
Word Completion with Latent Semantic Analysis

Tristan Miller and Elisabeth Wolf
German Research Center for Artificial Intelligence (DFKI GmbH)

Postfach 20 80, 67608 Kaiserslautern, Germany
{tristan.miller, elisabeth.wolf}@dfki.de

Abstract

Current word completion tools rely mostly on statisti-
cal or syntactic knowledge. Can using semantic knowl-
edge improve the completion task? We propose a language-
independent word completion algorithm which uses latent
semantic analysis (LSA) to model the semantic context of
the word being typed. We find that a system using this al-
gorithm alone achieves keystroke savings of 56% and a hit
rate of 42%. This represents improvements of 4.3% and
12%, respectively, over existing approaches.

1. Introduction

Word completion is the task of predicting and automati-
cally completing words that the user is in the process of typ-
ing. Such tools can prevent misspellings, help develop writ-
ing skills, and accelerate typing speed by saving keystrokes.
(This last benefit is particularly important for users of key-
boardless devices, such as mobile phones and PDAs, as well
as for users with physical disabilities.) During typing, the
user is offered a prediction list of words beginning with the
letters, or word prefix, thus far typed. If the intended word is
in the prediction list, the user can select it with a single key-
press; otherwise, he continues typing until the word appears
in the list or until he types the complete word.

The job of the word completion algorithm is to deter-
mine which words appear in the prediction list, the idea be-
ing to maximize the probability of presenting the user with
the correct word. The earliest word completion algorithms
used simple statistical methods, such as word or word-pair
frequencies, to rank words in the prediction list. The fre-
quencies are derived from a corpus of written text, though
some systems dynamically update the frequency table to
adapt to the user’s writing style. More advanced systems
incorporate syntactic data, such as part-of-speech tags and
grammar rules, to avoid suggesting words which are gram-
matically incorrect in the given context.

However, even systems that combine statistical and syn-

tactic data can suggest words that are semantically inappro-
priate. For instance, the writer of an essay on music who
begins typing Mende. . . is far more likely to intend the com-
pletion to be Mendelssohn than Mendel or Mendeleyev, even
though all three are proper nouns which may be equally sta-
tistically likely (in a unigram or bigram model, at least).
There have been some recent attempts at incorporating se-
mantic information into the completion task (e.g., [4]), but
most of these require language-specific tools such as Word-
Net [5], and many operate only on words of a particular part
of speech.

In this paper, we propose a word completion algorithm
which aims to suggest words best fitting the semantic con-
text. Semantic information is provided by latent seman-
tic analysis [2], a language-neutral technique based on the
vector-space model of information retrieval. A full explana-
tion of the technique is beyond the scope of this paper, but
in brief, LSA takes a term–document co-occurrence matrix
and perturbs the values in such a way that the processed
matrix captures the underlying transitivity relations among
terms, allowing for identification of semantically similar
documents which share few or no common terms withal.
Likewise, terms may be compared by examining their vec-
tors across documents. Terms may be judged semantically
similar even though they never occur in the same document
together.

2. Algorithm

To initialize the system, it is necessary to transform a
text corpus into a reduced-dimensionality term–document
matrix, where each “document” vector d ∈ D of the matrix
corresponds to a sentence of the corpus, and each “term”
vector t ∈ T is a unique word. (How to produce such a
matrix is treated in detail in the available LSA literature.)
Ideally the corpus should be large enough to contain any
word the user is likely to type. Once the matrix is built,
pairs of term or document vectors can be compared via the
cosine coefficient, yielding a “semantic similarity” score in
the range [−1, 1].

Now, say the user is in the process of typing a word
w with prefix pre(w). Then we define the context C =
〈c1, c2, . . . , c`−1, c`〉 as the sequence of up to ` words im-
mediately preceding w in the document. We refer to ` as the
context length, though near the beginning of the document
the actual length of the context, |C|, may be less than `.

