
IOT SENTINEL Demo: Automated Device-Type
Identification for Security Enforcement in IoT

Markus Miettinen
Tommaso Frassetto

Ahmad-Reza Sadeghi
Technische Universität Darmstadt, Germany
Email: {markus.miettinen,tommaso.frassetto,

ahmad.sadeghi}@trust.tu-darmstadt.de

Samuel Marchal
N. Asokan

Aalto University, Espoo, Finland
Email: samuel.marchal@aalto.fi

asokan@acm.org

Ibbad Hafeez
Sasu Tarkoma

University of Helsinki, Finland
Email: {ibbad.hafeez,sasu.tarkoma}

@cs.helsinki.fi

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. https://doi.org/10.1109/ICDCS.2017.284

Abstract—The emergence of numerous new manufacturers
producing devices for the Internet-of-Things (IoT) has given rise
to new security concerns. Many IoT devices exhibit security flaws
making them vulnerable for attacks and manufacturers have
difficulties in providing appropriate security patches to their
products in a timely and user-friendly manner. In this paper,
we present our implementation of IOT SENTINEL, which is a
system aimed at protecting the user’s network from vulnerable
IoT devices. IOT SENTINEL automatically identifies vulnerable
devices when they are first introduced to the network and
enforces appropriate traffic filtering rules to protect other devices
from the threats originating from the vulnerable devices.

I. INTRODUCTION

The vision of the so-called Internet-of-Things (IoT) is
rapidly becoming a reality, as more and more people are in-
stalling IP-connected devices and appliances into their homes.
An emerging issue with the adoption of IoT devices is related
to their security. New players with limited experience in
security engineering of consumer products are entering the
market, leading to many new products being shipped with
inherent security flaws [1]. Means for providing security
updates to rolled-out products are often deficient, as manu-
facturers often do not have adequate processes in place for
providing security updates to their products in a timely manner.
Many products often lack easy-to-use means for updating
their system software, making it too difficult for average
consumers. These factors combined lead to a situation in
which devices vulnerable to security attacks are likely to be
present in many users’ networks. Recently, massive DDoS
attacks leveraged hundreds of thousands of compromised IoT
devices [2], confirming the tangibility of this threat.

Managing the security of users’ IoT devices in the presence
of vulnerable devices is challenging. To accomplish this, one
would need the possibility to identify vulnerable devices and
take appropriate protective measures to protect other devices
from potential security attacks utilizing the vulnerable devices.

We have built a prototype system, IOT SENTINEL, to
prevent vulnerable devices from compromising the security
of other devices in the network. IOT SENTINEL implements
automated techniques, introduced in [3], for identifying vul-
nerable devices and isolating them from the rest of the user’s
devices. IOT SENTINEL is composed of a local network

gateway serving as access point (AP) for IoT devices and a
cloud-based security service. It leverages traffic monitoring,
machine-learning and software-defined networking (SDN) [4]
components to achieve protection of the IoT network.

II. OVERVIEW OF IOT SENTINEL

The goal of IOT SENTINEL is to assess the vulnerabil-
ity of new IoT devices when they are initially added to a
network. According to this assessment, traffic filtering rules
are generated and applied to isolate vulnerable devices, so
that they will not be exploited or, if they are, not be used
to compromise other devices in the network. IoT devices
vulnerability assessment relies on the automatic identification
of their device-type. In IOT SENTINEL, a device-type refers to
the tuple <model, software version> of a device.

The design of IOT SENTINEL is shown in Fig. 1. It consists
of a Security Gateway and an IoT Security Service. The
Security Gateway is located in user’s local network and acts as
a local AP. IoT Security Service is a cloud service operated
by an IoT Security Service provider (IoTSSP). The IoTSSP
aggregates information about IoT device-types and assesses
the required isolation level (Sect. III-B2) for each device-type.
These assessments can be based on lab-based penetration tests,
entries in vulnerability databases like, e.g., CVE [5], and, on
cross-correlating crowd-sourced incident reports with device-
types present in affected networks.

