
This Network is Infected:
HosTaGe - a Low-Interaction Honeypot for Mobile Devices

Emmanouil Vasilomanolakis*, Shankar Karuppayah*§, Mathias Fischer*, Max Mühlhäuser*

*Telecooperation Group, §National Advanced IPv6 Center (NAv6),
Technische Universität Darmstadt - CASED Universiti Sains Malaysia (USM),

first.last@cased.de Penang, Malaysia

ABSTRACT
In recent years, the number of sophisticated cyber attacks
has increased rapidly. At the same time, people tend to
utilize unknown, in terms of trustworthiness, wireless net-
works in their daily life. They connect to these networks,
e.g., airports, without knowledge of whether they are safe or
infected with actively propagating malware. In traditional
networks, malicious behavior can be detected via Intrusion
Detection Systems (IDSs). However, IDSs cannot be applied
easily to mobile environments and to resource constrained
devices. Another common defense mechanism is honeypots,
i.e., systems that pretend to be an attractive target to at-
tract malware and attackers. As a honeypot has no pro-
ductive use, each attempt to access it can be interpreted
as an attack. Hence, they can provide an early indication
on malicious network environments. Since low interaction
honeypots do not demand high CPU or memory require-
ments, they are suitable to resource constrained devices like
smartphones or tablets.

In this paper we present the idea of Honeypot-To-Go.
We envision portable honeypots on mobile devices that aim
on the fast detection of malicious networks and thus boost
the security awareness of users. Moreover, to demonstrate
the feasibility of this proposal we present our prototype
HosTaGe, a low-interaction honeypot implemented for the
Android OS. We present some initial results regarding the
performance of this application as well as its ability to de-
tect attacks in a realistic environment. To the best of our
knowledge, HosTaGe is the first implementation of a generic
low-interaction honeypot for mobile devices.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: [Security and Protection - In-
vasive software]; C.2.0 [Computer-Communication Net-
works]: General: Security and Protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SPSM13 November 08 2013, Berlin, Germany
Copyright 2013 ACM 978-1-4503-2491-5/13/11 ...$15.00
http://dx.doi.org/10.1145/2516760.2516763.

Keywords
Mobile Honeypot; Malware; Security; Android

1. INTRODUCTION
Recent security reports indicate an increase in sophisti-

cated cyber attacks [13]. With the advancements in mo-
bile devices (smartphones, tablets, etc.) as well as the in-
creased number of available wireless networks many chal-
lenges arise from the security perspective. People tend to
utilize unknown, in terms of trustworthiness, wireless net-
works in their daily life. They connect to these networks,
e.g., airports and coffee shops offering Internet access, with-
out knowledge of whether they are safe or infected with ac-
tively propagating malware.

From conventional networks, additional defenses like IDSs
[4] and dynamic firewalls are known for the detection of
malicious behavior. However, these defenses cannot be ap-
plied easily to resource constrained mobile devices. More-
over, IDSs as purely passive monitoring components may
not alone be sufficient in protecting against cyber attacks.

Honeypots are special systems whose value lies in being
probed, attacked or compromised [12]. Honeypots provide
a more active line-of-defense compared to passive intrusion
detection. Furthermore, they are also able to provide addi-
tional knowledge regarding recent malware techniques and
trends. Honeypots can be classified with respect to the
level of interaction that is offered to the attacker. A low-
interaction honeypot simulates network operations, usually
at the TCP/IP stack, while high-interaction honeypots are
real systems that are vulnerable and need to be carefully
safeguarded to avoid that they are compromised. In this
paper we focus on low-interaction honeypots since they re-
quire low resources and thus are suitable for mobile devices.
Popular low-interaction honeypots in conventional networks
are for example Nepenthes [3] and Dionaea1. However, we
still lack honeypots that are tailored specifically for deploy-
ment in mobile environments.

For this reason, we propose the idea of Honeypot-To-Go:
lightweight, low-interaction, portable, and generic honey-
pots for mobile devices that aim on the detection of ma-
licious, wireless network environments. As most malware
propagate over the network via specific protocols, a low-
interaction honeypot located at a mobile device can check
wireless networks for actively propagating malware. We en-
vision such honeypots running on all kinds of mobile devices,
e.g., smartphones and tablets, to provide a quick assessment

1http://dionaea.carnivore.it

43

on the potential security state of a network. In addition, a
honeypot-to-go may serve as a tool to increase the security
awareness among users and allow them to check publicly
available wireless networks for signs of malicious activity
before actually using them. Moreover, such honeypots can
also assist network administrators analyzing the health of
their networks on-the-go.