A candidate word k ∈ K ⊆ T is any word
whose prefix is the same as that of w—i.e., K =
{k|k ∈ T ∧ pre(k) = pre(w)}. The best candidates com-
prise the prediction list P ⊆ K, which the user (or system)
caps at a maximum length of m. Again, it is possible that
|P | < m if there are fewer than m known words with the
given prefix.

We investigate two methods to populate P , both of which
involve finding candidates with a high semantic similarity
to the context. For the first method, context as pseudo-
document (CAP), we convert C into a new document vec-
tor, dC , which is the sum of all weighted term vectors ti
whose terms appear in the context. This new document
vector then undergoes the same dimensional reduction as
the rest of the matrix, a process known as folding in [2].
Following this, C can be compared to any term or docu-
ment in the matrix with the cosine measure. For example,
the semantic similarity of a candidate word k to the context
is sim(k, C) = cos(k, dC). We therefore compute cosine
scores for each possible k, and assign to P the m candi-
dates with the highest scores.

In the second method, sum of similarities (SOS), instead
of treating the context as a monolithic document vector, we
compare the candidates to each word in the context individ-
ually. The similarity score for the context is thus the sum
of similarity scores of each word in the context, possibly
weighted with a monotonically non-increasing function f
to give higher importance to words near the end of the con-
text (i.e., near w):

sim(k, C) =
|C|∑
i=1

cos(k, ci) · f(|C| − i) .

We investigate three different weighting functions: a lin-
ear weight f1(x) = 1 − x ÷ |C|, a hyperbolic curve
f2(x) = (x + 1)−1, and a linear step function f3(x). A
similarity measure without weighting can be achieved by
using a constant function f0(x) = 1. (See Figure 1.)

2.1. Complexity analysis

The construction of the reduced-dimensionality matrix
from the text takes about O(|T | · |D|2) time, though for-
tunately need be done only once. Once constructed, terms
and documents can be compared in time linear to the to-
tal number of each type of entity being compared—that is,
O(|T | · |D|), O(|T |2), or O(|D|2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

w
ei

gh
t

distance from w (# of intervening words)

f0
f1
f2
f3

Figure 1. SOS weighting functions for ` = 30

To determine the suitability of a single candidate in the
CAP method, we need time linear to the number of terms in
the context to build the document vector, plus time for one
term–document comparison: O(|C| + |T | · |D|). To do so
for all candidates, then, is an O(|K| · |C| + |K| · |T | · |D|)
operation.

The calculation for SOS is more complicated, since a
term–term comparison must be performed for each word in
the context. This gives us O(|K| · |C| · |T |2), though various
optimizations, such as memoization can be used to signif-
icantly cut down on running time. The use of any of the
weighting functions we investigate has no significant im-
pact on computational complexity.

3. Evaluation

We designed and implemented an automated simulation
to test the variants of our word completion algorithm. The
three-part system, illustrated in Figure 2, simulates a user
who is assisted by a word completion tool.

The first component preprocesses the training corpus and
generates the reduced-dimensionality term–document ma-
trix. Our training corpus consists of 95% of the documents
of the Reuters-21578 news corpus [3], pre-processed to re-
move stop words (conjunctions, pronouns, etc.) and punctu-
ation. The remaining 5% is used as the test corpus (W); the
user simulation component reads documents from the test
corpus and passes them character by character to the word
completion component, which replies with a prediction list.
Whenever the prediction list contains the word currently be-
ing “typed”, the simulated user accepts the completion and
skips ahead to the next word.