IoTSSP maintains a mapping between device-types and
isolation profiles. An isolation profile consists of appropriate
enforcement rules for isolation in order to protect other devices
in the network from being affected by potentially vulnerable
devices. IOT SENTINEL’s device-type identification relies on
monitoring the communication of a device during its typical
set-up phase when it is introduced to a network. Security
Gateway records its communication with the AP and derives
a fingerprint from it. The fingerprint is transmitted to IoT Se-
curity Service, which identifies the corresponding device-type
and determines the associated isolation profile. Based on the
isolation profile, Security Gateway generates traffic filtering
(i.e. enforcement) rules that will be enforced in order to protect
other devices in the same network from risks of exposure to
vulnerable devices that may become compromised.



WiFi interface eth0 interface

Device 
monitoring

Fingerprinting

Device type 
Identification

Isolation profile 
generation

Enforcement

IoT Security Service

Security Gateway

Open vSwitch

SDN Controller

CPU

Cache

Wired IoT devices
Wireless IoT devices

Management 
terminal

Fig. 1. Internal architecture of Security Gateway.

III. IMPLEMENTATION

Our prototype implementation of IOT SENTINEL consists
of a Security Gateway acting as an AP in the user’s network,
and a cloud-based IoT Security Service. Security Gateway
and IoT Security Service communicate using a RestAPI over
HTTP/HTTPS.

A. Security Gateway

The internal architecture of Security Gateway is shown
in Fig. 1. The prototype implementation uses a modified
version of open-source Floodlight SDN controller v1.2 [6]
and supports Open vSwitch (OVS) v2.3 or later [7]. We
have written custom modules in Floodlight for detecting new
devices in the network, initiating device fingerprinting and
communicating with IoT Security Service. Security Gateway
is deployed on a Raspberry PI 2 device set up as wireless AP
using hostapd [8], which runs the SDN controller and OVS.

1) Device Fingerprinting: Device-type identification in IOT
SENTINEL is based on device fingerprints extracted from the
distinctive communication behaviour of a device when it is
introduced for the first time to the user’s network. When the
SDN controller discovers a new device with a MAC address
that has not been observed earlier, it initiates a tcpdump
packet capture process recording all data packets originating
from this device (identified using MAC address) for the du-
ration of at most k seconds, collecting a set {p1, p2, . . . , pN}
of N data packets.

After the packet capturing process completes, A feature
extraction module processes then the recorded packets to
derive a set of 23 features {f1,i, f2,i, . . . , f23,i} for each packet
pi. All features are based on the analysis of the packet headers
only, allowing encrypted packets to be included in the feature
set as well. The features indicate the use of particular protocols
or encode other packet header properties. (For feature details,
please refer to [3]).

Fig. 2. Example isolation profile sent by IoT Security Service to Security
Gateway.

The resulting fingerprint F after processing N packets is a
23 × N matrix. Each row i represents one of the 23 packet
features and each column j represents the jth received packet.
F is stored in a CSV file, optionally compressed and uploaded
to IoT Security Service for identification.

2) Traffic Filtering: Security Gateway uses SDN to dynam-
ically change the network configuration. The wireless interface
in Raspberry PI is bridged with a virtual interface in OVS to
pass all wireless traffic through OVS, allowing us to manage
traffic between clients connected to the same SSID.

When a new device joining the network is detected, it
is placed in a quarantine network. The quarantine network
consists of devices for which no isolation profile is yet known
by Security Gateway. When an isolation profile is received
from IoT Security Service (see Fig. 2), the new device is
assigned either to the trusted or to the untrusted network.
The SDN controller uses the isolation profiles to dynamically
generate OpenFlow enforcement rules (OF-rule), which are
then implemented in OVS to control the traffic in the network.
A lightweight Enforcement Rule Generation Engine (ERGE)
implemented as a Java library assists the SDN controller in
generating OF-rules. Isolation profiles and OF-rules are stored
locally in Security Gateway as JSON files.