The contribution of this paper is twofold. First, we intro-
duce the concept of Honeypot-To-Go, i.e., portable honey-
pots running on mobile devices to detect malware spreading
via wireless networks. Second, we introduce our prototype,
HosTaGe2, which stands for Honeypot-To-Go, and that is a
low-interaction honeypot for the Android OS. HosTaGe has
been specifically designed with usability in mind to increase
the security awareness of users when connecting to wireless
networks.

The remainder of this paper is organized as follows: In
Section 2 we present generic requirements for low-interaction
honeypots for mobile devices. Based upon the requirements,
Section 3 summarizes the related work in this area. Section
4 presents the architecture and the features of HosTaGe,
our mobile honeypot. In Section 5 we provide a detailed
discussion of our prototype (with respect to the requirements
from Section 2) and present some initial evaluation results.
Moreover, we discuss current limitations and future work.
Finally, Section 6 concludes the paper.

2. REQUIREMENTS FOR A MOBILE
HONEYPOT

In the following, we describe basic requirements for a mo-
bile low-interaction honeypot.

• Visibility: In order to attract malware and malicious
users, honeypots must emulate vulnerable services at
the respective ports. This requires the honeypot to
listen for incoming connections at those ports. How-
ever, it is not always possible to constantly listen to
all ports due to limitations of mobile devices such as
resources and also security policies of mobile Operat-
ing Systems (OSs). However, for those ports that are
being listened, the honeypot application must respond
according to the protocol specification in order to avoid
raising any suspicions.

• Usability: A mobile honeypot needs to be developed
by keeping ordinary users as the main users in mind.
This is an important requirement since one of our main
goals is to promote security awareness. Therefore, the
mobile honeypot should not only be useful to security
specialists and network administrators, but also ordi-
nary users. This can be achieved via a user-friendly
graphical interface and an easy setup. Nevertheless,
advanced modes should also be provided for expert
users.

• Security and Containment: The developed appli-
cation needs to focus on security and containment as-
pects to ensure the security of the user device itself.
Special care and attention needs to be given to pre-
vent malware and adversaries from compromising the
user’s device to launch any kind of attack.

2http://www.tk.informatik.tu-
darmstadt.de/en/research/secure-smart-
infrastructures/hostage

• Resource Utilization: Resources such as power, mem-
ory and network bandwidth are usually scarce at mo-
bile devices. Hence, special care needs to be taken to
avoid unnecessary computational overhead.

• Extendability and Interoperability: A mobile honey-
pot should be easily extendable by new protocols, for
vulnerability emulation, to the existing system. Addi-
tionally, the honeypot should be able to submit statis-
tics to third-party entities, e.g., to security incident
monitors or servers.

3. RELATED WORK
Honeypots have been studied extensively over the recent

years [12]. The low-interaction class especially exhibits a
variety of proposals and implementations, e.g., [3, 10, 11, 9,
6]. As mentioned before, low-interaction honeypots emulate
only network operations and therefore require low resources
for their deployment.

Early work that considered honeypots and mobile devices
focused only on Bluetooth communications [5, 17]. The re-
cent advances on mobile devices, their interconnectivity as
well as their popularity created a whole new ecosystem for
honeypot researchers.

Existing work in this direction [8, 15, 7, 14] focuses on the
detection of mobile-specific malware. Specifically, Mulliner
et al. were the first to discuss the idea of a honeypot for
smartphones, by providing initial ideas, challenges and an
architecture for their proposed system [8]. Moreover, in [15,
14] Wahlisch et al. provided insights from the deployment
of a honeypot on a mobile network. However, their honey-
pot is not specifically crafted for mobile devices, but rather
existing Linux-based desktop honeypots deployed in mobile
networks. Furthermore, in [7] the idea of nomadic honey-
pots has been introduced. The authors focus on mobile-
specific attacks and also require their system to collect a
large amount of personal information.