The simulation allows us to modify various parameters
so that the optimal combination can be determined empiri-
cally; in this study we focus on just three. The first, obvi-

training
 corpus information

semantic

text
test simulated

user prediction list

character
results

predictionprediction
 algorithm

Figure 2. Simulation architecture

ously, is the prediction list population method (including the
weighting function). The second is context length (`), for
which we tested values from 5 to 30 words. If the context
is too short or too long, the topic it encapsulates may be too
narrow or too broad to compare with the candidate words.
The third parameter is the matrix dimension retention r, by
which we mean the percentage of matrix dimensions re-
tained during LSA’s matrix recomposition. We investigate
values of 0.4% to 8%. Our simulation also allows us to
modify the prediction list length (m). The longer the pre-
diction list, the higher the probability that the intended word
appears therein, but longer lists require more time and effort
from a human user. Therefore all tests were conducted with
m = 5, which is a typical default for commercial comple-
tion systems.

Performance of the system is assessed with three stan-
dard measures:

Keystroke savings, the most important measure, is the per-
centage of keystrokes that the user saves by using the
word completion utility:

KS = 100− 100
|W |

·
∑

w∈W

sw + 1
len(w)

,

where |W | is the number of words in the test corpus,
sw is the number of keystrokes used to type a given
word w, +1 is the one additional keystroke to choose
the appropriate word in the prediction list, and len(w)
is the number of characters in w—i.e., the number of
keystrokes that would have had to be typed without the
word completion utility.

Hit rate refers to the percentage of keystrokes after which
the intended word appears in the prediction list:

HR = 100 ·

[∑
w∈W

in(w)

]
÷

∑
w∈W

sw ,

where

in(w) =
{

1 if w ∈ P after typing sw characters;
0 otherwise.

Keystrokes until prediction is the mean number of
keystrokes until the intended word appears in the

prediction list or is completely typed:

KUP =
1

|W |
·

∑
w∈W

sw .

4. Results

We ran our simulation with the context as pseudo-
document algorithm using various combinations of context
length and matrix retention. The results for keystroke sav-
ings are summarized in Table 1; the boldface numbers mark
the highest value for each context length. Irrespective of
matrix retention, we see a gradual increase in keystroke sav-
ings across context length. However, no one value of matrix
retention achieved the best keystroke savings across all con-
text lengths. The values obtained for hit rate and keystrokes
until prediction follow a similar trend, with results improv-
ing with greater context length but with no one matrix re-
tention value as the winner.

matrix context length (`)

retention (r) 5 10 15 20 30

0.4 42.96 43.63 44.38 44.68 45.16
2.0 41.94 43.40 44.31 44.93 45.44
4.0 41.01 42.75 43.73 44.32 45.32
8.0 39.37 41.62 42.92 43.75 44.78

Table 1. Keystroke savings: CAP

We ran the same test using the sum of similarities al-
gorithm with no (i.e., constant) weighting. For this algo-
rithm it is particularly important to find a good balance be-
tween performance and context length, because, as shown
in §2.1, the similarity calculation is an order of magnitude
more costly. Table 2 summarizes results for keystroke sav-
ings. This time keystroke savings correlates with context
length only for r ≥ 4.0. The best overall results (includ-
ing those for hit rate and keystrokes until prediction) are
obtained with r = 8.0.

To see whether the use of a weighting function could
further improve the results for SOS, we reran the SOS sim-
ulation at r = 8.0 once with each of the three functions
introduced in §2. The results for keystroke savings, shown

matrix context length (`)

retention (r) 5 10 15 20 30

0.4 49.50 49.96 49.81 49.61 49.15
2.0 49.44 50.85 51.40 51.65 51.49
4.0 49.98 51.66 52.29 52.76 52.96
8.0 51.61 53.24 54.11 54.54 55.05

Table 2. Keystroke savings: SOS

in Table 3, show that any weighting function is a slight im-
provement over no weighting. The overall best combination
of weighting and context length is the step function f3 with
` = 30. This yields an improvement of 0.98% over the best
SOS without weighting. This combination is also the best
for HR and KUP, with improvements of 1.8% and 1.7%,
respectively.

