the opinion of 
B a stronger weight than C does. 
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Opinion HTI Interpreta t ion 

A's opinions about J5^ as recommenders 

(1,1) 

(0.7,0.5) 

(0.5,0.2) 

(100,0) 

(21.9,9.04) 

(3.80,3.80) 

(vt ,expert) 

(t,average) 

(ud,rookie) 

Bi's opinion about C as service provider 

op 
of3 

(1,0.5) 
(0.7,0.5) 
(0,0.5) 

(15.02,0) 

(11.19,4.80) 

(0,15.02) 

(vt, average) 

(t, average) 

(vu, average) 

Discounted opinions 

(1,0.5) 

(0.7,0.24) 

(0,0.10) 

(15.02,0) 

(3.90,1.68) 

(0,1.50) 

(vt,average) 

(t,rookie) 

(vu,rookie) 

Consensus: A's opinion about C as service provider 

^ABi,AJB2.-^g3 1(0.86,0.62)1(18.92,3.18)1 (vt,average) 

Table 1. Example: Trust calculation 

4 Example 

Consider a file sharing scenario, where peers offer files for others to download. 
The risk in a file download is that the file might be corrupted or contain viruses. 
A simple corrupted file carries only a small risk, since we have only lost some 
CPU cycles and bandwidth, but a virus could potentially be extremely damaging. 
The trust is based on direct experience (i.e., downloads) and recommendations 
from other peers. In this example, we assume high risk and a high frequency of 
encounters. Therefore, we choose e{coni) — 50 for the context of providing files, 
and e{reci) = 100 for the contexts of providing recommendations. 

Peer A wants to download a file from peer C. Peer A has no direct experience 
with C, but A receives 3 recommendations about C s behavior (see right side of 
Fig. 2). Table 1 shows the collected and the calculated opinions. 

This example shows how trust is represented and calculated in our model. 
Comparing the opinions of̂  and o^^^ shows that the discounting operation 
only manipulates the certainty values and preserves trust values. The consensus 
operation increases the certainty and adapts the trust value according to the 
given opinions. The resulting opinion ^^^i'^^2,^53 seems to be reasonable, when 
considering the input. Especially, we can see that the recommendation by B3, 
which states C should be considered as "very untrustworthy", has only little 
impact on the resulting opinion, although all peers Bi claim to have a similar 
amount of experience with C. The reason is that the opinion o^^, stating that 
A has only little experience with ^3 with varying results, corresponds to lower 
discounting factor than the one of o;̂ ^ and o^^ • 

If A decides to download the file from C, then A can generate some feedback 
information based on the file's quality. This information can be used in an opinion 
as direct experience with C and to update the trust in the recommendations of 
the BiS. If additional reputation information was available, it would have been 
integrated and discounted in the same way as the opinion of an agent Bi. 
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5 Related Work 

The modeling of trust is addressed by a growing group of researchers [11]. There 
are several approaches which try to model trust one-dimensionally, e.g., Tidal-
Trust [4] and EigenTrust [9]. A single trust value does not allow to express the 
certainty or the reliability of this trust value. Thus, it is impossible to express if 
an opinion is based on single evidence or on multiple pieces of evidence. 

Other approaches model trust with two or three dimensions. Two dimensional 
trust models are often based on the Bayesian approach, e.g., [6,10]. As stated 
in [8], those models are often too complicated to be understood by average users. 
The belief model approaches, e.g., [2,6], use the triple belief 6, disbelief d, and 
uncertainty u to represent trust. The problem with such models is that the three 
parameters cannot be assigned independently (e.g., h^d^u= 1 [6]) and hence 
the presence of uncertainty influences both belief and disbelief. Therefore, it is 
non-trivial to express, e.g., a medium belief with different levels of uncertainty. 
Our model allows to independently choose the values for trust and certainty. 

Approaches like Subjective Logic [6] are not capable of expressing uncertainty 
context-dependently. In [6], the uncertainty u is defined as ix = 2/(r + 5 + 2). 
Therefore, uncertainty depends only on the number of collected evidence, but 
not on the context. 

Other approaches presented in [10,12] introduce reliability as a concept which 
is similar to our concept of certainty. They also define a context-dependent value 
similar to the maximal number of expected evidence. 