In addition, most honeypot proposals are strictly focused
on implementing novel detection methods. Hence, user-
friendly solutions are not the primary focus and usually tar-
get only security professionals as the main users. However,
the idea and the benefits of creating user-friendly honeypots
is getting more attention lately. In [2, 1] the ”Honey@home”
is proposed, where organizations and people can participate
by deploying a honeypot that reports to a large-scale cen-
tralized honeypot monitoring system. Nevertheless, this ap-
proach does not include mobile devices and there are no clear
benefits for the end-user to participate.

In contrast to existing or ongoing work that is focusing
on mobile-specific attacks, our idea is to develop a user-
friendly honeypot that can run out-of-the-box on mobile de-
vices. This benefits the users by providing an indication
of the security state of their network and thus fosters their
interest and motivation to utilize this application.

4. HOSTAGE MOBILE HONEYPOT
In this section we present our prototype HosTaGe, that

stands for Honeypot-To-Go. First we introduce the underly-
ing architecture of HosTaGe, followed by a detailed descrip-
tion of each module and its functionalities.

Figure 1 depicts the architecture of HosTaGe. The appli-
cation is written in Java and supports all Android’s API lev-
els from 8 (v.2.2 Froyo) to 18 (v.4.3 Jelly Bean). It runs on

44

Linux Kernel

Dalvik VM

Android API

GUI

Logger

FTPSMB ...

Malicious Connection 2Malicious Connection 1 ...

Port
Binder

Connection Guard

Emulator

...

HosTaGe Core

Protocol Emulation

Android API

Dalvik VM

Linux Kernel

Figure 1: HosTaGe System Architecture

top of the Dalvik Virtual Machine environment and consists
of several modules that are closely interconnected, namely
HosTaGe Core, Logger, Port Binder and the Graphical User
Interface (GUI).

When the application is executed, HosTaGe Core runs
in the background as a Service and activates the Emulator
submodule. The submodule then emulates3 the selected pro-
tocols by listening to incoming connections in the respective
ports that are associated to each of the protocols. In order to
bind the sockets with the ports, the Port Binder which runs
on the Linux Kernel level is called by HosTaGe Core with
the port that it should listen on. After that, the respective
module listens for incoming connections. Upon receiving
a connection request, HosTaGe Core alerts the Emulator
submodule which in return calls the Logger to record all ac-
tivities that are being observed. At the same time, the user
is notified of the activities that are being detected via the
GUI. A more detailed description of the related modules are
explained below.

4.1 HosTaGe Core
The core provides an interface for the activation or de-

activation of the implemented emulated protocols. It also
sends status reports to the GUI to provide the user with con-
nection information. It consists of two sub-modules called
Emulator and Connection Guard.

Emulator.
This sub-module is responsible for the emulation of pro-

tocols in Protocol Emulation. It executes multiple threads,
i.e., each thread for every selected protocol that listen to

3User can select which protocol(s) to be emulated

incoming malicious connections to the respective ports and
activates the Logger module for logging all activities at this
port.

Each of the emulated protocols can accept several simul-
taneous connections. They listen for connection requests on
the specified protocol port and start a Connection Handler
for every incoming request. Each Connection Handler com-
municates with one single client. It provides a basic proto-
col interface according to the specifications of the respective
protocol. The binding of the ports is handled by the Port
Binder module, as described in Section 4.4.

For a low-interaction honeypot, it is important to have a
broad selection of available protocols to emulate. For this
reason we support most of the protocols that are in use
for malware propagation activities: SMB, FTP, HTTP and
Telnet. Moreover, other protocols, e.g., HTTPS and SSH,
are currently under development. Besides that, a simple
mechanism for adding additional protocols, through a XML-
parser, is also under development.

Connection Guard.
With respect to various security concerns explained in Sec-

tion 2, this sub-module prevents that the hosting device gets
compromised. Furthermore, the Connection Guard is also
responsible for blocking incoming connections when it sus-
pects that the device is under attack, e.g., due to a Denial
of Service (DoS) attack. In such a case it limits the maxi-
mum allowed incoming connections, from the same source IP
and/or the same destination port. Besides that, established
connections are also terminated after some time.

4.2 Logger
The application supports different formats for the gener-

45

ated log files. It also supports exporting the logs to a plain
text file and/or to a SQLite database. In addition, for inter-
operability reasons HosTaGe can produce logs in the JSON
4 format for further processing of the alert data by other
third-party applications.