OVS forwards every incoming packet for which there is
no matching OF-rule available in OVS to the SDN con-
troller. Our custom module in SDN controller intercepts these
packets and extracts information from Layer 2–4 headers
including, e.g., source and destination MAC addresses, IP
addresses, port numbers, etc. Using this information, it verifies
whether or not the given connection request satisfies the
criteria specified by isolation profiles of devices involved in
the connection. If a connection request is permitted by the
matching isolation profile, ERGE generates a matching OF-
rule with action=FORWARD, which allows the connection
establishment. In case the connection is not permitted, ERGE
generates an action=DROP OF-rule to prevent the connec-
tion establishment. In case an isolation profile is updated by
IoT Security Service, the existing corresponding OF-rules are
removed from OVS and regenerated according to new isolation
criteria specified for the communicating devices.

B. IoT Security Service

IoT Security Service was developed from scratch using
the Python-based Flask Framework [9]. It is responsible for
device-type identification and for maintaining a device-type to
isolation profile mapping.



Fingerprint	
Classifica0on	

	

	Device-type1	
RF	Classifier	

	Device-typen	
RF	Classifier	

	Device-type2	
RF	Classifier	

	Device-type3	
RF	Classifier	

F’	
	

Edit	Distance	
Discrimina0on	
	

no	
	

yes	
	

yes	
	

no	
	

F1,1	//	F	->	s1,1	
	
	

F1,5	//	F	->	s1,5	

F3,1	//	F	->	s3,1	
	
	

F3,5	//	F	->	s3,5	

D3	
	F	

	

p	≥	0.2	
	

Vector	
Extrac0on	(1)	
	

(2)	
	

(3)	
	

Fig. 3. Device-type identification process.

IoT Security Service can be deployed both locally using a
personal workstation or in a public or private cloud service.
In our prototype setup, we instantiate the IoT Security Service
in Docker containers deployed in a private cloud environment
using the Kubernetes platform [10], allowing us to achieve
better scalability and fault tolerance.

1) Device-Type Identification: The device-type identifica-
tion process involves two main steps as described in [3]
and shown in Fig. 3. Fingerprint classification (2) consists
in identifying a limited number of candidate device-types
for the fingerprint F received from the security gateway (cf.
Sect III-A1). Then, edit distance discrimination (3) breaks ties
between candidates and decides on a final device-type for F.
The whole identification process is implemented in Python.

First, a fixed length vector F′ is extracted from F ((1) in
Fig. 3) to be used for fingerprint classification. F′ is a 276-
dimensional feature vector and is the concatenation of the
12 first unique columns of F. F and F′ are represented as
pandas dataframes [11].

Fingerprint classification ((2) in Fig. 3) relies on n clas-
sifiers, each for identifying one device-type and rendering
a binary decision: is the device of the given type or not.
They are implemented as Random Forest classifiers using
the scikit-learn Python library [12]. In contrast to the
original Random Forest algorithm that uses majority vote of
the binary decisions of each tree to reach the final prediction,
this implementation averages probabilistic predictions from
each tree to predict the class of a sample. Considering 0
as “the device is not of this type” and 1 as “the device is
of this type”, we selected a discrimination threshold of 0.2
to be applied on the averaged probabilistic prediction. Each
classifier is composed of 50 binary trees having a maximum
depth of 3. Hence, the number of nodes per tree is between 7
and 15. We chose a moderate number (50) of small trees to
speed up the decision process. It allows testing F′ on a high
number (>1000) of device-type classifiers in a limited amount
of time (<1 second).

During edit distance discrimination ((3) in Fig. 3) finger-
print F is compared to a set of five reference fingerprints from
each candidate device-type identified in (2). The comparison
is done by computing the Damereau-Levenshtein distance [13]
between F and each of the reference fingerprints. Each packet

corresponding to a column in F is considered as a single
character. All 23 packet features must be equal to consider two
characters equal. The distance computation is implemented
as a double loop over the columns of the two compared
fingerprints. Taking two fingerprints of size 23×M and 23×N ,
the complexity of one comparison is O(M ·N).