weighting context length (`)

function 5 10 15 20 30

f0 (none) 51.61 53.24 54.11 54.54 55.05
f1 (linear) 51.66 53.33 54.33 54.86 55.56
f2 (hyperbolic) 52.21 53.69 54.45 54.87 55.35
f3 (stepwise) 52.04 53.51 54.49 55.07 55.59

Table 3. Keystroke savings: weighted SOS

In summary, for all algorithms tested, the best results
were obtained with a context length of 30. Table 4 shows all
three performance measures for both algorithms—CAP at
its optimal matrix retention of 2.0%, and SOS at its best of
8.0%. SOS greatly outperforms CAP in all three measures,
with a 21% improvement in keystroke savings, a 34% in-
crease in hit rate, and a 23% reduction in mean keystrokes
until prediction. The addition of the stepwise linear term
weighting to SOS increases these respective figures to 22%,
36%, and 25%.

algorithm KS HR KUP

CAP (r = 2.0) 45.44 31.20 3.14
SOS + f0 (r = 8.0) 55.05 41.66 2.41
SOS + f3 (r = 8.0) 55.59 42.39 2.37

Table 4. CAP and SOS algorithms compared

How the best configuration of our LSA-based system
compares to various third-party word completion systems
(from [1]) is summarized in Table 5. The bigram predictor
is statistics-based, the part-of-speech tag predictor is syntax
based, and the other two methods combine statistical and
syntactic knowledge. Our method outperforms all of these,
with improvements of 4.3%, 12%, and 6.3%, over the best

KS, HR, and KUP scores, respectively.

algorithm KS HR KUP

bigram predictor 52.90 37.49 2.55
part-of-speech tag predictor 49.80 34.93 2.72
linear predictor 53.14 37.78 2.54
tags-and-words predictor 53.30 37.49 2.53
SOS + f3 55.59 42.39 2.37

Table 5. SOS vs. third-party algorithms

5. Conclusion

Overall, our results show that semantic knowledge ex-
tracted through LSA offers a successful solution for word
completion tasks. Our LSA-based method achieves signifi-
cantly better keystroke savings, hit rate, and keystrokes until
prediction than syntax- or statistics-based approaches.

There are many possibilities for future research into this
approach. One is the integration of user-adaptive, syntactic,
or statistical methods with our semantic system. (The use of
a stemmed corpus as a surrogate for syntactic information is
presented in [6].) We might also consider varying other ex-
perimental parameters, such as prediction list length, and
investigating other performance measures, such as accu-
racy and mean number of candidates [1, p. 54]. Finally,
we must eventually address the problem of integrating new
terms into the matrix: past a certain point, the folding in of
new terms may degrade the matrix’s latent semantic struc-
ture, yet recomposing the entire matrix is a time-consuming
process. A preliminary study of some of these avenues of
inquiry is given in [6] and will form the basis of forthcom-
ing papers.

References

[1] A. Fazly. The use of syntax in word completion utilities. Mas-
ter’s thesis, Department of Computer Science, University of
Toronto, Jan. 2002.

[2] T. K. Landauer, P. W. Foltz, and D. Laham. An introduction to
latent semantic analysis. Discourse Processes, 25(2&3):259–
284, 1998.

[3] D. D. Lewis. Reuters-21578 Text Categorization Test Collec-
tion Distribution 1.0 README File v1.3, May 2004.

[4] J. Li and G. Hirst. Semantic knowledge in word completion.
In Proceedings of the 7th International ACM SIGACCESS
Conference on Computers and Accessibility, pages 121–128.
ACM Press, Oct. 2005.

[5] G. A. Miller. WordNet: An on-line lexical database. Interna-
tional Journal of Lexicography, 3(4):235–244, 1990.

[6] E. Wolf. A semantic-based word completion utility using la-
tent semantic analysis. Diplom-Informatik thesis, Department
of Technical Sciences, University of Applied Sciences, Old-
enburg/Ostfriesland/Wilhelmshaven, Emden, Oct. 2005.