4.3 Graphical User Interface
HosTaGe provides an usable GUI to ease the understand-

ing of the underlying application to the users. The default
view of the GUI offers an overall view to users by providing a
network health condition status in a single glance. However,
if necessary, users can also choose the advanced view.

Figure 2: GUI of HosTaGe, Left: Default View,
Right: Advanced View

The application itself offers three different functional modes
to meet the users’ needs via the GUI:

• Default Mode: This mode is activated with only the
SMB protocol simulation enabled. This decision takes
in consideration the fact that a large amount of mal-
ware utilizes mainly this protocol for their propaga-
tion. For instance, the worm W32.Sality.AE, i.e., listed
among the most popular malware in 2012 [13], makes
use of the SMB service for its propagation. As such,
HosTaGe can easily detect the most common hostile
environments (if present), without the need of addi-
tional protocols. Users may enable additional proto-
cols via the advanced mode.

• Advanced Mode: This mode allows the user to choose
additional protocols that needs to be emulated from
the list of available protocols.

• Paranoid Mode: This mode enables the emulation of
all available protocols simultaneously.

HosTaGe features a network security health indicator as
shown in Figure 2 that provides the user an indication of the
security status of the network. Moreover, the application

4http://www.json.org

also alerts the user by indicating previous known statuses
(whenever possible). Different colors indicate the network
security health condition of the currently connected network:

• Green: Indicates that no malicious activity has been
reported (as of yet) in the particular network, even in
the past.

• Yellow: Indicates that (at least) a malicious activity
has been reported in the past from the particular net-
work.

• Red: Indicates that the particular network has just
been diagnosed as infected/malicious.

• Grey: Indicates that HosTaGe (or its respective pro-
tocol emulator) is turned off.

4.4 Port Handling
Based on the security policies of Android OS, only system-

signed applications are allowed to have access to privileged
network ports (below 1024). Therefore, there are usually
no third-party applications that are capable of accessing the
privileged ports. Although this is a reasonable justification
from a security perspective, it creates challenges for the de-
velopment of our mobile honeypot. As mentioned in Section
2 a basic requirement for such an application is to be visi-
ble to malicious users and malware. Hence, access to many
privileged ports, e.g., 80 and 445, is required.

In order to achieve this we implemented a small program
(see Figure 1), in native C, cross-compiled for the Android
OS. This program binds a port, passed to it as an argument,
and sends the file descriptor back to the caller through a
UNIX domain socket. The application calls this program
with super-user-privileges and receives the file descriptor of
the bound port. It uses its own extended version of a Java
Server-Socket, which constructs a socket from a file descrip-
tor. This way access to the required ports is achieved.

However, if an existing running service is already bound
to the target privileged ports, HosTaGe reports to the user
that it is unable to create a socket connection. Users need to
disable or terminate the particular service before HosTaGe
is able to activate its protocol service.

The drawback of the aforementioned solution for having
access to the privileged ports is that HosTaGe requires a
rooted Android device to operate properly. However, since
we envision the usage of our application for both IT special-
ists and ordinary users, we are currently investigating other
possible solutions in order to overcome this limitation.

5. DISCUSSION
In this section we present some initial results for HosTaGe

with respect to the requirements defined in Section 2. In
more details, we studied its effectiveness in detecting attacks
(visibility) as well as its ability to handle large number of
connections (security and containment) besides the applica-
tion’s power utilization (resource utilization).

Attack Handling.
In order to examine the effectiveness of our proposal we

deployed HosTaGe in an isolated testbed as shown in Figure
3. For this we connect several clients to a wireless access
point: a Linux-based system running a Dionaea honeypot, a
Windows XP SP3 machine that was infected with a variety

46

of malware (more details can be found in the Appendix),
and a mobile device with the following specifications:

• Device : Galaxy Nexus

• CPU: 1.2 GHz dual-core ARM Cortex-A9 (ARMv7 rev
10 [v7I])

• RAM: 693 MB

• OS: Android 4.2.2 (Jelly Bean)

• Mod-Version: CyanogenMod-10.1.2-maguro

• Linux-Kernel: 3.0.31

HosTaGe successfully detected all the malware’s attempts
to propagate and the results also corresponds to the reports
from the Dionaea honeypot. Moreover, we also executed
several port scans in the network using the Nmap network
scanner5, to test its resilience and effectiveness towards large
number of port scans. HosTaGe successfully handled all
these scans and remained functioning without any sign of
misbehaviour in the presence of large number of connection
requests.