The model in [10] is based on the Bayesian approach. The maximal number of 
expected evidence e corresponds to m, which is described as the "minimal number 
of encounters necessary to achieve a given level of confidence". The reliability w 
is defined to increase linearly with the number of collected evidence from 0 (no 
evidence) to 1 (collected evidence at least m). But this linear approach is stated 
to be an first order approximation. 

In the model in [12], the intimate level of interactions, is close to the concept 
of a maximal number of expected evidence. The number of outcomes factor (No) 
G [0,1], increases with the number of collected evidence. To achieve the adaptive 
behavior as described in 3.3, the ratio between the collected and the expected 
number of evidence is used in a sinus-hiwction. 

6 Conclusion and Future Work 

In this paper we introduced our vision of trust-aided computing, which allows 
for an explicit integration of trust information in applications. Furthermore, we 
provided a trust model, which allows to represent trust in a way, which can be 
interpreted and updated by software agents as well as by users. 

We have shown, how to express the certainty of an opinion in contexts which 
are associated with different levels of risk, or frequency in interaction. In the 
HTI the values for trust and certainty can be interpreted independently, which 
allows to introduce the semantics of an opinion based on labels. Therefore, the 



62 S. Ries, J. Kangasharju and M. Muhlhauser 

user is able to easily control the state of the trust model and to adjust opinions, 
if necessary. The evidence model enables software agents to update an opinion, 
when new evidence is available, and to reason about the trustworthiness of an 
interaction partner . The mapping between the HTI and the evidence model has 
an intuitive interpretation and it is mathematically founded. The two operators 
for t rus t propagation are based on the evidence model. 

Our future work will include the development of t rust management and de­
cision making strategies. Those are necessary to be able to evaluate the t rust 
model in a simulation, and to enhance the attack-resistance of the model. By first 
selecting recommendations from entities, which have repeatedly shown to pro­
vide good recommendations (high t rust value and high certainty), and limiting 
the number of collected evidence to the maximal expected number of evidence, 
we believe to reduce the impact of sybil attacks to our t rust model. Furthermore, 
we will refine the discrete representation for the human t rust interface. 

References 

1. B. Bhargava, L. LiUen, A. Rosenthal, and M. Winslet. Pervasive Trust. IEEE 
Intelligent Systems, 19(5):74-88, 2004. 

2. V. Cahill et al. Using Trust for Secure Collaboration in Uncertain Environments. 
IEEE Pervasive Computing, 2/3:52-61, July 2003. 

3. M. Carbone, M. Nielsen, and V. Sassone. A Formal Model for Trust in Dynamic 
Networks. In Proc. of IEEE Int. Conf. on Software Engineering and Formal Meth­
ods, Brisbane, AustraHa, September 2003. IEEE Computer Society. 

4. J. Golbeck. Computing and Applying Trust in Web-Based Social Networks. PhD 
thesis. University of Maryland, College Park, 2005. 

5. T. Grandison. Trust Management for Internet Applications. PhD thesis, Imperial 
College London, 2003. 

6. A. J0sang. A Logic for Uncertain Probabilities. International Journal of Uncer­
tainty, Fuzziness and Know ledge-Based Systems, 9(3):279-212, 2001. 

7. A. J0sang and R. Ismail. The Beta Reputation System. In Proceedings of the 15th 
Bled Conf. on Electronic Commerce, June 2002. 

8. A. J0sang, R. Ismail, and C. Boyd. A Survey of TYust and Reputation Systems for 
Online Service Provision. In Decision Support Systems, 2005. 

9. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust Algorithm 
for Reputation Management in P2P Networks. In Proc. of the 12th Int. Conf. on 
World Wide Web, pages 640-651, New York, USA, 2003. ACM Press. 

10. L. Mui et al. A Computational Model of Trust and Reputation for e-Businesses. 
In Proceedings of the 35th HICSS, 2002. IEEE Computer Society 

11. S. Ries, J. Kangasharju, and M. Miihlhauser. A Classification of Trust Systems. 
In On the Move to Meaningful Internet Systems 2006: OTM Workshops, pages 894 
- 903, Montpellier, France, 2006. 

12. J. Sabater and C. Sierra. Reputation and Social Network Analysis in Multi-Agent 
Systems. In Proceedings of the 1st Int. Joint Conf. on Autonomous Agents and 
Multiagent Systems, pages 475-482, New York, NY, USA, 2002. ACM Press. 