2) Isolation profile generation: Once a device-type is iden-
tified, IoT Security Service retrieves its associated isolation
profile from a NoSQL database, i.e. Mongo-DB [14]. The
isolation profile (Fig. 2) is a JSON file that consists of the
device-type’s name, ID and an isolation level ∈ {strict :
1, restricted : 2, trusted : 3}. Trusted devices are assigned to
the trusted network and have unrestricted access to the Inter-
net. Strict and restricted devices are assigned to the untrusted
network and have no, respectively restricted, Internet access.
The list of permitted IP defines the set of remote IP addresses
a restricted device can access and typically correspond to
the cloud service of the device’s vendor. Communications
between trusted and untrusted network are strictly prohibited.
The isolation profile is sent to Security Gateway in response to
a device identification request, or updated asynchronously if
the isolation profile for a device-type is updated by IoTSSP.

IV. EVALUATION

We evaluated the performance of our implementation by
measuring the time it takes for the system to fingerprint
and classify a newly added device and update the traffic
filtering rules enforced by Security Gateway. This was done
by repeating the typical set-up procedure of an IoT device for
ten times, considering six different IoT device-types, resulting
in a dataset of n = 60 distinct device set-up measurements.
We captured packets for k = 120 seconds in each set-up
experiment in order capture the typical characteristics of the
device’s behaviour during set-up. In our analysis, we focus
on the performance of the system regarding fingerprinting and
classification of the acquired data, which takes place after the
packet capturing phase.

A. Fingerprinting
Figure 4a shows the time required for the Security Gateway

to process the captured packets and generate the fingerprint
F. The fingerprinting takes between 2770 and 11690 millisec-
onds, the average being 4894(±1559) ms. To reduce commu-
nication overhead the fingerprint can optionally also be com-
pressed. The compression takes on the average 4101(±627)
ms. Detailed results are shown in Fig. 4b.

B. Classification and Enforcement Rule Update
After generating the fingerprint F, Security Gateway sends

it to the IoT Security Service to obtain a device-type classifi-
cation for the device. We measured the round trip time it takes
from sending the request to getting a reply from IoT Security
Service with a device-type classification result. The Security
Gateway and IoT Security Service were located in different
countries, at approximately 1500 km distance. The results are
shown in Fig. 4c. Classification takes between 2075 and 4723
ms, on average 3301(±806) ms.



1 2 3 4 5 6
Device types

4

6

8

10

12

se
co

nd
s

(a) Fingerprint extraction

1 2 3 4 5 6
Device types

3.5

4.0

4.5

5.0

5.5

se
co

nd
s

(b) Fingerprint compression

1 2 3 4 5 6
Device types

2.0

2.5

3.0

3.5

4.0

4.5

se
co

nd
s

(c) Classification

Fig. 4. Box plots for the duration of fingerprint extraction, compression and classification for several device-types 1: Fitbit Aria, 2: Edimax Plug 1101W,
3: Edimax Plug 2101W, 4: Ednet Gateway, 5: TP-Link Plug HS100, 6: TP-Link Plug HS110

C. Overall Performance

Both fingerprinting and classification are performed in a
matter of a few seconds. The majority of the time is taken by
the actual set-up procedure of the device. As the classification
of the device is done very quickly after data acquisition,
appropriate enforcement rules are almost immediately applied
after the device setup is completed. This leaves a small window
(≈ 10 seconds) of opportunity for potential attackers, thereby
effectively protecting the user’s network from potential threats
posed by vulnerable devices.