Wireless
Access Point

Honeypot
Live CD

Ubuntu 12.04

Infected Windows XP
(VM)

HosTaGe

Figure 3: Attack Testbed Architecture

Power Utilization.
While the Attack Handling experiment indicates the fea-

sibility of HosTaGe, one of the basic requirements of any
mobile application is to provide a substantive power uti-
lization. We profiled the performance of HosTaGe using
an Android application called PowerTutor[16]. PowerTutor
provides measurements of power utilization of an application
on Android OS. We compared the utilization of HosTaGe
with other frequently used applications such as WhatsApp6,
Facebook 7 and AVG Free AntiVirus8.

In order to measure the power utilization of HosTaGe, we
deployed HosTaGe (running in the background) in a network
and conducted an automated script testing. We utilized the

5http://www.nmap.org
6http://www.whatsapp.com
7https://www.facebook.com/mobile/
8http://www.avg.com/eu-en/antivirus-for-android

same device as described in the attack detection analysis
(above). The script automates random number of protocol
connections, between none to five connections every 30 sec-
onds, to the HosTaGe device (emulating attack) for a total
duration of 60 minutes.

We compared the power consumption of HosTaGe (with
script automation) to the other Android applications which
were executed in the background. The resulting comparison
graph is shown in Figure 4. We observed HosTaGe per-
forming reasonably well considering the amount of attacks
handled by it throughout the testing duration.

0 600 1200 1800 2400 3000 3600
Time(s)

0

200

400

600

800

1000

1200

1400

1600

1800

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

WhatsApp
HosTaGe
AVG Free Antivirus
Facebook Mobile

Figure 4: Accumulated Power Consumption Analy-
sis

Limitations and Future Work.
There are still some limitations of HosTaGe that are cur-

rently being studied and improved. For instance, the re-
quirement of a rooted Android device is limiting the poten-
tial user set. Future work will attempt to overcome this
limitation. Moreover, additional effort is required to im-
prove HosTaGe’s GUI as well as for generic performance
and power utilization improvements.

A successful detection triggered by HosTaGe depends on
the specific behavior of the malware and the timing the de-
vice joins the network. Some malware attempt to propagate
by scanning IP addresses incrementally for available hosts
in the subnet range. If HosTaGe is issued an IP address
which has already been scanned by the malware, it is unable
to detect the malicious activity unless the malware repeats
this activity. This malware-specific behavior also influences
the amount of time that HosTaGe needs to be active in a
network before being able to successfully detect an existing
malware propagation (if any). However the aforementioned
limitations do not apply for malicious users trying to scan
or compromise systems over the network.

In terms of new features, adding a phone home capability
to HosTaGe for submitting coarse grained alert data to a
centralized monitor is preferable. This could provide us the
ability to create a map of open wireless networks with indi-
cations of their security status. Moreover, HosTaGe devices
can also learn about security status of other networks from
participating devices. However, this functionality exhibits a

47

variety of challenges, e.g., dealing with IP addresses under
NAT and possible privacy concerns of the users. Moreover,
in such a scenario GPS-data, if applicable, could be also
utilized.

6. CONCLUSION
In this paper we proposed the idea of Honeypot-To-Go,

which is a lightweight low-interaction portable honeypot for
mobile devices that aims on detecting malicious wireless net-
work environments. A Honeypot-To-Go may be used by or-
dinary users that are concerned about the trustworthiness
of a wireless network they are about to connect, or even by
security professionals and network administrators that re-
quire a brief security analysis of their networks on-the-go.
We presented our prototype HosTaGe along with initial re-
sults, indicating its potential on the mobile platform and
the feasibility for ordinary users. To the best of our knowl-
edge, HosTaGe is the first implementation of a generic low-
interaction honeypot for mobile devices.

7. ADDITIONAL AUTHORS
Mihai Plasoianu, Lars Pandikow and Wulf Pfeiffer (Tech-

nische Universität Darmstadt, email: first.last@stud.tu-
darmstadt.de).

8. REFERENCES
[1] S. Antonatos, M. Locasto, and S. Sidiroglou.

Defending Against Next Generation through Network
/ Endpoint Collaboration and Interaction. In 3rd
European Conference on Computer Network Defense,
pages 131–141. Springer US, 2009.

[2] S. Antonatos, E. P. Markatos, and K. G.
Anagnostakis. Honey @ home : A New Approach to
Large-Scale Threat Monitoring. In ACM workshop on
Recurring malcode, pages 38–45. ACM, 2007.

[3] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and
F. Freiling. The nepenthes platform: An efficient
approach to collect malware. Lecture notes in
Computer Science, 4219:165–184, 2006.

[4] B. I. A. Barry and H. A. Chan. Intrusion Detection
Systems. In Handbook of Information and
Communication Security, pages 193–205. Springer
Berlin, 2010.

[5] A. Galante, A. Kokos, S. Zanero, and P. Milano.
BlueBat : Towards Practical Bluetooth Honeypots. In
IEEE International Conference on Communications,
pages 1–6. IEEE, 2009.

[6] J. Gobel. Amun : Automatic Capturing of Malicious
Software. Technical report, University of Mannheim,
2010.

[7] S. Liebergeld, M. Lange, and C. Mulliner. Nomadic
Honeypots : A Novel Concept for Smartphone
Honeypots. In Workshop on Mobile Security
Technologies (MoST’13), in conjunction with the 34th
IEEE Symp. on Security and Privacy., 2013.

[8] C. Mulliner, S. Liebergeld, and M. Lange. Poster :
HoneyDroid - Creating a Smartphone Honeypot. In
IEEE Symposium on Security and Privacy (S&P),
2011.

[9] E. Peter and T. Schiller. A Practical Guide to
Honeypots. Technical report, Washington Univerity,
2011.

[10] N. Provos. Honeyd : A Virtual Honeypot Daemon. In
DFN-CERT workshop, 2003.

[11] C. Seifert, I. Welch, and P. Komisarczuk. HoneyC -
The Low-Interaction Client Honeypot. In NZCSRCS,
2007.

[12] L. Spitzner. Honeypots : Catching the Insider Threat.
In Computer Security Applications Conference,
number Acsac, pages 170–179. IEEE, 2003.

[13] Symantec. Internet Security Threat Report. Technical
Report April, 2013.

[14] M. Wählisch, T. C. Schmidt, A. Vorbach, C. Keil,
J. Schonfelder, and J. Schiller. Design,
Implementation, and Operation of a Mobile Honeypot.
Technical report, 2013.

[15] M. Wählisch, S. Trapp, C. Keil, J. Schönfelder, T. C.
Schmidt, and J. Schiller. First Insights from a Mobile
Honeypot. In ACM SIGCOMM conference on
Applications, technologies, architectures, and protocols
for computer communication, pages 305–306. ACM,
2012.

[16] Z. Yang. PowerTutor - A Power Monitor for
Android-Based Mobile Platforms. Technical report,
University of Michigan, 2012.

[17] K. Zolfaghar and S. Mohammadi. Securing
Bluetooth-based payment system using honeypot. In
International Conference on Innovations in
Information Technology (IIT), pages 21–25, Dec. 2009.

APPENDIX
The malware used for the attack handling section were down-
loaded from the Open Malware Archive9, operated by Geor-
gia Tech Information Security Center. Table 1 gives insights
of the malware family as well as the MD5 hash of each par-
ticular malware that was used.

Malware Family MD5 Hash
Win32/Themida 682d6c26a81c5f62e9bb02349c804995

Worm/Generic.AHB e56d66fa40e3c2097b8824953a5250cb

Downloader.Generic10.BNH 9523e99c4d4267f813c97e795b33480e

PSW.Generic8.GKS 7fe658710e4904e0ee2148ddee02b8e9

PSW.Generic8.HBB d29a563bdca54d8ca381ea75ff619b2d

PSW.OnlineGames3.AOPH 41b3419b105afe85a38a3ca2765c53fd

Worm/Delf.HA 2e83efa9412ada82f527005d44281792

Worm/Delf.LC 3947c2e31e87ae4a6d5c81b3cee14b15

Win32/Prepender.J 21dc5b946d7a09999f205410ad8f080e

Table 1: Malware Deployed In The Testbed

9http://oc.gtisc.gatech.edu

48