V. RELATED WORK

Some commercial products like F-Secure Sense [15], Dojo
Gateway [16], or Bitdefender Box [17] follow a similar ap-
proach in which a dedicated gateway device is used to protect
the user’s network. These systems, however, rely on on-line
analysis of the network traffic flowing between devices and
remote endpoints on the Internet with the aim of identifying
potential threats or attacks based on known attack patterns or
anomaly detection. In this respect, IOT SENTINEL follows a
totally different approach, as it aims at proactively identifying
vulnerable devices and enforcing appropriate countermeasures
even before potential security vulnerabilities are exploited.

For realizing automatic device identification, IOT SEN-
TINEL uses a novel device fingerprinting approach. In this
respect, earlier device fingerprinting approaches were lacking
as they were either too specific, i.e., for identifying spe-
cific device instances, or, too coarse, identifying particular
combinations of chipsets and drivers that can be potentially
shared between many different types of devices. For a detailed
discussion of related work in device fingerprinting, please refer
to [3].

VI. DEMONSTRATION SETUP

Materials: IOT SENTINEL demo uses a Security Gateway
implemented on a Raspberry Pi 2 that serves as wireless access
point. The IoTSSP is hosted on a remote server. A Smart-
phone is used to associate several wireless IoT devices (i.e.
EdnetGateway, Edimax Plug, Fitbit Aria, etc.) with Security

Gateway. All Security Gateway operations are displayed on a
connected monitor.
Procedure: The set-up of IoT devices with the Security Gate-
way is interactively demonstrated by inviting a person from
the audience to perform the setup using a provided smartphone
and the Security Gateway as access point. The audience can
follow the different steps of device-type identification and
update of the enforcement rules (Sect. III) on a monitor as
they are performed by IOT SENTINEL.

REFERENCES

[1] Senrio. 400,000 publicly available IoT devices vulnerable to single
flaw. [Accessed: 2016-07-07]. [Online]. Available: http://blog.senr.io/
blog/400000-publicly-available-iot-devices-vulnerable-to-single-flaw

[2] The New York Times, “Hackers used new weapons to disrupt ma-
jor websites across u.s.” https://www.nytimes.com/2016/10/22/business/
internet-problems-attack.html.

[3] M. Miettinen et al., “IoT Sentinel: Automated Device-Type Identification
for Security Enforcement in IoT,” in Proc. 37th IEEE International
Conference on Distributed Computing Systems (ICDCS 2017), Jun.
2017.

[4] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN,” Queue,
vol. 11, no. 12, pp. 20:20–20:40, Dec. 2013.

[5] MITRE Corporation. Common vulnerabilities and exposures. [Online].
Available: https://cve.mitre.org/data/downloads/index.html

[6] Big Switch Networks, “Project floodlight - floodlight OpenFlow con-
troller,” http://www.projectfloodlight.org/floodlight/, Oct. 2016, [Ac-
cessed: 2016-09-17].

[7] B. Pfaff et al., “The design and implementation of Open vSwitch,” in
Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association, 2015, pp. 117–130.

[8] IEEE 802.11 AP, “Hostapd,” http://w1.fi/hostapd.
[9] Flask, “Flask-Framework,” http://flask.pocoo.org/.

[10] Google, “Kubernetes,” https://kubernetes.io/.
[11] Pandas, “pandas,” http://pandas.pydata.org.
[12] Scikit Learn, “scikit-learn,” http://scikit-learn.org.
[13] F. J. Damerau, “A technique for computer detection and correction of

spelling errors,” Commun. ACM, vol. 7, no. 3, pp. 171–176, Mar. 1964.
[14] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide, 1st ed.

O’Reilly Media, Inc., 2010.
[15] F-Secure. Smart security for your smart lifestyle - F-Secure Sense.

[Accessed: 2017-01-30]. [Online]. Available: https://sense.f-secure.com/
[16] Dojo Labs. Dojo. [Accessed: 2017-01-30]. [Online]. Available:

https://www.dojo-labs.com/product/dojo/
[17] Bitdefender. Bitdefender BOX. IoT security solution for all connected

devices. [Accessed: 2017-01-30]. [Online]. Available: http://www.
bitdefender.com/box


